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In this paper, we establish a general refinement of the Becker-Stark inequalities by using the power
series expansion of the tangent function via Bernoulli numbers and the property of a function
involving Riemann’s zeta one.

1. Introduction

Steckin [1] (or see Mitrinovic [2, 3.4.19, page 246]) gives us a result as follows.

Theorem 1.1 (see [1, Lemma 2.1]). If 0 < x < π/2, then

4
π

x

π − 2x
< tan x. (1.1)

Later, Becker and Stark [3] (or see Kuang [4, 5.1.102, page 248]) obtain the following
two-sided rational approximation for (tan x)/x.

Theorem 1.2. Let 0 < x < π/2, then

8
π2 − 4x2

<
tan x

x
<

π2

π2 − 4x2
. (1.2)

Furthermore, 8 and π2 are the best constants in (1.2).

In fact, we can obtain the following further results.
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Theorem 1.3. Let 0 < x < π/2, then

π2 +
((
4
(
8 − π2))/π2)x2

π2 − 4x2
<

tan x

x
<

π2 +
(
π2/3 − 4

)
x2

π2 − 4x2
. (1.3)

Furthermore, α = (4(8 − π2))/π2 and β = π2/3 − 4 are the best constants in (1.3).

In this paper, in the form of (1.2) and (1.3) we shall show a general refinement of the
Becker-Stark inequalities as follows.

Theorem 1.4. Let 0 < x < π/2, and letN ≥ 0 be a natural number. Then

P2N(x) + αx2N+2

π2 − 4x2
<

tan x

x
<

P2N(x) + βx2N+2

π2 − 4x2
(1.4)

holds, where P2N(x) = a0 + a1x
2 + · · · + aNx2N , and

an =
22n+2

(
22n+2 − 1

)
π2

(2n + 2)!
|B2n+2| −

4 · 22n(22n − 1
)

(2n)!
|B2n|, n = 0, 1, 2, . . . , (1.5)

where B2n are the even-indexed Bernoulli numbers.
Furthermore, α = (8 − a0 − a1(π/2)

2 − · · · − aN(π/2)2N)/(π/2)2N+2 and β = aN+1 are the
best constants in (1.4).

2. Four Lemmas

Lemma 2.1. The function (1 − 1/2n)ζ(n)(n = 1, 2, . . .) is decreasing, where ζ(n) is Riemann’s zeta
function.

Proof. (1 − 1/2n)ζ(n) = ζ(n) − ζ(n)/2n is equivalent to the function λ(n) =
∑∞

k=0 1/(2k + 1)n,
which is decreasing.

Lemma 2.2 (see [5, Theorem 3.4]). Let ζ(n) be Riemann’s zeta function and B2n the even-indexed
Bernoulli numbers. Then

ζ(2n) =
(2π)2n

2(2n)!
|B2n|, n = 1, 2, . . . . (2.1)

Lemma 2.3 (see [6, 1.3.1.4 (1.3)]). Let |x| < π/2. Then

tan x =
∞∑

n=1

22n
(
22n − 1

)

(2n)!
(−1)n−1B2nx

2n−1 =
∞∑

n=1

22n
(
22n − 1

)

(2n)!
|B2n|x2n−1. (2.2)
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Lemma 2.4. Let F(x) = (π2 − 4x2)(tan x/x) and |x| < π/2. Then F(x) = π2 +
∑+∞

n=1 anx
2n, where

an =
22n+2

(
22n+2 − 1

)
π2

(2n + 2)!
|B2n+2| −

4 · 22n(22n − 1
)

(2n)!
|B2n| < 0, n = 1, 2, . . . . (2.3)

Proof. By Lemma 2.3, we have

F(x) =
(
π2 − 4x2

) ∞∑

n=1

22n
(
22n − 1

)

(2n)!
|B2n|x2n−2

= π2 +
+∞∑

n=1

[
22n+2

(
22n+2 − 1

)
π2

(2n + 2)!
|B2n+2| −

4 · 22n(22n − 1
)

(2n)!
|B2n|

]

x2n

:= π2 +
+∞∑

n=1

anx
2n.

(2.4)

Since (1 − (1/22n))ζ(2n) is decreasing by Lemma 2.1, it follows that

22n+2 − 1
4

ζ(2n + 2) <
(
22n − 1

)
ζ(2n). (2.5)

From Lemma 2.2, we get

π2(22n+2 − 1
)

(2n + 2)!
|B2n+2| <

(
22n − 1

)

(2n)!
|B2n|, (2.6)

which implies that an < 0 for n = 1, 2, . . ..

3. Proofs of Theorems

Proof of Theorem 1.4. Let

G(x) =
((tan x)/x)

(
π2 − 4x2) − (

a0 + a1x
2 + · · · + aNx2N)

x2N+2
. (3.1)

Then

G(x) =
F(x) − (

a0 + a1x
2 + · · · + aNx2N)

x2N+2
=

∑+∞
n=N+1 anx

2n

x2N+2
=

+∞∑

k=0

aN+1+kx
2k. (3.2)

By Lemma 2.4, we have an < 0 for n ∈ N
+, and G(x) is decreasing on (0, π/2).

At the same time, α = limx→ (π/2)−G(x) = (8 − a0 − a1(π/2)
2 − · · · −

aN(π/2)2N)/(π/2)2N+2 by (3.1), and β = limx→ 0+G(x) = aN+1 by (3.2), so α and β are the
best constants in (1.4).
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Proof of Theorem 1.3. Let N = 0 in Theorem 1.4; we obtain that α = (4(8 − π2))/π2 and β =
π2/3 − 4. Then the proof of Theorem 1.3 is complete.
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