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Abstract

The steady boundary layer flow of nanofluid over an exponential stretching surface is investigated analytically. The
transport equations include the effects of Brownian motion parameter and thermophoresis parameter. The highly
nonlinear coupled partial differential equations are simplified with the help of suitable similarity transformations.
The reduced equations are then solved analytically with the help of homotopy analysis method (HAM). The
convergence of HAM solutions are obtained by plotting h-curve. The expressions for velocity, temperature and
nanoparticle volume fraction are computed for some values of the parameters namely, suction injection parameter
a, Lewis number Le, the Brownian motion parameter Nb and thermophoresis parameter Nt.
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1 Introduction
During the last many years, the study of boundary layer
flow and heat transfer over a stretching surface has
achieved a lot of success because of its large number of
applications in industry and technology. Few of these
applications are materials manufactured by polymer
extrusion, drawing of copper wires, continuous stretch-
ing of plastic films, artificial fibers, hot rolling, wire
drawing, glass fiber, metal extrusion and metal spinning
etc. After the pioneering work by Sakiadis [1], a large
amount of literature is available on boundary layer flow
of Newtonian and non-Newtonian fluids over linear and
nonlinear stretching surfaces [2-10]. However, only a
limited attention has been paid to the study of exponen-
tial stretching surface. Mention may be made to the
works of Magyari and Keller [11], Sanjayanand and
Khan [12], Khan and Sanjayanand [13], Bidin and Nazar
[14] and Nadeem et al. [15,16].
More recently, the study of convective heat transfer in

nanofluids has achieved great success in various indus-
trial processes. A large number of experimental and the-
oretical studies have been carried out by numerous
researchers on thermal conductivity of nanofluids
[17-22]. The theory of nanofluids has presented several

fundamental properties with the large enhancement in
thermal conductivity as compared to the base fluid [23].
In this study, we have discussed the boundary layer

flow of nanofluid over an exponentially stretching sur-
face with suction and injection. To the best of our
knowledge, the nanofluid over an exponentially stretch-
ing surface has not been discussed so far. However, the
present paper is only a theoretical idea, which is not
checked experimentally. The governing highly nonlinear
partial differential equation of motion, energy and nano-
particle volume fraction has been simplified by using
suitable similarity transformations and then solved ana-
lytically with the help of HAM [24-39]. The convergence
of HAM solution has been discussed by plotting h-
curve. The effects of pertinent parameters of nanofluid
have been discussed through graphs.

2 Formulation of the problem
Consider the steady two-dimensional flow of an incom-
pressible nanofluid over an exponentially stretching sur-
face. We are considering Cartesian coordinate system in
such a way that x-axis is taken along the stretching sur-
face in the direction of the motion and y-axis is normal
to it. The plate is stretched in the x-direction with a
velocity Uw = U0 exp (x/l). defined at y = 0. The flow
and heat transfer characteristics under the boundary
layer approximations are governed by the following
equations
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where (u, v) are the velocity components in (x, y)
directions, rf is the fluid density of base fluid, ν is the
kinematic viscosity, T is the temperature, C is the nano-
particle volume fraction, (rc)p is the effective heat capa-
city of nanoparticles, (rc)f is the heat capacity of the
fluid, a = k/(rc)f is the thermal diffusivity of the fluid,
DB is the Brownian diffusion coefficient and DT is the
thermophoretic diffusion coefficient.
The corresponding boundary conditions for the flow

problem are

u = Uw (x) = U0exp
(
x/l

)
, v = −β (x) , T = Tw, C = Cw at y = 0,

u = 0, T = T∞ C = C∞ as y → ∞,
(5)

in which U0 is the reference velocity, b(x) is the suc-
tion and injection velocity when b(x) > 0 and b(x) < 0,
respectively, Tw and T∞ are the temperatures of the
sheet and the ambient fluid, Cw, C∞ are the nanoparti-
cles volume fraction of the plate and the fluid,
respectively.
We are interested in similarity solution of the above

boundary value problem; therefore, we introduce the fol-
lowing similarity transformations
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Making use of transformations (6), Eq. (1) is identi-
cally satisfied and Equations (2)-(4) take the form
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The physical quantities of interest in this problem are
the local skin-friction coefficient Cf, Nusselt number
Nux and the local Sherwood number Shx, which are
defined as
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where Rex = Uwx/ν is the local Renolds number.

3 Solution by homotopy analysis method
For HAM solutions, the initial guesses and the linear
operators Li (i = 1 - 3) are

f0 (η) = 1 − vw − e−η, θ0 (η) = e−η, g0 (η) = e−η,(12)

L1
(
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(
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The operators satisfy the following properties
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in which C1 to C7 are constants. From Equations (7)
to (9), we can define the following zeroth-order defor-
mation problems
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In Equations (17)-(22), ħ1, ħ2, and ħ3 denote the non-
zero auxiliary parameters, H1, H2 and H3 are the non-
zero auxiliary function (H1 = H2 = H3 = 1) and
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Obviously
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to the final solutions f (h), θ (h) and g (h), respectively.
Considering that the auxiliary parameters ħ1, ħ2 and ħ3
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The mth-order problems are defined as follow
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Employing MATHEMATICA, Equations (35)-(40)
have the following solutions
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in which a0m,0, a
k
m,n, A

k
m,n, F

k
m,n are the constants and the

numerical data of above solutions are shown through
graphs in the following section.

4 Results and discussion
The numerical data of the solutions (45)-(47), which is
obtained with the help of Mathematica, have been dis-
cussed through graphs. The convergence of the series
solutions strongly depends on the values of non-zero
auxiliary parameters ħi (i = 1, 2, 3, h1 = h2 = h3), which
can adjust and control the convergence of the solutions.
Therefore, for the convergence of the solution, the ħ-
curves is plotted for velocity field in Figure 1. We have
found the convergence region of velocity for different
values of suction injection parameter vw. It is seen that
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with the increase in suction parameter vw, the conver-
gence region become smaller and smaller. Almost simi-
lar kind of convergence regions appear for temperature
and nanoparticle volume fraction, which are not shown
here. The non-dimensional velocity f′ against h for var-
ious values of suction injection parameter is shown in
Figure 2. It is observed that velocity field increases with
the increase in vw. Moreover, the suction causes the
reduction of the boundary layer. The temperature field
θ for different values of Prandtle number Pr, Brownian
parameter Nb, Lewis number Le and thermophoresis
parameter Nt is shown in Figures 3, 4, 5 and 6. In Fig-
ure 3, the temperature is plotted for different values of
Pr. It is observed that with the increase in Pr, there is a
very slight change in temperature; however, for very
large Pr, the solutions seem to be unstable, which are
not shown here. The variation of Nb on θ is shown in
Figure 4. It is depicted that with the increase in Nb, the
temperature profile increases. There is a minimal change
in θ with the increase in Le (see Figure 5). The results
remain unchanged for very large values of Le. The
effects of Nt on θ are seen in Figure 6. It is seen that

temperature profile increases with the increase in Nt;
however, the thermal boundary layer thickness reduces.
The nanoparticle volume fraction g for different values
of Pr, Nb, Nt and Le is plotted in Figures 7, 8, 9 and 10.
It is observed from Figure 7 that with the increase in

Figure 1 h-Curve for velocity.

Figure 2 Velocity for different values of suction and injection
parameter.

Figure 3 Variation of temperature for different values of Pr
when Le = 2, h = -0.1, Nt = Nb = 0.5, vw= 1.

Figure 4 Variation of temperature for different values of Nb
when Le = 2, h = -0.1, Nt = 0.5, vw = 1, Pr = 2.

Figure 5 Variation of temperature for different values of Le
when h = -0.1, Nt = Nb = 0.5, vw = 1, Pr = 2.
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Nb, g decreases and boundary layer for g also decreases.
The effects of Pr on g are minimal. (See Figure 8). The
effects of Le on g are shown in Figure 9. It is observed
that g decreases as well as layer thickness reduces with
the increase in Le. However, with the increase in Nt, g
increases and layer thickness reduces (See Figure 10).
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