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Abstract: The authors present a new design of high resolution and wide dynamic range photonic 
crystal pressure sensor. This sensor is based on two-dimensional photonic crystal with square array 
of silicon rods surrounded by air. The sensor consists of a photonic crystal waveguide which is 
coupled to a photonic crystal nanocavity. The waveguide is configured by removing one row of Si 
rods and nanocavity is formed by modifying the radius of one Si rod. The sensor is designed for  
1300 nm–1400 nm wavelengths. Simulation results show that resonant wavelength of nanocavity is 
linearly shifted to larger wavelengths by increasing the pressure. The designed sensor has a linear 
behavior between 0.1 GPa to 10 GPa of applied pressure and 8 nm/GPa of pressure sensitivity.  
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1. Introduction 

Since the last decade, photonic crystals (PhCs) 

have been attractive optional structures for 

controlling and manipulating the light. The PhCs are 

the periodic microstructures with a period in order 

of optical wavelength that the refractive index of 

material changes in one, two, or three directions. 

Their inherent properties, such as photonic band gap 

(PBG), reflectance-transmittance, high design 

flexibility, and possibility to be made in nanometer 

range, make it possible to  utilize these structures 

in many applications such as waveguides, 

nano-resonators, photonic crystal fibers [1–5]. The 

research fields of PBG structures are explosively 

growing, with numerous novel applications being 

introduced every day [6]. 

Their application as sensor is a new research 
field that seems to be applicable in 

nano-electro-mechanical systems (NEMS). Xu et al. 

have proposed and analyzed a micro-displacement 
sensor with a large dynamic range based on a 

two-dimensional (2D) PhC co-directional coupler, 
by which the sensing range can be as large as tens of 
lattice constant or even more [7]. Shi et al. have 

reported an optical humidity sensor based on a 
nano-porous polymeric PhC that have excellent 
reversibility and reproducibility [8]. Other works 

such as refractive index sensor [9], chemical sensor, 
and oil sensor [10] have been also reported.  

The PhC pressure sensor can be constructed by 

coupling a waveguide and a nanocavity. A 
waveguide is made by introducing line defect in 2D 
PhC structure, and a nanocavity is made by 

introducing point defect in PhC structure.  
The resonant wavelength of nanocavity is a 

function of shape, dimension, and surface state of 

defects. This point is a fundamental work of 
pressure sensor. When pressure is applied to the 
nanocavity, its characteristics change, and therefore 
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the linear relation between pressure and resonant 
wavelength shift can be observed [11, 12]. In this 
paper, we propose a novel, linear, and high 
resolution pressure sensor. 

2. Principle of the pressure sensor 

The effect of hydrostatic pressure on the 
electronic and optical properties of material such as 
energy gap and refractive index can be considered 

for sensing applications. When a crystal is 
compressed by the pressure, the band gap is 
increased. The refractive index of Si is modified 

when optical coefficients such as photoelastic, 
piezoelectric, and permittivity change in different 
strains. In PhC structure, PBG is dependent on 

refractive index, lattice constant, and radius-to- 

lattice constant ratio 
r

a
 
 
 

. By applying the pressure 

to the PhC, the refractive index of material, the 
geometrical shape of PhC, and the PBG of structure 
change. In the PhC waveguide coupled to the 

nanocavity output, the spectrum of waveguide 
changes with different strains. On the other hand, 
resonant wavelength of nanocavity is dependent on 

the geometrical shape of defect that makes the cavity. 
By applying certain pressure to the structure, the 
resonant wavelength and resonant wavelength shift 

of nanocavity can be measured as a function of 
pressure. This point is a fundamental idea for PhC 
pressure sensor. In this section, we calculate the 

refractive index modulation resulted from the 
applied pressure. To determine the refractive index 
of the stressed structure, we utilize optical tensor 

coefficients for silicon  characterized by the 
stress-optical tensor equation [6, 13]: 
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   (1) 

where nij denotes the refractive index along ij 

direction, n0 is the refractive index in zero-pressure, 

and ij is the pressure along ij direction. We assume 

that pressure is applied in one direction, therefore: 
0xy xz yz                    (2) 

xx yy zz      .               (3) 

Thus pressure-modified refractive index value 

reduces to: 

0 1 2( 2 )n n c c                  (4) 

where c1 and c2 are defined as 
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where E is Young's modulus, V is Poisson’s ratio, 

and Pij denotes strain-optic constant. For silicon at 

1.3 μm   we have 

11 120.101, 0.0094P P    .         (7) 

3. Design of PhC sensor structure 

Waveguide is an important element in optical 

circuit to conduct light between components. The 

researches mainly focus on the waveguides with 

only a few resonant electromagnetic modes, because 

of drastically reducing the size of photonic 

components. In 2D PhC waveguide, a linear defect 

is introduced into the crystal, creating a localized 

band that falls within and is guided by the photonic 

band gap [14]. The waveguide can be made by 

removing one row of air holes or by eliminating one 

row of dielectric rods. The wave propagates in Si for 

the first case and propagates in air for the second 

case, and consequently, the loss can be ignored. This 

waveguide is constructed in silicon-on-insulator 

(SOI) wafer. In SOI wafer having Si rods, Si and 

SiO2 are the substrate (n=3.5) and the insulator 

(n=1.45), respectively, and Si rods are configured in 

Si top layer [15]. The PhC nanocavity resonator with 

a high quality factor (Q) can be used in many 

applications. The Q value of nanocavity can be 

improved by changing the number of crystal periods 

between the nanocavity and the waveguide.  

In this research, the designed photonic crystal 
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structure consists of a square array of Si rods with 

n=3.5 surrounded by air with n=1. The lattice 

constant and radius of Si rods are respectively 

considered as 450 nm   and r=0.2a. By 

performing plane wave expansion (PWE) approach, 

the PhC indicates normalized frequency of photonic 

band gap for TE mode between 0.2795 eV and 

0.4154 eV that is equal to wavelengths between 

1083 nm and 1610 nm. 

Figure 1 shows the layout of the designed 

photonic crystal sensor. In this paper, we optimize 

the PhC waveguide and nanocavity to be applied in 

near infrared from 1300 nm to 1400 nm. The PhC 

waveguide is formed by removing one row of Si 

rods in the PhC, and nanocavity is formed by 

modifying the radius of one Si rod to Rc=0.077a. In 

this study, there are two crystal rods between 

nanocavity and waveguide that results in a good 

quality factor for nanocavity. The length and width 

of this sample are respectively designed as l=9.2 m 

and w=4.7 m.  

 

Detector
Input 
light 

 
Fig. 1 Layout of sensor structure consisting of a square array 

of Si rod in air with a=450 nm and r=0.2a. 

4. Simulation results  

The two-dimensional finite-difference 

time-domain (2D-FDTD) method is applied to 

simulate propagation of electromagnetism wave in 

waveguide. The structure is excited by Gussian 

pulse and by applying appropriate boundary 

condition (perfectly matched layer, PML). As shown 

in Fig. 2, in absence of pressure, the nanocavity 

shows resonant wavelength at =1316 nm. The 

quality factor for nanocavity is Q=1470. The 

structure is excited by continuous wave (CW) to 

simulate the field pattern in the waveguide. Figure 3 

illustrates the simulation result of light propagation 

through the pressure sensor. The interaction between 

the wave propagated in the waveguide and field 

localized in the nanocavity results in the change in 

the transmission spectrum from the cavity to the end 

of waveguide, and the field intensity passing 

through the nanocavity reduces.  

 1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
M

on
it

or
 v

al
ue

 (
a.

u.
) 

1.29 1.30 1.31 1.32 1.33 1.34
Wavelength (m)  

Fig. 2 Transmission spectrum of the cavity without applied 

pressure (the resonant wavelength is λ=1316 nm). 
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Fig. 3 Simulation result of light propagation in the structure. 

To analyze pressure effect on the structure, we 

perform comprehensive simulation study. The 

simulations have been performed in different 

pressures from 0 to 10 GPa by 1-GPa increment at 

each step, and corresponding resonant wavelengths 

obtained with different curves are shown in Fig. 4. It 

has been observed that with increment in the 

refractive index, the resonant wavelength shifts to 

larger wavelength region. For example, in 1-GPa 

pressure, the refractive index of Si changes from 
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3.50 at zero pressure to 3.5398, and consequently 

the resonant wavelength shifts from 1316 nm to 

1324 nm. In 2-GPa pressure, the refractive index is 

calculated as 3.5797, and nanocavity resonant 

wavelength is obtained to be 1332 nm.  
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Fig. 4 Transmission spectra for different pressures from 0 to 

10 GPa.  

 
Fig. 5 Linear relationship between resonant wavelength and 

pressure in the range of 0 to 10 GPa. 

By analyzing the results of Fig. 4, it can be 

shown that there is a linear relationship between 

applied pressure and resonant wavelength. Therefore, 

we can estimate the sensitivity of sensor equal to   

8 nm/GPa, which shows better result compared to 

well-known researches, e. g. in [11]. Since the 

resonant peak has a very narrow linewidth, the 

resolution can be quite high. Figure 5 indicates an 

excellent linear relationship between pressure and 

resonant wavelength shift. This curve also indicates 

a wide dynamic range for this sensor from 0 to 

10-GPa pressure. By numerical analysis, the 

minimum detectable pressure with this structure is 3 mN. 

With 0.1-GPa incremental pressure, nanocavity 

shows 0.9-nm increment in resonant wavelength, as 

shown in Fig. 6. 
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Fig. 6 Resonant wavelength for nanocavity by 0.1-GPa 

increment in pressure. 

5. Conclusions 

In this paper, a novel photonic crystal pressure 

sensor has been designed and presented. This sensor 

is constructed with two-dimensional photonic crystal 

waveguide which is coupled to the nanocavity. By 

changing optical properties of Si, the refractive 

index changes, and therefore, resonant wavelength 

of nanocavity shifts. With emphasis on this point, 

the sensor can be calibrated to measure applied 

pressure. The designed sensor has a good resolution 

in mN range, quality factor equal to 1470, and wide 

linearity range between 0 to 10 GPa. By applying 

similar scheme and improving quality factor of 

nanocavity, the resolution of senor can be improved. 

This sample can be utilized in nanotechnology and 

NEMS industry. 
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