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Abstract

Background: Functional magnetic resonance imaging (fMRI) analysis is commonly done with cross-correlation
analysis (CCA) and the General Linear Model (GLM). Both CCA and GLM techniques, however, typically perform
calculations on a per-voxel basis and do not consider relationships neighboring voxels may have. Clustered voxel
analyses have then been developed to improve fMRI signal detections by taking advantages of relationships of
neighboring voxels. Mean-shift clustering (MSC) is another technique which takes into account properties of
neighboring voxels and can be considered for enhancing fMRI activation detection.

Methods: This study examines the adoption of MSC to fMRI analysis. MSC was applied to a Statistical Parameter
Image generated with the CCA technique on both simulated and real fMRI data. The MSC technique was then
compared with CCA and CCA plus cluster analysis. A range of kernel sizes were used to examine how the
technique behaves.

Results: Receiver Operating Characteristic curves shows an improvement over CCA and Cluster analysis. False
positive rates are lower with the proposed technique. MSC allows the use of a low intensity threshold and also
does not require the use of a cluster size threshold, which improves detection of weak activations and highly
focused activations.

Conclusion: The proposed technique shows improved activation detection for both simulated and real Blood
Oxygen Level Dependent fMRI data. More detailed studies are required to further develop the proposed technique.

Keywords: Mean-shift, fMRI, BOLD, Clustering
Background
Functional Magnetic Resonance Imaging (fMRI) is a
technique that is used to identify regions of activations
in the brain. Techniques based on cross-correlation
analysis (CCA) and the General Linear Model (GLM) is
commonly used for fMRI data analysis [1-7], however
these techniques are not without drawbacks. Both tech-
niques typically perform its calculations on a per voxel
basis. This means that each calculation does not take
into consideration any relationship that neighboring
voxels may have with each other. This has the effect of
lowering the sensitivity of the technique when looking
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for activations. This is especially true in low contrast to
noise ratio (CNR) situations.
There has been interest in enhancing fMRI data analysis

with cluster size tests. Various techniques have been exam-
ined with that intention in mind. Cluster analysis (based
on random field theory) is commonly used to help isolate
activations [8-10]. K-means clustering [11] is a method
where observations are partitioned into "k" number of
clusters where each observation belongs to the cluster with
the closest mean. Fuzzy clustering [12] is similar to k-
means clustering, except that fuzzy clustering takes into
consideration that a single observation can belong to more
than one cluster. Both K-means and Fuzzy clustering have
been examined for improving fMRI data analysis [13-16].
Mean-shift clustering (MSC) is another technique to con-
sider for the same purpose.
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The MSC technique was first introduced by Fukunaga
et al. [17] for examining pattern recognition, but the
technique was mostly unexplored until more recently
[18,19]. The technique has found uses in image process-
ing and vision tasks. Image segmentation has also been
explored with this technique on brain images [20]. MSC
revolves around a density estimation that is done on a
predetermined feature space. Intuitively, the technique
works by calculating the mean shift vector, then shifting
the kernel as dictated by the mean shift vector. This
process is repeated as appropriate until convergence at
which time a cluster in the feature space can be identi-
fied. By selectively choosing the features used for the
feature space, it would be possible to incorporate charac-
teristics of the data that normally would not be part of
the analysis with CCA and GLM based techniques. MSC
also offers some other advantages with regards to imple-
mentation. The technique does not require assumptions
to be made about noise distribution. Compared to typ-
ical cluster analysis, no hard cut-off in cluster size is
required with MSC. Since MSC is based on density esti-
mation of a feature space, it does not make any assump-
tion on the shape of the clusters either as well as
allowing different feature spaces to be used to incorpor-
ate different characteristics of the data into analysis.
These advantages with MSC may allow higher sensitivity
when detecting activations for improved results.
To the best knowledge of the authors, MSC has not

been closely explored in the application of fMRI activa-
tion analysis. As a first step, this study investigates a
straight forward application of MSC to fMRI data
analysis.
Methods
The proposed MSC technique was evaluated using both
simulated and real fMRI data. The data analysis was per-
formed using Cross Correlation Analysis (CCA) to gener-
ate a statistical parametric image (SPI). The mean-shift
clustering was then applied to a feature space constructed
using selected characteristics of the SPI. Comparisons were
made among CCA, CCA plus cluster analysis (CCA+
CA), and CCA +MSC to examine the application of MSC.
Simulated data
The simulated data was designed to emulate fMRI data
using one hundred images, 128 × 128 matrix size, and
with a block design of two and a half off/on cycles (20
images per off or on cycle). Activations of various sizes
(20 × 20, 10 × 10, 2 × 2 voxels) were inserted onto the
data for analysis. Gaussian noise at different CNRs (0.20,
0.40, 0.06, and 0.80) was generated and inserted into the
simulated data.
fMRI data
Ten subjects (5 females, 5 males, age 22–32) gave in-
formed written consent with the approval of the University
of Iowa’s (USA) Institutional Review Board. All subjects re-
ported that they were right-handed, not using medications
at the time of scanning, healthy, and had no history of any
mental or psychiatric conditions. All ten subjects were
scanned at the University of Iowa's Medical Education and
Research Facility.
Blood Oxygen Level Dependent (BOLD) fMRI data

were acquired on a Siemens 3 T Trio scanner (Siemens
Medical Solutions, Erlangen, Germany). A gradient echo
EPI pulse sequence was used with the following parame-
ters: TR = 2000 ms, flip angle = 90 degrees, TE = 30 ms,
matrix = 64 × 64, FOV = 220 mm, slice thickness = 5 mm
with 20% gap, 180 images per run. Each scanning ses-
sion was composed of seven six-minute runs, though
only the first run was used for the purpose of this study.
A T1 anatomical scan was also performed with the fol-
lowing parameters: TR = 1590 ms, flip angle = 10 de-
grees, TE = 3.39 ms, matrix = 128 × 128, FOV = 220 mm,
slice thickness = 2 mm.
Unilateral electrical stimulation was delivered to the

subject’s right median nerve using a Grass S48 stimula-
tor (Grass Technologies, West Warwick, Rhode Island,
USA). The stimulation voltage used was 15 volts above
the motor threshold, which was individually defined as
the minimum voltage required to obtain a thumb twitch.
The delivered stimulations were square wave pulses with
0.2 ms duration. A block design of four and a half off/on
cycles (40 seconds off, 40 seconds on) with a random-
ized inter-stimulation interval (ISI) between 1.0-2.0 sec-
onds was used. A randomized ISI was used to reduce
any effect that expecting a stimulation occurring with a
fixed inter stimulation interval might have on the result-
ing BOLD signal. The volunteers were asked to passively
feel the stimulation, stay still, stay awake, and not ac-
tively perform anything else for the duration of the scan.

Mean shift clustering
MSC is based on density estimation of a predetermined
multi-modal feature space of image characteristics. Pre-
viously used feature spaces, such as perceived color
[21,22], are generally not applicable to fMRI analysis
since color is not a feature that would be of interest. For
this study, a feature space of the estimated Z values of
the SPI and the mean voxel values surrounding a voxel
(eight neighboring voxels in 2D and twenty six neighbor-
ing voxels in 3D) was used as they can be features of
interest and incorporating them in the analysis may help
with activation detection. The estimated Z values were
used because it relates directly to statistical significance,
and the mean voxel value of the surrounding voxels
were used to take into consideration neighboring effects.



Figure 1 Effect of kernel size on true positive rates for various
activation sizes with simulated data. The statistical threshold was
held constant at z = 3. A range of kernel sizes was used from 0.05 to
0.50. CNRs used are 0.20, 0.40, 0.60, and 0.80. A: 20 × 20 activation
size. B: 10 × 10 activation size. C: 2 × 2 activation size.
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The image features are mapped into a point in a multi-
dimension space. The density is calculated within a de-
fined kernel on the feature space. The kernel is moved
based on the density gradient in the feature space until
the local maximum is found. Points in the feature space
associated with the same local maximum are considered
to belong to the same cluster, and the calculation is re-
peated until all points are assigned to a cluster.
Using the Parzen window technique [23], the kernel

density estimation at point x can be described by:
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where n is the number of data points, ck is a constant, k is
the kernel, h is the kernel size, and d is the number of di-
mensions in the feature space. The local maximum density
is identified at ∇f̂ xð Þ ¼ 0 by moving the kernel based on
the gradient ascent in the feature space. Equation 1 can be
rewritten as:
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Assuming g(x) = −k’(x), the gradient density estimator
can then be described as:
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The first term of Equation 4 is proportional to the
density estimate computed with the kernel. The second
term:
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is the mean shift vector where g is the kernel, h is the
kernel size, x is the mean estimate inside the kernel, and
xi is the element inside the kernel. The mean shift vec-
tor, m(x), defines how the kernel will move along the
density gradient towards the local maximum which cor-
responds with dense regions in the feature space. This
calculation is performed at each data point, shifted by
m(x) along the density gradient, and repeated until
convergence is reached when local maximum is found.
This procedure allows the mean shift clustering tech-
nique to identify such locations without having to esti-
mate the probability density function of the associated
data. Points associated with the same local maximum
belong to the same cluster.
Within the mean-shift vector equation, the parameter

that likely has the largest effect on the analysis is the
kernel size, h, as differences in kernel sizes can change
the density estimates calculated which the MSC tech-
nique is based on. While adaptive techniques do exist, a
range of kernel sizes will be used to examine how the
technique will behave.
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Data analysis
The general approach to the proposed MSC analysis
method is applying MSC to a feature space constructed
using selected characteristics of the SPI generated using
CCA. CCA was chosen over GLM because (1) which
technique used to generate the SPI is less important for
the purposes of this study; (2) the CCA technique allows
easy control over the significance level while it is more
difficult to do so with GLM.
The real fMRI images were processed using Analysis of

Functional NeuroImages (AFNI) [24] and custom Matlab
software. As part of the CCA analysis, three-dimensional
motion correction was performed to minimize motion ef-
fects. All images were normalized to Talairach space (www.
bic.mni.mcgill.ca). Constant, linear, and quadratic trends
were removed. To investigate the effect of a Gaussian filter
on activation detection with MSC, no Gaussian filter and a
Gaussian filter with full width half maximum (FWHM) of
4 mm was applied. SPIs were generated for individual
subjects.

Comparisons
The proposed method (CCA +MSC) was compared with
typical CCA and CCA plus cluster analysis (CCA + CA)
procedure using the same simulated data. Activations of
sizes 20 × 20, 10 × 10, and 2 × 2 were inserted onto the
Figure 2 Change of false positive rates at different z thresholds using
constant at 0.20. The z thresholds were varied from 0 to 5. CNRs used are 0
size. C: 2 × 2 activation size. D: Activation map consisting of noise only.
data to identify how the techniques behave with different
sized activations. The total area of all test patterns were
maintained to be the same by varying the number of
inserted activations. The 2 × 2 activation size can be con-
sidered to be a simulation for highly focused activations.
Gaussian white noise was generated and inserted into
the simulated data at several CNRs (0.20, 0.40, 0.60,
0.80) for examination on how the technique reacts to
noise. No additional smoothing filter was applied to the
simulated data.
The proposed technique was assessed based on sensi-

tivity and specificity and compared with the perfor-
mances of the aforementioned techniques (CCA, CCA +
CA, CCA +MSC) on simulated data. True positive rate
comparisons were used to examine how the different ker-
nel sizes affect the outcomes at various CNRs, and false
positive rate comparisons were used to examine the
amount of noise that appear in the results of each tech-
nique. Since simulated data was used, the ground truth is
known, so identifying true and false positive rates is a sim-
ple task by comparing detected activations with true acti-
vations. Receiver operating characteristic (ROC) curves
were drawn to allow a direct comparison of performance
between the techniques.
The real fMRI data from ten subjects was analyzed for

evaluating CCA, CCA +CA, and CCA +MSC. The three
various activation sizes with simulated data. Kernel size was held
.20, 0.40, 0.60, and 0.80. A: 20 × 20 activation size. B: 10 × 10 activation
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Figure 3 Activation map of CCA and CCA +MSC. A threshold of
Z = 1 was applied. CNR of 0.80 was used with kernel size of 0.20.
A: CCA activation map. B: CCA + MSC activation map
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techniques are evaluated using both individual fMRI data
and averaged fMRI data while controlling significance
level at p = 0.01. Different statistical thresholds were deter-
mined and applied in order to set the significance level to
p = 0.01 for comparison purposes. The threshold for CCA
was calculated to be z = 4.8 for the filtered and z = 4.9 for
the unfiltered (Bonferroni corrected). The CCA +CA used
a threshold of z = 2.6 which was calculated based on a
study performed by Xiong et al. [10] with a cluster of
threshold of 6 voxels for FWHM= 4 mm and 4 voxels for
the unfiltered dataset. The CCA +MSC used a threshold
of z = 2 for both filtered and unfiltered data. The z thresh-
old for CCA +MSC was selected based on the results of
simulations to achieve an approximate significance level of
p = 0.01 (see Results section).

Results
True positive rate comparison
Using the proposed CCA +MSC technique, true positive
rates were plotted to examine the behavior of the tech-
nique at various kernel sizes. The statistical threshold
was applied at Z = 3. The kernel sizes used were in the
range of 0.05 to 0.50. The CNRs of the simulated data
are 0.20, 0.40, 0.60, and 0.80. The results show the true
positive rate is dependent on the kernel size (Figure 1).
For low CNRs (0.20, 0.40), the true positive rates start to
decline at a kernel size of 0.25. For very high CNR
(0.80), the true positive rate remains high across the
range of kernel sizes used. The true positive rates also
fluctuates as the kernel size is changed, but this is ex-
pected as the noise is being randomly generated and
changing the kernel size likely has an effect on the clus-
ter assignment of the voxels. Figure 1 indicates that the
kernel size can be optimized for enhanced activation de-
tection. A kernel size of 0.20 was used for the rest of the
simulated data comparisons as it seems to be an appro-
priate choice for all CNR and activation sizes.

False positive rate comparison
False positive rates of the proposed CCA +MSC tech-
nique were examined while varying the z threshold (0.1
to 5.0) using simulated data. The same CNRs were used.
A kernel size of 0.20 was selected based on the true
positive rate comparisons (Figure 1). The false positive
rate shows significant improvements over CCA at all
simulated activation sizes, especially at lower z thresh-
olds (Figure 2). The false positive rate for all activation
sizes except 2 × 2 are relatively flat at low z thresholds. It
slightly increases as z threshold decreases until z = 0.05
where it increases beyond the figure cap of 0.05 and thus
not shown. The 2 × 2 case follows the CCA curve, but
an improvement was still seen. The comparison was also
made without an activation map (only Gaussian noise),
and the result is similar with the 20 × 20 case. Figure 3
shows representative activation maps generated by CCA
and CCA +MSC with a z = 1 threshold at CNR = 0.80
with a 0.20 kernel size. It can be visually observed that
there are less false activations in the case with CCA +
MSC, which agrees with the results from Figure 2.

ROC comparison of different kernel sizes
A comparison was made with ROC curves between
CCA, CCA + CA, and the proposed CCA +MSC at the
same CNRs as before, and on the same simulated data
set (Figure 4). Simulated data was used for this compari-
son with the statistical threshold varied from Z = 0.1 to
5.0 and the kernel size being set at 0.10, 0.20, and 0.50.
The ROC curves indicate that a properly chosen kernel
size, in this case 0.20, show an improvement over both
CCA and CCA + CA. If the kernel size (e.g., 0.50) used
is too large, essentially no activations are detected using
CCA +MSC. If the kernel size (e.g., 0.10) is too small,
the CCA +MSC technique is inferior to CCA + CA and



Figure 4 ROC curves for CCA, CCA + CA, CCA +MSC with different kernel sizes and different activation sizes using simulated data.
Kernel sizes are 0.10, 0.20, and 0.50. Activation sizes used are 20 × 20, 10 × 10, and 2 × 2. CNRs used are 0.20, 0.40, 0.60, and 0.80. A: 20 × 20
activation size, kernel size = 0.10 B: 20 × 20 activation size, kernel size = 0.20 C: 20 × 20 activation size, kernel size = 0.50 D: 10 × 10 activation size,
kernel size = 0.10 E: 10 × 10 activation size, kernel size = 0.20 F: 10 × 10 activation size, kernel size = 0.50 G: 2 × 2 activation size, kernel size = 0.10
H: 2 × 2 activation size, kernel size = 0.20 I: 2 × 2 activation size, kernel size = 0.50.
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performs similarly with CCA. This would be consistent
with the true positive rate comparison (Figure 1).
The relative performance of CCA +MSC and CCA +

CA shows a rather complex relationship. In the 20 × 20
and 10 × 10 cases at kernel size = 0.20, CCA +MSC is
better than CCA + CA when the false positive rates
range from 0.01 and 0.05. It is inferior to CCA + CA
when the false positive rate is below 0.01. Considering
that significance levels of p = 0.05 and p = 0.01 are com-
monly used for activation detection, CCA +MSC should
show improvement over CCA + CA in a practical situ-
ation. In the 2 × 2 case, CCA +MSC appears to be better
than CCA + CA up to a false positive rate of about 0.01,
then becomes worse until about 0.02, and the two tech-
niques perform similarly after that.

CCA vs CCA +MSC vs CCA + CA on real data
The real fMRI data was analyzed using CCA, CCA +CA,
and CCA +MSC (Figure 5). Activations are expected to
be seen on the left M1/S1 region due to the right median
nerve stimulation. The CCA +MSC was applied with dif-
ferent kernel sizes of 0.05, 0.10, 0.15, and 0.20. Based on
Figure 2, a threshold of z = 2 was applied to achieve a sig-
nificance of p = 0.01. As shown in Figure 4, the expected
activations can be detected using CCA +CA and CCA +
MSC with or without a filter in the expected areas while
no activation can be seen with standard CCA. Table 1
summarizes the activation volume and average z-scores of
the averaged data of both filtered and unfiltered fMRI
data. The optimal kernel size for real fMRI is 0.05 and
0.10, which is smaller than the kernel size of 0.20 for the
simulated data. Both kernel sizes of 0.05 and 0.10 cases
show activations with the 0.10 case showing slightly
smaller activations than CCA + CA and the 0.05 case
showing larger activations when compared to CCA +CA.
In the cases with no filter applied, the detected activations
are smaller than their filtered counterparts (Table 1) likely
due to the filter enhancing CNR of the SPI, but the non-
filtered results generally show the same trends as the fil-
tered results. Individual results are summarized in Table 2
and essentially follow the same trends seen in Table 1. The
results show that CCA, CCA +CA, and CCA +MSC (ker-
nel size = 0.10) are statistically different when unfiltered
(ANOVA, F = 15.4, p < 0.05) or filtered (ANOVA, F = 10.9,
p < 0.05). The Tukey test further reveals that CCA +MSC
is significantly better than CCA in both filtered and unfil-
tered cases (p = 0.05). The performance of CCA +MSC is
statistically similar with CCA +CA (p = 0.05).



Figure 5 Activation of median nerve stimulation detected with CCA, CCA + CA, CCA +MSC. Significance levels were controlled at p = 0.01
for all images. Z thresholds were changed for each technique based on the significance level. A: CCA, Z = 4.8, FWHM= 4 mm B: CCA + CA,
Z = 2.6, cluster size threshold = 6 voxels, FWHM= 4 mm C: CCA +MSC, Z = 2, kernel size = 0.05, FWHM= 4 mm D: CCA + MSC, Z = 2, kernel
size = 0.10, FWHM= 4 mm E: CCA +MSC, Z = 2, kernel size = 0.15, FWHM= 4 mm F: CCA +MSC, Z = 2, kernel size = 0.20, FWHM= 4 mm G: CCA,
Z = 4.8, no filter applied H: CCA + CA, Z = 2.6, cluster size threshold = 4 voxels, no filter applied I: CCA +MSC, Z = 2, kernel size = 0.05, no filter
applied J: CCA +MSC, Z = 2, kernel size = 0.10, no filter applied K: CCA +MSC, Z = 2, kernel size = 0.15, no filter applied L: CCA + MSC, Z = 2,
kernel size = 0.20, no filter applied.
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Discussion
In this study, the adoption of MSC into fMRI analysis
was examined by comparing it to CCA and CCA + CA.
The ROC curves (Figure 4) indicate that the proposed
MSC technique show an improvement over CCA and an
improvement over CCA + CA when the false positive
rate is above 0.01 in most cases. The false positive rate
comparisons (Figure 2) showed significant improvement
over CCA which indicates that CCA +MSC controls
noise very well. This allows a lower statistical threshold
to be used when identifying activations (Figure 3). An-
other potential benefit of MSC is for highly focused acti-
vation detection since no cluster threshold is applied.
The performance of CCA +MSC depends on the kernel

size being used (Figure 1), but determining an optimal
range of kernel sizes is not a trivial issue. If the kernel size
used is too large, no activations would be detected. Con-
versely, if the kernel size used is too small, the proposed
technique does not show an improvement when com-
pared to CCA and CCA +CA. A proper kernel size needs



Table 1 Activation volume and average Z-scores for
averaged real fMRI data

FWHM= 0 mm FWHM= 4 mm

Volume Z mean Volume Z mean

CCA 0 0.0 0 0.0

CCA + CA 18 3.1 134 3.1

CCA +MSC 0.05 127 2.4 311 2.6

CCA +MSC 0.10 64 2.5 109 3.1

CCA +MSC 0.15 6 3.0 1 4.0

CCA +MSC 0.20 0 0.0 0 0.0

Note: Volumes are measured in voxels.
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to be used in order to see an improvement over CCA and
CCA+CA. When tested with simulated data, the ROC
curves and true positive comparison indicate that a kernel
size of roughly 0.20 should show an improvement over
CCA (Figure 4), but no activations were detected with
real fMRI data if that kernel size is used. Real fMRI
data showed activations at kernel size of 0.05 and 0.10
(Figure 5). The difference in optimal kernel sizes between
the real and simulated data may be explained by the differ-
ent noise characteristics of the data. The simulated data is
the ideal situation with only Gaussian white noise. Real
fMRI data will have multiple noise types such as move-
ment artifacts, physiological noise, noise from the MRI
machine itself, etc. It is likely that the optimal kernel size
depends on the structure of noise in the data and needs
optimized for each individual data set. Future studies are
required to examine this issue in more detail.
Significant improvement is seen with CCA +MSC over

CCA on the simulated data in the ROC curves in the
20 × 20 and 10 × 10 cases at a kernel size of 0.20
(Figure 4B and E), but this improvement is sudden and
Table 2 Activation volume and average Z-score for individual

FWHM= 0 mm

CCA CCA + CA CCA +M

Subject Volume Z mean Volume Z mean Volume Z

1 45 7.5 163 5.3 212

2 20 6.1 114 4.0 169

3 15 5.8 106 3.9 136

4 0 0.0 58 3.3 98

5 102 6.4 251 4.9 265

6 78 6.6 159 5.2 165

7 30 6.4 135 4.8 146

8 0 0.0 41 3.6 60

9 31 6.3 66 5.0 70

10 239 8.4 292 7.7 299

Mean 55.9 5.4 138.5 4.8 162.0

Standard deviation 72.0 2.9 81.8 1.2 78

Note: Volumes are measured in voxels.
is concentrated in the region of false positive rates up to
0.02. While this type of improvement is typically unex-
pected, it is consistent with Figure 2 where false positive
rates are shown to be well controlled (lower than 0.02) at a
large range of z thresholds for all cases except the 2 × 2
case. This explains why the data is concentrated in the re-
gion of false positive rate up to 0.02.
The false positive rate comparison for the 2 × 2 test

pattern showed a curve that is similar to the CCA curve,
which does not follow the 10 × 10 and 20 × 20 cases
(Figure 2). This may be due to the 2 × 2 case having many
more neighboring voxels adjacent the test pattern than the
other cases. Four 20 × 20 test patterns were inserted into
simulated fMRI images which results in 320 neighboring
voxels. To maintain the same total area of the test pattern,
four hundred 2 × 2 activations were used, resulting in
3200 neighboring voxels. The 2 × 2 test image has ten
times the number of voxels that are directly adjacent the
inserted activations when compared to the 20 × 20 test
image. It is more likely for falsely activated voxels to be de-
tected by cluster analysis techniques if it is attached to the
test pattern than when isolated. More falsely activated
voxels are expected to be detected for the 2 × 2 test pat-
tern, thus increasing the false positive rate. Regardless, the
proposed technique still shows improvement when com-
pared to CCA in the 2 × 2 case.
CCA +MSC can show an improvement over CCA +

CA at a false positive rate of greater than about 0.01
with a kernel size of 0.20 (Figure 4), but this improve-
ment is not seen in the 2 × 2 case where CCA + CA was
either superior or about the same as CCA +MSC. A
cluster threshold of 4 voxels was used to set the signifi-
cance value at p = 0.01, which also happens to be the
exact size of the simulated activations in the 2 × 2 case.
subjects on real fMRI data

FWHM= 4 mm

SC CCA CCA + CA CCA +MSC

mean Volume Z mean Volume Z mean Volume Z mean

6.4 128 7.4 200 6.1 200 6.4

3.6 18 6.8 106 3.7 181 3.8

3.5 18 5.8 181 3.6 258 3.2

2.9 0 0.0 23 3.4 135 2.9

4.9 182 6.4 390 5.1 395 5.1

5.1 137 6.7 285 5.2 301 5.1

4.7 51 6.4 192 4.8 243 5.0

3.2 6 5.3 64 3.6 88 3.1

4.9 60 6.3 181 4.6 180 4.5

7.6 402 9.0 424 8.7 423 8.7

4.7 100.2 6.0 204.6 4.9 240.4 4.8

1.5 123.1 2.3 130.3 1.6 107.7 1.8
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If the activation size was three voxels or a different sig-
nificance level was used and the voxel cluster threshold
was increased, the activations would have been removed
by the cluster analysis. The CCA +MSC does not have a
cluster threshold and has the potential of better detect-
ing highly focused activations.
The selection of image characteristics used in the

feature space should be examined in future studies as
the feature space will likely have a large effect on the re-
sults as well as the range of acceptable kernel sizes. The
image characteristics selected for the featured space used
in this study was the estimated Z values found in the SPI
and the mean voxel values surrounding a voxel. While
there are many methods of constructing a feature space,
the feature space used did show an improvement over
CCA in the simulated and real fMRI data at the same
significance level, it is unknown what image features or
what combination of image feature will produce the best
feature space for fMRI analysis. The feature space used
in this study does not incorporate temporal features in
the data or positional features for example. There may
be other types and combinations of image features that
can be used, and it would certainly be an area of further
examination.
The proposed technique has the limitation that the

significance levels cannot be easily theoretically calcu-
lated (or at least we have not been able to come up with
a method of doing so). This presents a particular draw-
back when doing comparisons. Significance levels can be
approximated using simulations as was done in this
study, but still may present some challenges when very
accurate comparisons are required.
Conclusion
The experiment performed in this study examines the ap-
plication of MSC to CCA in fMRI activation detection.
The results show that an improvement with CCA +MSC
can be seen over the typical CCA and CCA +CA analysis
technique. The proposed technique maintains a low false
positive rate which allows the use of lower statistical
thresholds while controlling for noise and helps activation
detection in low CNR situations. This also helps in detect-
ing small highly focused activations especially considering
that CCA +MSC does not require the application of a
cluster size threshold, which is required by most cluster
analysis techniques. By nature, CCA +MSC also has the
ability to incorporate different image characteristics into a
feature space for analysis. These benefits can help to im-
prove activation detection in fMRI data. However, studies
in the optimization in kernel size and feature space are
needed to further develop the proposed technique. Despite
the aforementioned limitations, the proposed technique
shows promise in improving fMRI activation detection.
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