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Abstract In order to properly capture spike-frequency
adaptation with a simplified point-neuron model, we study
approximations of Hodgkin-Huxley (HH) models includ-
ing slow currents by exponential integrate-and-fire (EIF)
models that incorporate the same types of currents. We opti-
mize the parameters of the EIF models under the external
drive consisting of AMPA-type conductance pulses using
the current-voltage curves and the van Rossum metric to
best capture the subthreshold membrane potential, firing
rate, and jump size of the slow current at the neuron’s
spike times. Our numerical simulations demonstrate that,
in addition to these quantities, the approximate EIF-type
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models faithfully reproduce bifurcation properties of the
HH neurons with slow currents, which include spike-
frequency adaptation, phase-response curves, critical expo-
nents at the transition between a finite and infinite number
of spikes with increasing constant external drive, and bifur-
cation diagrams of interspike intervals in time-periodically
forced models. Dynamics of networks of HH neurons with
slow currents can also be approximated by corresponding
EIF-type networks, with the approximation being at least
statistically accurate over a broad range of Poisson rates of
the external drive. For the form of external drive resem-
bling realistic, AMPA-like synaptic conductance response
to incoming action potentials, the EIF model affords great
savings of computation time as compared with the corre-
sponding HH-type model. Our work shows that the EIF
model with additional slow currents is well suited for use in
large-scale, point-neuron models in which spike-frequency
adaptation is important.

Keywords Adaptation current - Integrate-and-fire
networks - Bifurcations - Numerical methods - Efficient
neuronal models

1 Introduction

Mathematical models describing the dynamics of individ-
ual neurons are the basic building blocks used both in
the simulation of large-scale neuronal networks and in the
resultant derivation of mechanisms explaining neuronal pro-
cessing in a number of brain areas (Lapicque 1907; Hodgkin
and Huxley 1952; Somers et al. 1995; Troyer et al. 1998;
Koch 1999; McLaughlin et al. 2000; Wielaard et al. 2001;
Gerstner and Kistler 2002; Burkitt 20064, b). The increasing
size and architectural complexity of the neuronal network
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models employed in a number of current studies has brought
about an ever increasing need for simplified yet accurate
point-neuron models (Cai et al. 2005; Rangan et al. 2005;
Tao et al. 2006). Efficient point-like models of single neu-
rons, such as the Leaky Integrate and Fire (LIF) (Lapicque
1907; Tuckwell 1988a, b; Burkitt 2006a, b) and Exponen-
tial Integrate and Fire (EIF) (Fourcaud-Trocme et al. 2003)
models, have made possible detailed simulations of brain
activity on unprecedented scales, involving millions of neu-
rons on cortical areas several millimeters across (Cai et al.
2005; Rangan et al. 2005). Typically rendering a robust
statistical description of the underlying neuronal network
mechanisms (Rangan and Cai 2007; Avermann et al. 2012;
Nicola and Campbell 2013) while incurring only minor
loss of pointwise accuracy relative to the more detailed
Hodgkin Huxley (HH) model, these models have succeeded
in substantially reducing computational costs.

The need for replacing the HH model by a simpler model
is two-fold. First, it is advantageous to consider a smaller
number of modeled variables, since each additional vari-
able increases computational cost of model simulations,
especially when they are governed by nonlinear differential
equations with disparate time scales. Second, more impor-
tantly, to resolve the steep action potentials and counter
the resulting stiffness of the HH model, its simulations
must employ a large number of very small time steps,
considerably slowing down the simulations. The simpler
Integrate-and-Fire (IF) models sidestep this stiffness by
treating action potentials as singularities, be it jump dis-
continuities or divergences of the membrane potential, and
thus replace the laborious and often unnecessary computa-
tion of the action-potential details with a relatively simple
determination of a neuron’s firing time.

Among the IF models that only take into account the neu-
ronal voltage and external and synaptic current or conduc-
tance, the recently proposed EIF model (Fourcaud-Trocme
et al. 2003) is believed to be the most accurate in approxi-
mating both the time-course of the subthreshold membrane
potentials and the neuronal firing times as described by
the corresponding HH model. Just as does the HH model,
however, the EIF model needs to be augmented in order
to describe some important features of neuronal dynam-
ics, such as the decrease in a neuron’s firing rate over
time known as spike-frequency adaptation. In particular,
while the EIF model without adaptation can capture the
effects of a number of fast ionic currents in a single equa-
tion describing the neuronal membrane-potential, it cannot
alone replicate the spike-frequency attenuation caused by
slow currents (Mensi et al. 2012; Pozzorini et al. 2013;
Gerstner and Naud 2009). An augmented model with a
phenomenological representation of a slow adaptation cur-
rent was proposed in Brette and Gerstner (2005), which is
quite accurate in representing the slowdown of the neuronal
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spiking under continuous stimulation. However, since slow
currents typically do not cause action potentials and there-
fore their physiologically-based models do not cause the
stiffness of the HH model, it may be conceptually advan-
tageous to retain them in the EIF model in their original
form, provided the degree of approximation afforded by the
resulting augmented EIF model is comparable to that of the
model in Brette and Gerstner (2005).

In this work, we adapt the modeling approach of
Richardson (2009) to approximate the HH-based descrip-
tion of mammalian pyramidal neuron dynamics with one or
two slow currents. In particular, we add to the EIF model
the equations for two types of slow currents that induce
spike-frequency adaptation. The first is the noninactivating
muscarinic potassium current, /»;. This current is known to
help regulate the spike threshold (Ermentrout et al. 2001);
its impact is profound on long timescales and often goes
unnoticed by simplified models that fail to properly address
long-term behavior. Together with the muscarinic current,
the after-hyperpolarization (AHP) current, /44 p, accounts
for spike-frequency adaptation in most biophysically real-
istic neuron models (Ermentrout et al. 2001). In particu-
lar, in neuronal models with several other known currents
included, spike-frequency adaptation is only eliminated
when both the flow of Iy, and 4y p are removed (Yamada
et al. 1989). While ;s is primarily responsible for increas-
ing the current threshold, /4y p decreases the slope of the
neuron’s voltage trace (Ermentrout et al. 2001; Koch 1999).
Both combined produce a very pronounced form of spike-
frequency adaptation. As in Brette and Gerstner (2005), we
find that a neuronal membrane-potential spike induces a
jump in each of these currents, which is necessary to include
as part of our model. Under this additional assumption, we
show numerically that this modified EIF model renders a
highly accurate approximation of the corresponding adap-
tive HH model both statistically and even pointwise for
trajectories, comparable in accuracy to that of the model
in Brette and Gerstner (2005). At the same time, this model
dramatically reduces the computational cost needed for the
adaptive Hodgkin Huxley model. Thus, the modified EIF
model may give us a new computationally efficient neuronal
model that retains sufficient accuracy for use in large-scale
simulations of networks composed of neurons whose firing
rates slow down due to slow adaptation currents.

To approximate the HH model with slow currents by a
corresponding EIF model, we use an appropriate param-
eter optimization procedure for the EIF-type model. In
particular, as in Badel et al. (2008a, b) , using as the input
current a Poisson train of AMPA-type excitatory post synap-
tic currents for both models, we first fit the current-voltage
dependence of the HH model by the exponential-plus-linear
form of the EIF model. We then minimize the van Rossum
metric (Van Rossum 2001) difference between the spike
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trains of the HH and EIF models with the same slow current,
fitting the jump in this current that occurs at every spike time
for the EIF model.

After fitting the parameters of the EIF-type model, we
test its accuracy using different types of currents: con-
stant, time-periodic, and Poisson-train coupled through an
AMPA-type synapse. Our tests range from comparisons of
voltage traces, slow-current traces, and spike times, through
voltage and firing-rate statistics, phase response curves, and
spike-frequency adaptation, to critical exponents in the tran-
sition to persistent firing at sufficiently high external driving
by a constant current, and the frequency dependence of
the bifurcation diagrams of interspike intervals under time-
periodic driving. All of these tests show excellent agreement
of the EIF approximations with the corresponding HH
models.

The remainder of the paper is organized as follows.
In Section 2, we describe the HH model with an addi-
tional muscarinic current, the EIF model, and briefly discuss
the adaptive EIF model of Brette and Gerstner (2005).
We also describe the EIF model with the additional mus-
carinic current, and the parameter optimization procedure
that ensures the closeness of the solutions of this model
to those of the corresponding augmented HH model. In
Section 3, we describe comparisons between different types
of dynamics of the HH and EIF models with the additional
muscarinic current, AHP current, and both types of currents.
In Section 4, we present a discussion of the results. Finally,
in the Appendix, we list the classic HH equations.

2 Methods

We begin this section by discussing the HH model with
an additional slow current, which we here take, for def-
initeness, to be the muscarinic current. We then briefly
discuss the EIF model (Fourcaud-Trocme et al. 2003) and
the addition of a phenomenological adaptation current to
it (Brette and Gerstner 2005), before introducing the EIF
model with the added muscarinic current. Finally, we dis-
cuss the optimization procedure that we use to find the best
fit of the EIF model with the added muscarinic current to
the corresponding HH model.

2.1 Hodgkin-Huxley model with a slow adaptation
current

For the first fundamental model whose dynamics we will
be approximating with a simpler model, we here consider
a conductance-based HH mammalian pyramidal cell model
with an added slow adaptation current (Destexhe et al. 1998).
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The dynamics of the neuronal membrane potential in this
model is governed by the differential equation
dv

Cdt = —Ip — Ing — Ix + Lyyn + lext — Iy, (1a)

li =g (V,n)(V =V, (1b)

where V is the membrane potential, C is the membrane
capacitance, I; is a specific current, g; is the corresponding
conductance, and V; the corresponding reversal potential.
The model (1) includes two major ionic currents, namely
sodium (/n,) and potassium (/x), as well as the synap-
tic current from other neurons (Iyy,), the leakage current
(Ir), and possibly an external injected current (/x). (The
external current is given as a function of time and is not
in the form (1b).) The difference between the original
HH model (17) (discussed in the Appendix, taken from
Destexhe and Pare 1999) and the model in Eq. (1) is the
addition of the slow, muscarinic current, /; (Yamada et al.
1989; McCormick et al. 1993; Koch 1999). The model (1)
has been used to describe pyramidal neurons; the mod-
eling parameters are chosen according to experimental
results (Pare et al. 1998; Destexhe et al. 1998). We refer to
it as the muscarinic Hodgkin-Huxley (mHH) model.

The dynamics of the sodium and potassium currents in
the mHH model (1) are taken to be identical to those found
in the HH model, and are described in the Appendix. The
muscarinic current is modeled using the equation

Iy = gun(V — Vi), @)

where gy is the maximal muscarinic conductance, Vi is the
potassium reversal potential, and »n is the muscarinic activa-
tion variable (Yamada et al. 1989; McCormick et al. 1993;
Koch 1999). The dynamics of the activation variable are
given by the equation

dn 1 V(1 Vinl — Noo — N 3
it —3[an( Y1 —n) = Bu(V)n] = . (3a)
with
(V) = 0.0001(V + 30) ’ (3b)
1 — exp[—(V + 30)/9]
_ —0.0001(V +30)
V)= _ exp[(V +30)/9] (%)
Nog = an (V) , (3d)
(V) + Bu(V)
Tn 13 (3e)

" (V) + Bu(V)’

where «;, is the opening rate of the muscarinic ionic chan-
nel, By is the closing rate, n is the steady-state value of
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the activation variable, and 7, is the relaxation rate. The
relaxation rate is reduced by a temperature factor of 3 as
described in Pare et al. (1998). A similar formulation of
these dynamics is also given in Yamada et al. (1989) for
bullfrog sympathetic ganglion cells. Note that the potassium
reversal potential is used in defining the muscarinic cur-
rent (2) because it is an outward potassium current (Yamada
et al. 1989; Koch 1999). Also, given that the muscarinic
current is noninactivating, only an activation variable is nec-
essary in its modeling. This activation variable is of power
one in Eq. (2), reflecting the slowness of the muscarinic
current.

For the synaptic current /y,, we consider pulse trains of
the form

Isyn = _gsyn Z G(t —t)(V — Vi), 4
k

where {#;} are the incoming spike times,

Goy= , /™ H®D), 5)

2
syn

is the AMPA-type excitatory postsynaptic conductance time
course (Brown and Johnston 1983; Koch 1999), H (-) is the
Heaviside function, and VE is the excitatory reversal poten-
tial, which is taken to be OmV (Koch 1999). We model
the incoming spike times {f;} as a Poisson train to mimic
the natural operating regime of a neuron as bombarded by
large numbers of spikes arriving independently from other
neurons at random times.

As mentioned above, the muscarinic current in the mHH
model (1) is one of the two main currents responsible for
neuronal spike-frequency adaptation (the other being the
AHP current addressed below Yamada et al. 1989). Given a
constant input current /.y, Fig. 1 demonstrates the increas-
ingly slow firing of a model mHH neuron over 300ms.
One notices that the interspike intervals between consecu-
tive neuronal action potentials become longer for the mHH

A

50 100 150 200 250 300
Time (ms)

Fig. 1 Comparison of HH and mHH voltage traces. The two neurons
are under drive by the same constant external current /,,;, = 0.77nA
over 300ms. Parameter values for the HH model are given in the
Appendix, and parameter values for the muscarinic current are given
by Eq. (3)
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model (1) while remaining the same for the HH model (17).
While the mHH system (1) models neuronal dynamics with
great accuracy, the high computational cost associated with
its simulation has motivated a number of simplified models
intended to increase computational efficiency for the use in
large-scale network models.

2.2 Exponential integrate and fire model

The most commonly used simplified point-neuron model is
the Leaky Integrate-And-Fire (LIF) model (Burkitt 2006a;
Lapicque 1907). A LIF neuron is governed by a linear
differential equation that disregards the ionic current equa-
tions in favor of computational efficiency. The neuronal
membrane potential, V, follows simple dynamics of an RC-
circuit until it reaches a fixed threshold, V7. The crossing
of this threshold is taken to signify that the neuron has
fired, and its membrane potential is instantaneously reset
to a lower value, Vg, typically in the range of —70mV to
—60mV. The RC-circuit-like evolution of the membrane
potential resumes immediately or after a fixed refractory
period. The details of the membrane-potential spike dur-
ing the firing of the neuronal action potential are entirely
ignored by this model. Nevertheless, the LIF model is quite
accurate in reproducing realistic neuronal firing rates and
reasonably accurate in describing subthreshold membrane
potential dynamics (Carandini et al. 1996; Rauch et al.
2003; Burkitt 2006a, b). It has thus, despite and because
of its simplicity, proven to be an indispensable tool in the
modeling of large-scale neuronal network dynamics (Troyer
et al. 1998; McLaughlin et al. 2000; Wielaard et al. 2001;
Cai et al. 2005; Rangan et al. 2005; Tao et al. 2006).

The LIF model does not capture the membrane poten-
tial dynamics near or during the action potential, reflecting
the fact that the neuronal membrane cannot be described as
a linear RC-circuit. Experimental investigations on pyrami-
dal neurons and current-voltage curve analysis of the HH
model instead reveal a linear-plus-exponential dependence
of the membrane potential on the ionic currents (Badel
et al. 2008a, b). Thus, a particularly accurate approximate
description of the neuronal membrane potential dynamics
was found to be given by the exponential integrate-and-fire
(EIF) model (Fourcaud-Trocme et al. 2003)

Cdv =-IL +gLAT GXP<V VT) +Isyn+Iext’ (6)
dt AT
where V7 is a (soft) firing threshold and A7 is the spik-
ing slope factor. A spike in this model occurs when the
membrane potential V reaches infinity; V is then reset to
the value Vg < Vr. After possibly remaining at Vg for a
refractory period, the membrane potential begins evolving
according to Eq. (6) again. The accuracy of approximation
afforded by the EIF model (6) versus the corresponding
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HH dynamics was studied in Geisler et al. (2005), in which
excellent agreement was reported.

A means of including an adaptation current in an approx-
imation of the mHH model is given by the adaptive Expo-
nential Integrate and Fire (aEIF) model (Brette and Gerstner
2005). This model adds the adaptation current —w to the
right-hand side of Eq. (6), where w satisfies the equation
Tw(dw/dt) = a(V — Vi) — w. In this equation, Vr, is the
leakage potential, a is the coupling strength, and t,, is the
time-decay rate for the adaptation current. At each action
potential, the reset conditions are V. — Vg and w — w+b,
where Vg is the reset voltage and b accounts for the jump
in the adaptation current. The form of the adaptation current
dynamics was taken from the analogous adaptive quadratic
IF model, which is known to capture a number of neuronal
dynamical regimes and their bifurcations (Izhikevich 2003).
Comparisons between the voltage traces and spike-times of
the mHH and aEIF models show closeness in voltage evo-
lution (Brette and Gerstner 2005); dynamical regimes and
bifurcations of the aEIF model are described in Naud et al.
(2008) and Touboul and Brette (2008). Further successful
fittings of the aEIF model to mHH-type models and record-
ings of pyramidal cells can be found in Naud et al. (2008),
Jolivet et al. (2008), and Clopath et al. (2007).

Nevertheless, because slow currents contribute little to
the detailed superthreshold dynamics of the action poten-
tials and affect the dynamics by slowing down their onset
through inhibitory-like effects on the subthreshold neuronal
voltage, it may be sensible to include these currents in the
adaptive model in their original, physiological form. We will
carry this out for the muscarinic current in the next section,
and the AHP current addressed later on.

2.3 Muscarinic exponential integrate-and-fire model

The drawback of using HH and mHH point-neuron mod-
els in network simulations is the need to resolve the steep
and narrow action potentials, during which these mod-
els become very stiff and demand rather small time-step
sizes. In the case of the standard HH model (17), which
neglects the muscarinic current in the mHH model (1),
replacement by the EIF model (6) successfully reduces
this stiffness. Its success can primarily be attributed to the
fact that the singularity signifying an EIF-type spike can
be either approximated analytically or computed by inter-
changing the roles of the membrane potential and time as
the independent and dependent variables and thus evolving
the latter in terms of the former, respectively, and neither of
these procedures requires a significant decrease in the time-
step size. In both models given by Egs. (6) and (17), the
action potentials are initiated by the fast ionic currents; the
slow adaptation currents appear to play a negligible role in
this initiation. Because the slow currents do not cause any
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additional stiffness in the model, there is no need to incor-
porate the slow currents into the exponential term in the
membrane-potential equation. Due to this scale separation,
expressions and equations describing their dynamics can be
left unaltered. In this vein, the EIF model with a slow cur-
rent was proposed in (Richardson 2009). Here, we study the
accuracy of the approximation with two concrete types of
slow currents, the first of which is the slow muscarinic cur-
rent, I, in Eq. (2). Our aim in this section is to investigate
strategies for how to best approximate the dynamics of the
mHH model with the EIF dynamics accompanied by this
slow adaptation current.

In the proposed model, as in the reduction of the HH
to EIF model, we replace the fast ionic currents in Eq. (1)
by the exponential term as in Eq. (6). However, we also
keep the slow muscarinic current (2) to capture the impact
of spike-frequency adaptation. The resulting Muscarinic
Exponential Integrate and Fire (mEIF) model becomes

eV ot an V=V
= — €xX
dt L 8LAT eXp Ar
+ Isyn + Loxt — gMn(V - Vu), (7a)
dn _ Noo — n. (7b)
dt Ty

The dynamics of the muscarinic current’s activation vari-
able n are equivalently described in Eq. (3) as in the mHH
model (1). The dynamics of the synaptic current /;y,, when
used, are described by the pulse train in Eq. (4).

The membrane potential spiking and resetting mech-
anism in Eq. (7a) is the same as for the standard EIF
model (6), as described above. During a spike of the mHH
model (1), the muscarinic current is seen to undergo a sharp
surge, which cannot be calculated analytically from Egs. (1)
and (3), but is necessary for our mEIF model (7) to take into
account. Just as in the aEIF model of Brette and Gerstner
(2005), we approximate this surge by a jump, whose size j is
part of the set of parameters in the mEIF model (7) that we
need to optimize in order to obtain the best approximation
of the mHH model (1). Specifically, a jump constant, j, is
added to the muscarinic activation variable, n, immediately
following each action potential. The dynamics of the acti-
vation variable, taking into account the jumps at the action
potentials, are therefore described by the equation
dn Noo — N )

P +Jzi:5(f t) ®)
where #; denotes the i-th action potential of the mEIF
neuron.

In all of our simulations, the activation variable, regard-
less of the choice of slow current, fluctuates beneath the
maximal value of 1. Only at very high firing rates would n
approach 1, in which case the HH jump size would decrease.
As throughout most of our simulations this is not the case,
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we simply set 0.99 as the saturation value for the activation
variable n. Biologically, the rapid transition in the activa-
tion of the muscarinic current modeled by the jump occurs
because the large number of calcium-dependent ionic chan-
nels that open during an action potential allows a surge in
the muscarinic current passing through the neuron. Sim-
ilar phenomena occur for other concentration-dependent
currents (Koch 1999).

Away from the action potentials, we solve the mEIF
system of differential equations (7) using a standard second-
order Runge-Kutta algorithm. Since the voltage begins to
increase monotonically to arbitrarily large values before an
action potential, we assume that an action potential will take
place when the mEIF neuron’s voltage increases up to a
sufficiently high prescribed value Viyizen. As in Fourcaud-
Trocme et al. (2003), we evolve the voltage numerically
until it first reaches a value above Vyyizcn, and choose this
value as the initial condition V (fy) = V| for an analytical
solution of Eq. (7a) with the exponential term alone,

dv
C . ~suire/TIAT ©)

This solution is

V(t) = Vr — Arln [exp (— V‘)A_ VT) + 5 - r)} ,
T
(10)

and from it we compute the spike time as the time at which
the argument in the logarithm vanishes.

Simple analysis shows that if we want to preserve
second-order numerical accuracy of the mEIF model, we
must choose Vsyiren so that the ratio between the expo-
nential and the rest of the terms in Eq. (7a) is of order
1/At, where At is the time-step size. In practice, follow-
ing Fourcaud-Trocme et al. (2003), we take Viyiten =
—30mYV, so that the exponential term in Eq. (7a) is approx-
imately two orders of magnitude larger than the rest of the
terms when we switch from the numerical to the analytical
solution.

In the forthcoming section, we discuss how to extract the
parameter values for Eq. (7) that will render the most accu-
rate approximation of the mHH system (1). We remark that
this approximation is not uniform, since it also depends on
the type and strength of the external or synaptic input cur-
rent that drives the neuron as explained below. We carry out
the parameter fitting in two steps. First, we fit the parame-
ters of the EIF part of the model using current-voltage (I-V)
curves, and then the jumps in the muscarinic current.

2.4 Parameter optimization

Integrate-and-Fire (IF) models are phenomenological in the
sense that there appears to be no systematic derivation
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of them, in general, from the HH model using a small
parameter (Burkitt 2006a). (The linear IF model can be,
however, obtained from the HH model using a systematic,
perturbation-theory-like approximation procedure (Abbott
and Kepler 1990), and also as the first-order truncation
in a Wiener-kernel expansion of the HH model (Kistler
et al. 1997).) Nevertheless, as was discussed in Kistler et al.
(1997) and Fourcaud-Trocme et al. (2003), with appropri-
ately chosen parameter values, versions of the IF model
provide an excellent approximation of the HH model and
even some experimental data (Carandini 1996; Rauch et al.
2003; Badel et al. 2008a, b). At the beginning of the
Section 3, we show that the voltage traces, muscarinic cur-
rent, and firing times of an appropriately parametrized mEIF
model are virtually indistinguishable from those of the cor-
responding mHH model. Below, we show the same results
for the HH model with a slow AHP current, and also a com-
bination of the two currents. In this section, we discuss the
procedure we use to fit the mEIF model parameters so as
to optimally reproduce the mHH dynamical behavior. Note
that the majority of the parameters used in the mHH model,
including those with known physiological values, are fitted
in the mEIF model and thus may be reparameterized for new
settings.

The parameter optimization procedure we describe fol-
lows Badel et al. (2008a, b) and and begins by fitting
the parameters g, Vr, Ar and Vr. We take the neuronal-
membrane capacitance to be fixed at the typical physio-
logical value C = 0.29xnF. Initially, we fit only the EIF
model (6) to the HH model (17). Once the first fit is com-
plete, we consider the analogous fit for the mEIF model. We
write both the HH and EIF voltage equations in the form

dv
C dt = _Iionic+1.syns (11)
where IHH = [; 4 Iy, + Ix in the mHH model and

ronic

IEIF — CF (V) in the EIF model, with

ionic
V—-Vr
. 12
Ar )} (12

To best approximate the HH model by the EIF equations,
we minimize the function

F(V)ZgL[VL—V+ATCXp<

ionic ionic

L (g1 Vi, Az, Vi) = max [IH.(v) = IEIE ).

We compute Iif)’rfil . using a pulse train of the form
(4) for Iy, and then choose parameters to find
min {L (g, VL, At, V7)}.

We use averaging to approximate the mean HH current-
voltage dependence, i.e., I7H (V) as a function of V. In

ionic

. . HH
particular, first, we sort the computed values of [ ionic for

which the voltage is below threshold into bins according
to their corresponding values of V. Then, we calculate I,

HH . . th . .
the average value of [,/ " within the k'* bin. This process
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gives us a list of discrete points {(Vk, fk)] which rep-

HH
resent the average voltage dependence of I;).: .. Now we

use least squares to fit an equation of the form F (V) =
a+ BV + yexp(8V) to the points {(Vk, —éfk)]. From
the fit (o, B, y, 8) we can solve for (g, Vi, At, V7).

Once the EIF parameters are optimized, we only need to
fit the jump constant, j. We do this by minimizing the van
Rossum metric difference between the spike trains of the
mHH and mEIF models (Van Rossum 2001). The size of
the jump j that gives the minimal difference is chosen in
our model. For the van Rossum metric, we let {tf } and {tf}
denote the mHH and mEIF spike trains, respectively. We
define the smeared spike-train function f{#) used in the van
Rossum metric by

l‘—l‘ﬁf

fo =Y He-tHhexp(- 7|,

fe

where H denotes the Heaviside function, tif denotes a given
spike time of the mHH model, and 7, an appropriately
chosen time constant. We define the function g(#) analo-
gously. In this way, we represent spikes by exponential tails,
which gives us a means to estimate spike-time differences.
In particular, the van Rossum metric we utilize defines the
difference between the spike trains as

2 _ 1 o0 . 2
D= (f, g)tc—t /O Lf(t) — g®)]dt.

Assuming that firing rates of the optimized mEIF model
and corresponding mHH model will approximately agree,
we choose a small time constant, . = 5ms, to measure
coincidence of spikes as in Van Rossum (2001). Note that
we choose a small 7., as opposed to a larger value, in order
to measure the similarity of the timing of the spikes rather
than the difference in firing rate, as indicated by using large
values of 7.. A time constant specifically of size t, = Sms
reflects a time scale that is generally less than the average
interspike interval (ISI), the amount of time between succes-
sive firing events, we simulate for both models, but greater

Table 1 mEIF model parameters

Symbol Parameter Value

M Muscarinic Conductance 0.0203u S
Vi Potassium Reversal Potential —-90mV
C Capacitance 0.29nF
8L Leakage Conductance 0.029u S
Vi Leakage Reversal Potential —70mV
VR Reset Potential —60mV

Parameter values used in the simulations of the mEIF model. The first
two parameters, gy and Vi, are physiological values. The remaining
parameters were optimized as described in the text
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Table 2 mEIF exponential term parameters
Symbol Parameter Value
Vr Spike Threshold —46mV
AT Slope Factor 3.6mV
j Jump Constant 0.014

The mEIF exponential term and jump parameters used in numeri-
cal simulations. These parameters were optimized as outlined in the
Section of Parameter Optimization

than the average difference in respective spike times. After
optimizing all other model parameters, we minimize the van
Rossum metric difference to obtain the jump size, j. We
remark that an alternative to fitting the jump constant from
the spike train distance in this way is minimizing the volt-
age trace difference as in Mensi et al. (2012), which yields
a similarly effective optimization.

3 Results

In order to examine the accuracy of our approximation and
its optimization, we perform numerical simulations of both
the mEIF and mHH neurons, given the same driving current,
and then compare their resulting dynamics. Our simulated
neurons are driven either by constant or time-periodic exter-
nal currents, or by AMPA-type excitatory post-synaptic
potentials (EPSPs), as described in Eq. (4), induced by a
Poisson spike train, which reflect the random nature of the
spikes received by neurons in a large network. We let v
denote the expected number of spikes a neuron will receive
per unit time and gy, the strength of the post-synaptic
conductances, as in Eq. (4). Our optimally chosen param-
eter values are listed in Table 1. The parameters entering
the exponential term and the jump constant for the mEIF
model are listed in Table 2. Unless specifically stated other-
wise, the time step At = 0.001ms was used throughout this
work. In Table 3, we list the parameters used for the external
synaptic drive.

Table 3 Synaptic current parameters

Symbol Parameter Value
8syn Excitatory conductance amplitude 0.05uS
v Excitatory conductance firing rate 1000H z
Tsyn Excitatory conductance time scale 2.728ms

Synaptic current parameter values used in optimizing and some sim-
ulations of the mEIF model. The synaptic current models a realistic
drive representing AMPA-type post-synaptic currents
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3.1 Comparison of voltage traces, slow current
dynamics, and spike times

Using the parameter values given in Tables 1 and 2, we now
compare the dynamics of the mEIF model to those of the
mHH model. The voltage traces corresponding to simula-
tions of the mEIF and mHH models over a time interval of
1000ms are depicted in Fig. 2a. In the caption of the volt-
age trace plot, we include the van Rossum metric difference
between the traces for further comparison. The traces of the
muscarinic activation variable for both models are compared
in Fig. 2b over the same time interval.

As can be seen in Fig. 2, the subthreshold voltage trace
of the mEIF model provides an excellent approximation to
that of the mHH model. In addition, the spikes times are
also reproduced almost perfectly. Capturing every spike in
Fig. 2, we note that the mEIF model exhibits accuracy com-
parable to the aEIF model. For a longer, 2 second simulation
time, the mEIF model misses only 2 % of mHH spikes and
emits 4 % extra spikes, which compares well to the approxi-
mately 4 % of spikes missed and 3 % extra spikes produced
by the aEIF model (Brette and Gerstner 2005). Moreover,
using the same input current as for the mEIF and mHH mod-
els, we plot in Fig. 2 the corresponding voltage trace for the
aEIF model. To appropriately choose the aEIF parameters,
we have optimized the EIF parameters using the procedure
described in the Parameter Optimization Section, and chose
the remaining parameters, a = 0.003uS,b = 0.06nA,
and 7, = 120ms, that minimized the van Rossum met-
ric difference between the aEIF and mHH spike trains. In
this particular case, the aEIF model misses one spike and
exhibits one additional firing event, whereas every spike
is captured by the mEIF model. For a further comparison

Fig. 2 Comparison between
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of the aEIF and mHH dynamics, see the Comparison of
Bifurcation Diagrams under Time-Periodic Driving Section.

It is important to stress that the Poisson spike train with
which we have driven the models to produce the results
shown in Fig. 2 is not the same as the one used in our opti-
mization procedure; while it has the same rate v and EPSC
amplitude ggyp, it is not the same realization. The mEIF
muscarinic activation variable dynamics, which include the
fitted jump constant at each spike, follow the shape of its
mHH counterparts very closely, however they do experi-
ence a small error generally less than approximately 5 %.
We remark that we simulated both neuron models using the
same small fixed time-step size, which is kept at a small
value Ar = 0.001ms to ensure we fully resolve the stiff-
ness of the mHH model, and that the computational savings
afforded by the mEIF model were only about 50 % of the
mHH model runtimes.

To further address the efficiency of the mEIF versus
mHH simulations, we compare the solutions of the two
models using the largest time-step size for the mHH model
that allows it to be fully resolved at all action potentials,
Atymrg = 0.08ms, and an increasing sequence of step sizes
for the mEIF model. We use the model parameters listed in
Tables 1 and 2. For the stepsize At prr = 0.5ms, we dis-
play the comparison between the model runtimes with these
respective time-steps for several simulations of long dura-
tion in Table 4. In this case, the mEIF model still captures
the mHH firing events with a coincidence rate of 96 % rel-
ative to the mHH spikes, where we consider any mHH and
corresponding mEIF action potential to be coincident if they
occur within a time interval of size 3.0ms. Even when taking
time-steps of size At,,grr = 1.0ms and At,,grr = 2.0ms,
we observe that the coincidence rate remains no lower than
95 % . In each case, the mEIF model is significantly more
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Table 4 Model efficiency comparison

Time mHH Neuron mEIF Neuron Decrease in

simulated (ms) runtime runtime runtime
relative to
mHH (%)

500000 28 seconds 4 seconds 86

750000 42 seconds 6 seconds 86

1000000 57 seconds 8 seconds 86

Comparison of runtimes using time-steps of sizes At,,gjr = 0.5ms
and Aty g = 0.08ms for the mEIF and mHH models, respectively

efficient than its mHH counterpart, decreasing runtimes by
over 85%. All computations in this comparison were per-
formed using a Lenovo T420 laptop with a 2.7 GHz Intel
Core 17-2620M Processor and 8GB of RAM. Moreover,
simulations were run with a C++ based code on a 64-bit
Windows 7 Operating system.

The mEIF step-size used in the above comparison is
significantly shorter than the time-scale of the AMPA con-
ductance, which contributes to the high coincidence rate
observed even though the mEIF time-step size is almost
an order of magnitude larger than the corresponding mHH
step-size. However, we have observed that even if we
increase the mEIF time-step size to Afy,pir = 2.0ms,
which is only slightly shorter than the AMPA time-scale,
we still note reasonable agreement between the solutions
of the two models. To demonstrate the surprising accuracy
of the mEIF approximation even for such a large time-
step, in Fig. 3, we magnify the voltage traces near a single
spike using At g = 2.0ms. We observe agreement in
both the subthreshold voltage dynamics and the timing
of firing events. This large time-step yields a coincidence
rate of 95% within a maximal spike-time distance of 3ms,
indicating that taking relatively large time-steps with the

50 |[—mHH 0.08ms Stepsize [ 7
mEIF 0.5ms Stepsize H
---mEIF 2.0ms Stepsize

Voltage (mV)

-100,5 3 40 45 50 55 60 &5 70
Time (ms)

Fig. 3 Voltage dynamics of mHH and mEIF neurons computed with
several time-step sizes. Comparison between mHH and mEIF voltage
dynamics over the duration of a single firing event using a time-step
of size Aty,gg = 0.08ms for the mHH model, and also time-steps
Atyerr = 0.5ms and Aty,p;rp = 2.0ms for the mEIF model.
Parameter choices are given by Tables 1, 2 and 3
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mEIF model increases the computational efficiency of the
mEIF model while still maintaining a good level of accu-
racy relative to the mHH model. Figure 3 also includes for
comparison the voltage trace of the mEIF model using the
smaller stepsize At,prr = 0.5ms, which exhibits nearly
the same subthreshold dynamics as the mEIF model using
the larger stepsize. We note that the larger stepsize does
induce a larger spike width, but after the action potential is
completed, both voltage traces agree quite well.

3.2 Comparison of voltage and firing-rate statistics

Tables 5 and 6 show a comparison of the firing rates, mean
subthreshold voltages, and subthreshold voltage variances
between the mHH and mEIF model neurons with optimized
parameters under the same Poisson-train drive over rela-
tively long time scales. The results of the two models are
statistically nearly identical, with the subthreshold voltage
means and variances approximately equal and differences
largely remaining within a few percent.

3.3 Comparison of phase-response curves

A further indicator of closeness between the mHH and
mEIF systems is the phase-response curve, which measures
the sensitivity of a neuronal model to impulse-type pertur-
bations in its input current (Gutkin et al. 2005). To construct
a phase-response curve, we first inject a given neuron with
a strong constant driving current, and then wait until time
to when the voltage trace undergoes periodic motion upon
attaching to a stable limit cycle. Next, we compute the
neuron’s time-to-spike T, i.e., the time necessary for com-
pleting an action potential following reset to the neuronal
resting potential. We then measure the change in 7y under
an additional short injection of a weak depolarizing current
at any given time t; = ty + ¢5Tp, with 0 < ¢ < 1 being
the phase. In other words, the phase ¢y is the fraction of the
initial time-to-spike completed before the additional current
injection. For each ¢, we find the perturbed time-to-spike,
T1(¢s), and plot the relative change in the time-to-spike,
R(¢y), where

T1(¢s) — To

R (d’s) = T

Table S Long-Time firing-rate comparison

Time simulated mHH firing rate mEIF firing rate
2000ms 0.011spikes/ms 0.011spikes/ms
5000ms 0.0106spikes/ms 0.0108spikes/ms
10000ms 0.010spikes/ms 0.011spikes/ms

Comparison between the long-time firing-rates of mHH and mEIF
models. Model parameters are given in Tables 1, 2, and 3
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Table 6 Long-Time statistics comparison

J Comput Neurosci (2013) 37:161-180

Time simulated mHH mean mEIF mean mHH variance mEIF variance
2000ms —50.38mV —50.05mV 13.56mV 12.78mV
5000ms —50.74mV —50.25mV 11.21mV 11.02mV
10000ms —50.41mV —50.20mV 10.15mV 10.39mV

Comparison between the long-time statistics of mHH and mEIF models. Model parameters are given in Tables 1, 2, and 3. The means and

variances use subthreshold voltages with a maximal voltage of —45mV

as a function of the phase ¢;. This gives the phase-response
curve.

We have computed the phase-response curves for the
mEIF and mHH neurons, depicted in Fig. 4, using the
base injected-current value 0.8nA and waiting until time
to = 300ms before computing the time-to-spike, Ty. The
additional injected-current has a value of 0.08nA and an
injection duration of At = 2ms, with this current injected
at times t; = fg + ¢sTp for ¢g = 0, ..., 1. The similarity
in the concave structure and scale of the two curves sug-
gests that both neuronal models respond very similarly to
short impulses perturbing a strong constant driving current,
revealing good qualitative agreement between the models.

3.4 Comparison of spike-frequency adaptation

As the phenomenon of spike-frequency adaptation initially
motivated our inclusion of the muscarinic current in the
mEIF model (7), we now examine the quality of its approx-
imation by the mEIF model versus the corresponding adap-
tation dynamics of the mHH model (1). We induce this type
of dynamical behavior in our simulations by injecting, on
a long time scale, either a Poisson-distributed AMPA-type
pulse train of the form (4) or a weak constant current, and
compare the dynamics of both the mHH and mEIF models.
As time progresses, we expect an increase in the length of
the interspike intervals for both model neuron types.

0.1
—HH
—mEIF
0.08 .
0.06f .
@
0.04f .
0.02f .
0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 08 1
O

Fig. 4 Phase-response curves. Comparison between the phase-
response curves for the mEIF and mHH models given a constant
driving current of 0.8n A and a perturbative current of 0.08n A injected
for 2ms after time fo = 300ms. The injection times are specified in the
text. The remaining model parameters are given in Tables 1 and 2
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Figure 2 displays the results of our simulation using
the AMPA-type synaptic drive injected for 1000ms. We
notice that the interspike intervals increase in length until
approximately 500ms elapse. Then, both models appear to
reach a steady state in which they continue to fire periodi-
cally. Similar dynamics occur for neurons with an injected
constant current. Figure 5 depicts this second scenario by
exhibiting the mHH and mEIF firing rates over simulation
times of different lengths. From Fig. 5, it is clear that the
decrease in the firing rate with increasing runtime is very
close for both models, which indicates their close degree of
spike-frequency adaptation.

3.5 Comparison of critical exponents

We now gauge the agreement of our computational mEIF
reduction with the more complex mHH neuron by study-
ing two types of bifurcations of neurons augmented with the
slow muscarinic current, both of which had been previously
discussed for the standard HH neurons (Roa et al. 2007; Jin
et al. 2006).

The first bifurcation we discuss is the transition between
a finite number of spikes fired after the current injection
and infinite number of spikes (i.e., repetitive firing) with
the increasing strength of the constant injected current I,
and sufficiently high initial depolarization of the neuronal
voltage. For the classic, type-II, HH neuron (17), this tran-
sition results from a saddle-node bifurcation of limit cycles

@ 0,035

£ - mHH

2 °© mEIF

£ oo 1
S

n

~ 0.025f 1
[V} ®

2

5 o e ..

m 0027 o] @ £
o

£

i 0.015, 200 400 600 800 1000

Simulation Time (ms)

Fig. 5 Spike-frequency adaptation. Comparison of firing rates for
mHH and mEIF neurons for several simulation durations under an
injected constant driving current of strength 0.83nA. The additional
model parameters are given in Tables 1 and 2
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Fig. 6 Passage through the rheobasis and bifurcation to infinitely
many spikes for the mHH and mEIF neurons. Comparison between
the dynamics of the mHH and mEIF models under constant driv-
ing currents /.y, increasing through the rheobase It ~ 0.7nA: (a)
Ioxy = 0.65nA < I, (b) Ioyy = Ir, (¢) I,y = 0.77nA > I, > I,
(d) I,y = 0.83nA > 1. > Ir. The mEIF model parameters were

(the unstable of which merges with a stable equilibrium in
a subcritical Hopf bifurcation at a yet higher strength of the
driving current). In the simulations of a model HH neuron,
there exist three different firing scenarios in three different
driving-current regimes. When the injected current I,y is
sufficiently far below the bifurcation value, /., and in fact
below the rheobase, the neuron will fail to fire regardless of
its initial membrane potential value. If the strength of the
input current is raised above the bifurcation value I, the
same neuron will be attracted to a stable limit cycle and thus
fire periodically. In between, above the rheobase but below
I., the neuron with a sufficiently large initial membrane
potential value will fire a finite number of times and then
remain at its resting potential (Hassard 1978); this number
increases with the proximity to /... In this middle regime, the
amount of time until the neuron undergoes its final action
potential before settling back into the equilibrium scales as

Ttire = Al — Loxr) ™ (13)

for some critical exponent A (Roa et al. 2007).

Through simulation, we observe that the mHH and mEIF
neurons behave in a similar fashion. Beginning near the
rheobase of I,,; = IT ~ 0.7nA, both the mHH and mEIF
neurons will spike at least once and then reach a stable
equilibrium which is close to the resting potential. This
bifurcation scenario is complicated by the spike-frequency
adaptation: in fact, there are two bifurcations, one from a
finite number of spikes to an infinite number but with ever
increasing interspike intervals, and then another to periodic
firing. We find the scaling (13) for the first. The regimes
with no spike, one spike, many, most likely infinitely many,
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chosen so that I = 0.68nA for both models, and are Ay = 4.1,
Vr = —449mV, Vg = =70mV, j = 0.014. The initial membrane
potential was —70m V. Note that the neuron oscillates periodically for
sufficiently large values of /., as depicted in panel (d). For smaller
Iyt > I, it appears that adaptation slows down the neuron’s firing
indefinitely, as depicted in panel (c)

spikes firing at an attenuating rate, and spikes firing in a
periodic-like pattern are depicted for the mEIF and mHH
neurons in Fig. 6. Both models are seen to share approx-
imately the same rheobase I7 and spiking behavior above
and below the critical threshold I., indicating a shared
transition structure.

We list the values for the rheobase I, the bifurcation
point /., and critical exponent A via numerical simulations
and fitting of formula (13) in Table 7. The maximal error
among the three parameters, which is in the exponent A,
is approximately 10 %. This error confirms that the mHH
model is rather well approximated by the properly fitted
mEIF model for describing bifurcation phenomena. How-
ever, for the comparison of the specific firing times of the
spikes in transients in the bifurcation scenario, agreement
between the mHH and mEIF models appears to be qualita-
tive. It should be pointed out that comparison of transient
dynamics is a far more stringent measure than that of limit
cycles.

Table 7 Critical exponent and bifurcation comparison

Symbol mHH model mEIF model
It 0.7nA 0.68nA

I 0.79nA 0.76nA

A 0.058 0.064

Rheobase I7, bifurcation point /., and critical exponent A for the
mHH and mEIF models. The mEIF model parameters are given by
Tables 1 and 2
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3.6 Comparison of bifurcation diagrams
under time-periodic driving

Since appropriately chosen Poincaré-type maps in
periodically-driven models generate highly model-specific
bifurcation diagrams, at least a qualitative agreement
between the bifurcation diagrams of the mHH and mEIF
models presents a rather stringent test of the accuracy of
the approximation by the mEIF model. We use the driving
frequency as the bifurcation parameter, and construct the
Poincaré map by plotting consecutive interspike intervals
corresponding to various simulations using specific driving
frequencies.

We drive our model neurons with the sinusoidal input
current

I = Iy + I sin(2m fyt), (14)

where [y is the average current, /| the amplitude of the peri-
odic perturbation, and fy is the frequency. To construct our
ISI bifurcation diagrams, we vary the driving frequency fy,
letting Io = 1.5nA and I} = 1rA, and plot the duration of
all ISIs in each simulation. For all such diagrams, we use a
simulation time of 1000ms for each driving frequency.
First, we display the comparison between the resulting
ISI bifurcation diagrams for the pure HH and EIF neurons
without any additional adaptation current over a range of
frequencies in Fig. 7. For the frequencies we have examined

Fig. 7 Bifurcation diagrams for
HH and EIF neurons under

(Y
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(as indicated in Fig. 7), we observe that both model neu-
rons immediately settle into what appears to be an attracting,
bounded firing pattern. This is to be expected since the pri-
mary driving current, /o, is far above the rheobase and thus
the neurons’ dynamics are in a repetitive firing regime. It is
important to note the remarkably strong structural and even
quantitative agreement between the two diagrams, reaching
down to fine bifurcation details.

The corresponding ISI bifurcation diagrams for the mHH
and mEIF neurons are depicted in Fig. 8, from which we
again see a strong, detailed qualitative and quantitative
agreement between the mEIF and mHH diagrams. This con-
firms that the same agreement between the models with
the added slow currents is not simply due to the inclu-
sion of those currents. For comparison, we also include
the corresponding aEIF diagram, which exhibits the same
overall qualitative bifurcation structure, but clearly does not
match the finer mHH structure as well as the mEIF model,
differing the most in the high frequency regime.

3.7 Comparison of network dynamics

Since the primary reason for developing our computational
reduction is to use it in network simulations, we now com-
pare the network dynamics generated by the respective
mEIF and mHH models. We compare two characteristic
features of the network output, the raster plots depicting

periodic drive. Comparison
between bifurcation diagrams of
(a) HH and (b) EIF models,
plotting the duration of each
interspike interval as a function
of the frequency of the
oscillatory driving current used
in the simulation. The driving
current is described in Eq. (14),

ISI (ms)

and the total run-time for each
simulation is 1000ms. The
remaining EIF model parameters
are listed in Tables 1 and 2

T

IS] (ms)

@ Springer




J Comput Neurosci (2013) 37:161-180

[\

ISI (ms)

ISI (ms) ©

ISI (ms) o

f0 (Hz)

Fig. 8 Bifurcation diagrams for mHH, mEIF, and aEIF neurons under
periodic drive. Comparison between bifurcation diagrams of the (a)
mHH, (b) mEIF, and (c) aEIF models, plotting the duration of each
interspike interval as a function of the frequency of the oscillatory driv-
ing current used in the simulation. The driving current is described in
Eq. (14), and the total run-time for each simulation is 1000ms. The
remaining mEIF model parameters are listed in Tables 1 and 2

the time-dependence of each neuron’s firings, and the gain
curves depicting the dependence of the network firing rate
on the strength of the external drive. We use a small all-to-
all coupled network of N = 10 excitatory neurons, in which
all the neuron-to-neuron couplings have the same strength.
Each neuron in the mHH and mEIF networks is still gov-
erned by Eqgs. (1) and (7) respectively, but now the synaptic
current of the j-th neuron gsjyn has the form

&y = injG(t SV AR B) DI DRI

k#j 1

where the first sum denotes the Poisson-distributed external
drive and the second the spikes arriving from all the other
neurons in the network. In Eq. (15), f denotes the strength
of the Poisson external drive and i labels the i-th spike, Sy
denotes the coupling strength, k is the neuron index, and #; ;
is the /-th spike time of the k-th neuron. We still assume the
postsynaptic conductance to follow time-course G as given
in Eq. (5). In our simulation we choose f = 0.05uS, Sy =
1.0uS and N = 10. The spike times for each neuron are
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generated by independent Poisson spike trains with the same
rate v = 1000H z.

A comparison of the raster plots for each network is
depicted in Fig. 9a, and while the spike times of the two
models are not always indistinguishably close, the compar-
ison shows good agreement not just in the total number
of spikes but also in the relative delays among the firing
times of different neurons. Moreover, the network firing rate
shows close agreement between the two models, indicating
close agreement in input-response.

The second measure we employ is a representation of
the network firing rate, namely, the gain curve. For a given
choice of the external-driving spike strength f, we analyze
the relationship between the neuronal firing rate averaged
over the network and a neuron’s external driving strength
expressed as the product fv of f and the Poisson rate v.
We vary v while keeping f fixed. A comparison of the gain
curves for both models is given by Fig. 9b, which shows
good agreement as long as the firing rate does not become
too large, indicating that the approximation of mHH neuron
by the mEIF neuron is very good in a statistical sense, such
that the firing rates averaged over the network agree for a
broad range of the Poisson rate v.

We remark that the mEIF model neuron parameters were
only optimized for a single, uncoupled neuron and for only
a single value of f and v, f = 0.05u¢S and v = 1000H z. As
the model parameters were not optimized for the coupled
network structure considered in this section, the pointwise
comparison between the networks is not as good as that
for an optimally-tuned single mEIF neuron. From the gain
curves, it is clear that the fitting procedure is robust to
network dynamics so long as firing rates do not grow so
large that the fit is no longer valid, which would require a
new optimization procedure for more accurate results. Since
the mEIF model was optimized for a single neuron, it is
expected that the error grows with the network firing rate.
We notice a systematic overestimation in this case. Never-
theless, pointwise measures, including the relative delays
among the firing times of different neurons and the Van
Rossum distance, show good agreement, while the statisti-
cal measure given by the network firing rate shows excellent
agreement even at values of v for which the neuron param-
eters were not optimized. For example, the average van
Rossum metric difference between the voltages traces of
the neurons in the network displayed in Fig. 9 was 0.442,
indicating close agreement in both the timing of spikes
and subthreshold dynamics in the networks. In Table 8, we
observe that using time-steps of size Aty = 0.08ms and
Atygrr = 0.5ms as in the single neuron case, similarly
large computational savings, as in Table 4, in long-duration
network simulations of N = 10 neurons are achievable
using the mEIF neuronal model. Likewise, in Fig. 9c, we
compare the raster plots of the mHH and mEIF models for a
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Fig. 9 Network dynamics for mHH and mEIF models. Comparison
between the raster plots and gain curves for the mHH and mEIF net-
works. Model parameters are listed in Tables 1 and 2. For the raster
plots in (a), network parameters are N = 10, Sy 1.0usS, f =
0.051S, and v = 1000Hz. The average neuronal firing rates in the
N = 10 neuron networks are 0.0112spikes/ms for the mHH model
and 0.0126spikes/ms for the mEIF model. For the gain curves in (b),
the external spike strength was f = 0.05u.S, the coupling coefficient

large network of N = 100 neurons, given the large time-step
of size Aty,p1r = 2ms. We observe accuracy comparable
to case of the N = 10 neuron network with small time-
steps. This shows that the mEIF model is very well suited
to approximate the mHH model in network simulations and
yields at least very good statistical accuracy.

3.8 After-hyperpolarization current

We now repeat the above approximation scheme for the HH
neuron augmented by the AHP current using the equally
augmented EIF model. Like the Muscarinic current, the
AHP current introduces only one additional variable into
the HH model (17), which is the time-dependent intracel-
lular Calcium ion concentration, [Ca®*]. The dynamics

Table 8 Model network efficiency comparison

Time mHH network
simulated (ms) runtime
50000 60 seconds
75000 78 seconds
100000 100 seconds

was Sy = 1.0uS, and the number of neurons was N = 100. The raster
plot in (c) uses large time-steps of size At,,g;r = 2ms for the mEIF
model and Atz = 0.08ms for the mHH model, with N = 100
and all other parameters identical to those used in raster plot (a). The
average neuronal firing rates in the N = 100 neuron networks are
0.01047spikes/ms for the mHH model and 0.01007spikes/ms for
the mEIF model

of the corresponding AHP current are described by the
formula (Richardson 2009; Yamada et al. 1989)

[Ca?]

30 + [Ca®*] (16

Iagp = gaHP (V —Vg),

with the Calcium ion concentration [Ca®*] obeying the
equation

d[Ca**]

176
“dr

— —0.161ca(V) — [Ca“]

Ica = gcaSoo(V — Vo)

1
I +exp(—=(V — Vi) /Ay) .

Soo =

mEIF network Decrease in

runtime runtime
Relative to mHH (%)
8 seconds 87
10 seconds 87
14 seconds 86

Comparison of runtimes using time-steps of sizes At g;jr = 0.5ms and Aty = 0.08ms for the mEIF and mHH neuronal networks with

N = 10 neurons, respectively
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Table 9 Calcium current physiological parameters

Symbol Parameter Value
Vs Spike Threshold —25mV
Ay Slope Factor SmV
TCa Time Constant 80ms
SAHP Calcium Conductance 40g1,

Physiological parameter values for simulations using a calcium
current.

Our choice of parameters is unique to layer-II cortical
neurons and is given in Table 9 (Richardson 2009).

Comparing Fig. 10 to Fig. 1, we notice that the increase in
duration of the interspike intervals resulting from the AHP
current is significantly larger than in the case of the Mus-
carinic current. However, since both currents play a similar
role in decreasing firing rates, it is reasonable to expect we
can utilize an analogous modeling approach using the EIF
model with the added slow current(s) for neurons with either
or both adaptation currents. Therefore, at each action poten-
tial, the dynamics of the Calcium concentration take the
same form as Eq. (8).

Carrying out the optimization procedure described in
the Parameter Optimization Section above, we determine
the best-fit parameter choices for two additional types of
neurons: neurons incorporating only the AHP current and
also those incorporating both currents. The values in either
case, which differ from those described for the previous
simulations for the mEIF neuron, are listed in Table 10.
In our simulation of the neuron with both adaptation cur-
rents, we reuse the jump constants found optimal in each
case when only one adaptation current was included in
the neuron model. At the time of each action potential,

Voltage (mV)

0 10 20 30 40 50 60 70 80 90 100
Time (ms)

Fig. 10 Comparison between the original HH neuron to an HH neuron
including an additional AHP current. Both neurons are driven by the
same constant external current /., = 2.0nA. Parameter values for the
HH model are listed in the Appendix, and parameter values for the
calcium current are listed Table 9
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Table 10 Calcium current exponential term parameters
Symbol parameter Value
Vr (cEIF) Spike Threshold —42mV
j (cEIF) Jump Constant 0.148mM
At (cEIF) Slope Factor 3.54mV
Vr (bEIF) Spike Threshold —46.5mV
At (bEIF) Slope Factor 3.3mV

Exponential term and jump parameters used in the simulations of the
cEIF and bEIF models

we add the appropriate jump constants to their correspond-
ing current variables. Comparing the adaptation variables
for the EIF and HH neuron types in each set of mod-
els highlights a post action-potential jumping dynamics
of the Calcium current which is even more pronounced
than what was found earlier for the Muscarinic current,
motivating a similar approach to updating at the action
potentials.

To demonstrate the accuracy of the approximation
scheme in these two new models, voltage traces for the
cEIF neuron model, with only the Calcium current, and the
bEIF neuron model, with both adaptation currents, are com-
pared to their Hodgkin-Huxley counterparts, the cHH and
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Fig. 11 Comparison between bHH and bEIF neuron dynamics. Com-
parison between (a) voltages traces and (b) the sum of the muscarinic
and calcium ion activation variables for bHH and bEIF models. Sim-
ulation time was 1000ms. The Van-Rossum Metric Difference is
0.000567, with . = Sms. The bEIF model parameters are listed in
Tables 1, 3,9, and 10
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Fig. 12 Comparison between cHH and cEIF neuron dynamics. Com-
parison between (a) voltages traces and (b) calcium ion concentration
for cHH and cEIF models. Simulation time was 1000ms. The Van-
Rossum Metric Difference is 0.001405, with t. = Sms. The cEIF
model parameters are listed in Tables 1, 3, 9, and 10

bHH models, in Figs. 11a and 12a respectively. Figures 11b
and 12b display the dynamics of the slow currents in these
EIF and HH-type neurons using the fitted jump constants.

Fig. 13 Passage through the
rheobasis and bifurcation to

J Comput Neurosci (2013) 37:161-180

Agreement comparable to the mEIF and mHH comparison
described earlier is found in each case. Both models also
exhibit the spike-frequency adaptation analogous to that of
the mEIF model.

Finally, we compare several additional dynamical prop-
erties of the models analogous to the ones used above for
the mHH and mEIF models to check for the accuracy of
the approximation. The methodology used is identical to
that used in those sections. In Fig. 13, we show that the
cEIF and cHH neurons have approximately the same crit-
ical rheobase, I7 ~ 1.2nA, and critical current threshold,
I. =~ 2nA. Likewise, Fig. 14 displays ISI bifurcation dia-
grams for the bEIF and bHH neuron pair, which again show
strong qualitative resemblance. Note also the similarity in
structure to the diagrams for the mEIF and mHH neuron pair
in Fig. 8.

We conclude by studying the accuracy of our model-
ing scheme, using instead the AHP current, in the network
setting. Using an all-to-all coupled network of N = 10 neu-
rons, we compare the synchronization and firing rates of
the HH and EIF type networks in the presence of spike-
frequency adaptation induced by the AHP current. The
raster plots for each network, in Fig. 15a, show excel-
lent agreement in the number of spikes and relative delays
among the firing times of different neurons, with an average
van Rossum metric difference of 0.378 in the voltage traces
of the individual neurons. Similarly, the gain curves for the
two models in Fig. 15b show that the cEIF computational

infinitely many spikes for the
cHH and cEIF neurons.
Comparison between the

dynamics of the cHH and cEIF

models under constant driving

currents I,y , increasing through
the rheobase I ~ 1.2nA:

(@) Iyy =0.7nA < Iy,

(b) Loy = I,

(¢) Iy =4nA > I. > Iy. The
initial membrane potential is
V = —70mV. The cEIF model
parameters are those listed in

Table 1 and A7 = 3.5mV,
Vi = —46.52mV

Vg = —60mV, and
Jj =0.148mM

—cHH |
- - -cEIF 1
100 200 300 400 500
Time (ms)
0 100 200 300 400 500
Time (ms)

Voltage (mV) e Voltage (mV)o Voltage (mV)®
=

N
3
(@)
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Fig. 14 Bifurcation diagrams
for bHH and bEIF neurons

1Y

177

under periodic drive.
Comparison between bifurcation
diagrams of (a) bHH and (b)
bEIF models under the periodic
drive described in Eq. (14) with

ISI (ms)

Ip = 2.5nA, plotting the
duration of each interspike
interval as a function of the
frequency of the oscillatory

o

driving current used in the
simulation. The bEIF model
parameters are listed in Tables 1,
9, and 10. The total run-time for
each simulation is 1000ms

ISI (ms)

reduction well approximates the cHH network in a statisti-
cal sense for a wide array of Poisson inputs. Like the mEIF
model, since the cEIF model was optimized for a single
neuron, it is expected that the error grows with the network
firing rate. For the cEIF model, we notice a small systematic
underestimation, but the gain curves remain relatively close
together.

10

Neuron Fired
o

0 200 400 600 800 1000
Time (ms)

o

0.015 "

0.01r

0.005F

Firing Rate

fv

Fig. 15 Network dynamics for cHH and cEIF models. Comparison
between the (a) raster plots and (b) gain curves for the cHH and
cEIF networks. The cEIF model parameters are listed in Tables 1, 9,
and 10. For the raster plots in (a), network parameters are N = 10,
Sy = 1.0uS, f =0.05uS, and v = 1000H z. The average neuronal
firing rates for the N = 10 neuron networks are 0.0026spikes/ms
for the cHH model and 0.0022spikes/ms for the cEIF model. For the
gain curves in (b), the external spike strength was f = 0.05uS, the
coupling coefficient was Sy = 1.0 S, and the number of neurons was
N =10

4 Discussion

Through our extensive numerical simulations, we have
shown that the dynamical behavior of the HH model with
additional muscarinic and/or AHP current can be very
accurately approximated by the EIF model with the same
additional current(s) and appropriately optimized parame-
ters. Not only can this approximation ensure the closeness
of subthreshold neuronal voltage traces and spike times
on finite-time intervals, but also a number of close bifur-
cation structures. In addition, network dynamics of HH
neurons with slow currents can be well approximated by
corresponding networks of EIF-like neurons. In the case
of realistic, AMPA-like EPSCs, the EIF-like models can
increase the speed of computation by at least an order of
magnitude by using the maximal time-steps that still allow
us to resolve spiking events, yielding especially large com-
putational savings in large neuronal network simulations in
which it would not be feasible to resolve the stiffness and
high dimensionality of the corresponding HH neurons.

Detailed studies of bifurcations exhibited by the adaptive
EIF model were presented in Touboul and Brette (2008),
Naud et al. (2008), and Nicola and Campbell (2013). It
would be interesting to investigate whether these bifurca-
tions also occur for the EIF model that includes the two
types of slow currents addressed here. Additionally, it would
be informative to study the inclusion of the slow cur-
rents directly in the approximation of multi-compartment
neurons, as in Clopath et al. (2007).

The EIF model has already been used in large-scale
network simulations with considerable success to faithfully
reproduce both the cortical conductance and subthreshold
membrane-potential dynamics, as well as the neuronal fir-
ing rates, measured in experiments covering brain areas of
tens of square millimeters (Tsodyks et al. 1999; Jancke et al.
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2004), such as in the simulation of the Hikosaka line-motion
illusion (Rangan et al. 2005). Our work indicates that the
EIF model with additional slow currents has the potential
to be equally useful as an efficient and accurate simplified
point-neuron  model incorporating  spike-frequency
adaptation.

An alternative approach to using the EIF model for
approximating the HH dynamics and thus accelerating
their computations is to use a precomputed library of
HH spikes (Sun et al. 2009). This approach again avoids
the costly evaluation of the membrane potential during
the action potentials during the network simulation, and
exhibits similar results relative to both the accuracy and
computational efficiency of the EIF model by using the
library-based updating scheme. While using significantly
larger time-steps than with the traditional HH model, (Sun
et al. 2009) demonstrated that the library-based updating
scheme could reduce simulation time by at least a factor of
65 %. The same approach could be extended to include slow
adaptation currents, which will be a good future project.
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Appendix: Hodgkin-Huxley equations

The membrane potential in the Hodgkin-Huxley model is
described by the equation

Cc(ii‘l‘/ =—Ip —INg— Ik + Isyn + Lext. (17)
The dynamics of both the sodium and potassium currents
are governed by their respective kinetic equations. The
choice of constants in the differential equations for the acti-
vation and inactivation variables were found experimentally
and are elaborated on in Destexhe and Pare (1999).

The sodium current is described by the expression

INg = gnam h(V — Vo),

where the dynamics of the fast-acting sodium activation
variable, m, are given by the equation
dm Mmoo —m

dt Ty

@ Springer
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with
am (V)
Moo =
an (V) + Bu(V)
1
Tm

" (V) + Bu(V)

—0.32(V 4 37)
an (V) =
exp(—(V +37)/4) — 1
0.28(V + 10
Bu(V) = (Vo+ 10

exp((V +10)/5) — 1
and the dynamics of the sodium inactivation variable, h, are
described by

dh  he—h
dt - h ’
with
_ ap(V)
0 =

ap(V) + Bn(V)

1
~ an (V) + Bu(V)

an(V) = 0.128 exp(—(V + 33)/18)

4
PV)= 1 L exp—v + 10/5)

The expression for the delayed-rectifier potassium current is
Ix = ggn*(V = Vi),

where the dynamics of the potassium activation variable, n,
are described by

dn  neo—n

dt Ty
with
_ O‘n(v)
T (V) + Ba(V)
1
Tn

" (V) + Bu(V)
_—0.032(V +35)
V)= p(=(V +35) — 1

Bn(V) = 0.5exp(—(V + 40)/40)
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