
A simple lattice‑based PKE scheme
Limin Zhou1*, Zhengming Hu1 and Fengju Lv2

Background
Nowadays, with the development of technologies, such as cloud computing and quantum 
information technology, quantum computing power becomes stronger and stronger. As 
a result, traditional cryptosystems, e.g number-theoretic cryptosystems, could be almost 
broken by quantum computers. To handle this case, lattice has come up as a powerful 
technique to resist quantum computers and been gradually used to construct cryptogra-
phy primitives which can be against quantum attack. Maybe lattice-based cryptography 
will be a replacement to number-theoretic cryptography in cryptography field.

Over the last decades, lattice has emerged as a very attractive foundation for cryptog-
raphy. The appeal of lattice-based primitives stems from the fact that their security can 
often be based on worst-case hard problems such as shortest vector problem (SVP) (Mic-
ciancio 2011; Regev  2004), closest vector problem (CVP) (Micciancio 2011; Regev  2004), 
approximate the shortest independent vectors problem SIVP (one variant of SVP) (Gentry 
et al. 2008; Micciancio 2011; Regev  2004) and the SVP GapSVP (in its decision version) 
(Gentry et  al. 2008; Micciancio 2011; Regev  2004) to within small polynomial (in the 
dimension n) factors, because they remain secure even against quantum computers.

 On lattice, there were two basic average-case problems (Micciancio and Regev 2007) 
that had been shown to enjoy worst-case hardness guarantee: the learning with error 
(LWE) problem (Regev 2005, 2009; Applebaum et al. 2009) and the small integer solu-
tion (SIS) problem (Micciancio and Regev 2007). More recently, Regev (2005) defined 
the LWE problem and proved that it enjoyed similar worst-case hardness under a quan-
tum reduction. The latter was first proposed by Ajtai (1996), who showed that it was 
at least as hard as approximating several worst-case lattice problems, such as the deci-
sion version of the SVP, known as GapSVP (Gentry et al. 2008) to within a polynomial 
factor in the lattice dimension. The SIS problem (Micciancio and Regev 2007) may be 
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seen as a variant of subset-sum over a particular additive group. Virtually, a great deal of 
recent lattice-based cryptographic schemes were based directly upon the above two nat-
ural average-case problems (Micciancio and Regev 2007), such as Regev (2005), Gentry 
et al. (2008), Regev (2009), Applebaum et al. (2009), Lindner and Peikert (2011), Orsini 
and Smart (2015), Hiromasa et al. (2015), Lyubashevsky and Wichs (2015), Gentry et al. 
(2010), Peikert et al. (2008), Peikert (2009), Garg et al. (2013).

Compared with traditional theory-based cryptosystems, such as RSA, ECC, the lattice-
based cryptographic systems mainly referred to only simple linear operation, matrix-vec-
tor multiplication, modular addition, modular multiplication of small integers. Such simple 
algebraic structure determined the small computational complexity, small computation 
operation, higher operating speed that could effectively improve data encryption and 
decryption speed. Such advantages made the lattice-based cryptosystems be famous. On 
the other hand, lattice-based cryptosystems had some disadvantages. For example, they 
occupied large space size, such as long public key, long secret key, large ciphertext expan-
sion, et al, which greatly limited their practical applications. However, these defects did not 
limit the development of the lattice-based cryptosystems. Up to date, there existed a lot of 
lattice-based cryptographic schemes: Regev (2005, 2009), Gentry et al. (2008), Applebaum 
et al. (2009), Lindner and Peikert (2011), Orsini and Smart (2015), Hiromasa et al. (2015), 
Lyubashevsky and Wichs (2015), Gentry et al. (2010), Peikert et al. (2008), Peikert  (2009), 
Garg et al. (2013) etc. In addition, in 2012, Ding and Lin (2012) first constructed a lattice-
based key exchange (KE) from LWE problem and first connected KE with lattice together. 
Li et al. (2013) proposed two KEs from the LWE problem and the SIS problem. The works 
of Albrecht et al. (2016), Cheon et al. (2016) and Ducas et al. (2014) presented some prob-
lems over NTRU lattice (Hoffstein et al. 1998). Zhang et al. (2015) first proposed a KE from 
ideal lattice. The works of Becker et al. (2016) and Laarhoven (2015) proposed some algo-
rithms to solve hard problems, e.g. SVP, which were new breakthrough on lattice. Alkim 
et al. (2015) and Bos et al. (2015) proposed lattice-based KEs. The works of Lindner and 
Peikert (2011) and Poppelmann and Guneysu (2013) proposed key encryption without key 
encryption mechanism on the LWE problem; but Peikert (2014) proposed lattice-based 
key encryption with key encryption mechanism. In 2014, Wang et  al. (2014) first con-
structed a lattice-based KE relied on Bi-ISIS problem; et al.

Public-key encryption (PKE) was one of the most fundamental primitives in cryptography. 
The first security notion for PKE was indistinguishability of encryptions under chosen-plain-
text attacks (indistinguishability against chosen-plaintext attacks) (IND-CPA or CPA) (Stin-
son 2005; Katz and Lindell 2007), also known as semantic security (Stinson 2005; Katz and 
Lindell 2007). Although CPA security was not stronger than CCA security (Stinson 2005; 
Katz and Lindell 2007), the research on the cryptosystems which were still CPA secure was 
significant. For example, it could become a fundamental of the cryptosystems which were 
CCA-secure (Stinson 2005; Katz and Lindell 2007). In recent years, construction of the lat-
tice-based PKEs had attracted a lot of attention, too. One of the main fields of interest in 
cryptography was the design and analysis of PKE schemes that were CPA security. However, 
there were only a handful of known lattice-based PKEs that enjoyed CPA security (Stinson 
2005; Katz and Lindell 2007): Regev et al. proposed a lattice-based PKE (Regev 2005) which 
was CPA-secure; In 2008 and in 2009, Peikert et al. proposed two lattice-based PKEs which 
were against CPA (Peikert et al. 2008), respectively; Gentry et al. proposed a “dual” scheme 
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(Gentry et  al. 2008) which was CPA-secure; Gentry et  al. presented a BGN-type scheme 
(Gentry et al. 2010) enjoying CPA security; Lindner and Peikert (2011) proposed a lattice-
based PKE with better key size. These above lattice-based PKEs achieved CPA security.

In 2008, Gentry et  al. (2008) first presented the definition of Preimage Sampleable 
Functions, gave the specific structure of the general Inhomogeneous Small Solution 
(ISIS) hard problem and showed that to solve the average-case ISIS problem (Micciancio 
and Regev 2007) was at least as hard as to quantumly solve the worst-case hard approxi-
mation SIVP problems (Gentry et al. 2008; Micciancio 2011). There were a few of PKE 
schemes based on SIS (Gentry et al. 2008; Lyubashevsky and Wichs 2015).

In 2014, Wang et al. (2014) first proposed Bilateral Inhomogeneous small integer solu-
tion problem (Bi-ISIS) on lattice, computational Bi-ISIS (CBi-ISIS) assumption and deci-
sional Bi-ISIS (DBi-ISIS) assumption. Meanwhile, they constructed a lattice-based KE 
which relied on DBi-ISIS problem in case of worst-case hardness of lattice problem. But 
until now, there is no lattice-based PKE on Bi-ISIS (Wang et al. 2014). To deal with the 
problem, we build a PKE on previous works of Wang et al. (2014) and Regev (2005). We 
take the first step in this direction by constructing a lattice-based PKE on Bi-ISIS (Wang 
et al. 2014) and proving its CPA security (Stinson 2005; Katz and Lindell 2007). In addi-
tion, we give an extended structure PKE of matrix form with multiple bits that is CPA 
secure (Stinson 2005; Katz and Lindell 2007).

This paper is organized as follows. “Preliminaries” section contains a few preliminaries 
necessary for our constructions such as definitions and properties related to lattice and 
PKE schemes. In “A lattice-based PKE scheme” section, we determine our lattice-based 
PKEs on DBi-ISIS problem, prove its security against CPA, draw detailed comparisons 
with related work in the literature and gives a PKE of matrix form which is CPA-secure. 
In “Conclusion” section, we state conclusion and open problems. Acknowledgements 
section gives the acknowledgement.

Preliminaries
Notations Assume that n is the the main security parameter in this paper. Bold lower-
case letters denote vectors in the column form, e.g. x. Bold capital letters denote matrix, 
e.g. A, and the transposition of A is At. The Euclidean (l2) norm for vectors, denoted by 
� x �2=

√

∑

i x
2
i , is used. That choosing elements from the set X uniformly at random is 

denoted by x1, . . . , xk ←R X.

Hard random integer lattice

Here mainly describe some definitions and properties on lattice (Regev 2005, 2009).

Definition 1 (Regev 2005) Given k linearly independent column vectors b1, . . . ,bk
∈ R

n, let B = [b1, . . . ,bk ] ∈ Rn×k with the basis column vectors, the n-dimensional lat-
tice � with rank(�) = k in n dimensional real space Rn generated by

where Bx is the usual matrix-vector multiplication.

Λ = L(B) =
{

y ∈ Rn, s.t. ∃x = (x1, . . . , xk , ) ∈ Zk , y = Bx =
k

∑

i=1

xibi

}
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Definition 2 (Regev 2005)  For integers q, m > n, (e.g. m = O(n log n), q = O(n2)), 
A ∈ Zn×m

q , rank(A) = n, defined:

The most well-known basic hard computational lattice problems are SVP (Gentry et al. 
2008; Micciancio 2011) and CVP (Gentry et al. 2008; Micciancio 2011). And the worst-
case problems underlying ocryptosystem are to approximate SIVP or GapSVP (Gentry 
et al. 2008; Micciancio 2011).

Definition 3 (SIVP) (Micciancio 2011) Given a lattice basis B ∈ Zn×n, find n linearly 
independent lattice vectors S = [s1, . . . , sn] (where si ∈ L(B) for all i) minimizing the 
quantity �S� = maxi�si�.

The approximation variants of these problems: GapSVPγ(Gentry et al. 2008) and SIVPγ 
(Gentry et  al. 2008), which are extension of SVP [SVPγ (Gentry et  al. 2008)], are two 
standard (worst-case hard) approximation problems on lattices, where γ = γ (n) denotes 
the approximation factor as a function of the dimension.

Definition 4 (SVP (Decision Version): GapSVPγ) (Gentry et  al. 2008) An input 
to GapSVPγ is basis B of a full-rank n−demensional lattice. It is a YES instance if 
�1(L(B)) ≤ 1, and is a NO instance if �1(L(B)) > γ (n). �1(�) can be seen in Micciancio 
and Regev (2007).

Definition 5 (SIVPγ) (Gentry et al. 2008) An input to SIVPγ is an n-dimensional lat-
tice basis B. The goal is to output a set of n linearly independent lattice vectors S ⊂ L(B), 
S = {s1, . . . , sn}, such as �S� ≤ γ (n) · �n(L(B)), �S� = maxi�si�.

Hard average‑case problems: the small integer solution (SIS)

The hard-on-average problem first proposed by Ajtai (1996) was the SIS problem (Mic-
ciancio and Regev 2007) and its variant problem was the inhomogeneous SIS problem 
(ISIS) (Micciancio and Regev 2007). This was syntactically equivalent to finding some 
short nonzero vectors in �⊥(A) (Regev 2005; Gentry et al. 2008).

Definition 6 (SIS (SISq,m,β)) (Micciancio and Regev 2007): given an integer q, a uni-
formly random A ∈ Zn×m

q , and a real β, find a nonzero integer vector e ∈ Zm\{0} such 
that Ae = 0 mod q and �e� ≤ β.

Definition 7 (ISIS (ISISq,m,β)) (Micciancio and Regev 2007): given an integer q, a uni-
formly random matrix A ∈ Zn×m

q , a uniformly random u ∈ Zn
q, and a real β, find an inte-

ger vector e ∈ Zm\{0} such that Ae = u mod q and �e� ≤ β.

For q(n),m(n),β(n), ISISq,m,β and SISq,m,β are the ensembles over instances 
(q(n),A,β(n)). Obviously, if u = 0 mod q, then ISISq,m,β is SISq,m,β.

Λq(A) = {v ∈ Z
m : v = Atz mod q, ∀z ∈ Z

n}
Λ⊥

q (A) = {v ∈ Z
m : Av = 0 mod q}
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The SIS and ISIS problems are only meaningful if they admit valid solutions for the 
particular choices of q,m,β such as β ≥

√
m and m ≥ 2n log q (Gentry et al. 2008).

Micciancio and Regev (2007) showed that SISq,m,β and ISISq,m,β were as hard (on the 
average) as approximating certain worst-case problems on lattices to within small factors 
(Micciancio and Regev 2007; Gentry et al. 2008).

Wang et  al. gave variants of SIS/ISIS problems (Gentry et  al. 2008): Bi-SIS/Bi-ISIS 
(Wang et al. 2014).

Definition 8 (Bi-ISIS) (Wang et al. 2014) Given an integer q, a matrix A ∈ Zm×m
q  cho-

sen randomly with rank(A) = n, two vectors u1, u2 ∈ Z
m
q  and a real β, the goal is to find 

nonzero integer vectors x, y ∈ Z
m\{0} such that

If u1 = 0 mod q, ut2 = 0 mod q, Bi-ISIS is the Bi-SIS. Bi − SISq,m,β/Bi − ISISq,m,β 
denote the probability ensembles over Bi-SIS/Bi-ISIS instances. Lemma 9 and Proposi-
tion 10 (Wang et al. 2014) gave the hardness of Bi − SISq,m,β and Bi − ISISq,m,β.

Lemma 9 (Wang et al. 2014) The problems Bi − SISq,m,β/Bi − ISISq,m,β are as hard as 
the problems SISq,m,β/ISISq,m,β, respectively.

Proposition 10 (Wang et  al. 2014) Given any poly-bounded m, β = poly(n), q ≥ β·
ω(

√

n log n), the Bi − SISq,m,β and Bi − ISISq,m,β problems in average case are as hard 
as approximating the problem SIVPγ and GapSVP, in the worst case within certain 
γ = β · Õ(

√
n).

Definition 11 (Bi − ISIS∗) (Wang et al. 2014) Let n, m, q and β be the parameters as 
that of ISIS, A ∈ Zm×m

q  with rank(A) = n, e1 is linear independent with column vectors 
of A, e2 is linear independent with row vectors of A. For vectors

the goal is to find a vector x ∈ Z
m and a vector y ∈ Z

m s.t.

If e1, e2 are unknown, Bi − ISIS∗ is much harder than Bi-ISIS.
Now we give the formulas of CBi-ISIS/DBi-ISIS problem (Wang et al. 2014). Here we 

only give definition of DBi-ISIS problem and DBi-ISIS assumption, CBi-ISIS problem 
and CBi-ISIS assumption were in Wang et al. (2014).

Given security parameters n,  q,  m, β, a matrix A ∈ Z
m×m
q  with rank(A)  =  n. Let 

D = {z ∈ Zm : � z �2≤ β}. For any vectors x ∈ D and y ∈ D, there exist two vectors 
sets U = {u1, . . . , un}, which is linear independent with the column vectors of A, and 
V = {v1, . . . , vn} which is linear independent with the row vectors of A, such that for 
∀i ∈ {1, . . . , n}, yt · ui = 0 mod q, vti · x = 0 mod q. Denote them by notations:

{

Ax = u1 mod q, � x �≤ β

ytA = ut2 mod q, � y �≤ β

b1 ∈{Az + e1 : z ∈ Z
m, et2 · z = 0 mod q}

bt2 ∈{ztA + et2 : z ∈ Z
m, zt · e1 = 0 mod q}

{

Ax + e1 = b1 mod q, � x �≤ β

ytA + et2 = bt2 mod q, � y �≤ β
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where S and S′ are two random subsets of {1, . . . , n}.

Definition 12 (DBi-ISIS problem) (Wang et al. 2014) Given (A,A ∗ x, yt ∗ A, ytAx), the 
goal is to distinguish (A,A ∗ x, yt ∗ A, ytAx) and (A,A ∗ x, yt ∗ A, z), where x, y ∈ D and 
z ∈ Zq are chosen uniformly at random.

Definition 13 (DBi-ISIS assumption) (Wang et al. 2014) Let n, m = poly(n) be integers,  
m > n, and β = poly(n) be a real such that q ≥ β · ω

√

(n log n) and D = {z ∈ Zm :
� z �2≤ β}, A ∈ Zm×m

q  be a random matrix with rank(A) = n. Then for any probabilistic 
polynomial time (PPT) A, the following holds:

where the probability is taken over the random choice of x, y, z ←R D and the random 
bits used by A.

A PKE scheme is a tuple of PPT algorithms 
∏

= (KeyGen,Encrypt,Decrypt) (or 
∏

= (Gen,Enc,Dec)) (Katz and Lindell 2007). Here consider the experiment defined for 
PKE 

∏

= (Gen,Enc,Dec) and an adversary A. The CPA indistinguishability experiment 
is PubKcpa

A,
∏(n). PubKcpa

A,
∏(n) = 1 stands for the probability of A attacking experiment 

∏

 
successfully (Katz and Lindell 2007). (In case PubKcpa

A,
∏(n) = 1, say A succeeds (Katz and 

Lindell 2007)).

Definition 14 (Katz and Lindell 2007) A PKE scheme 
∏

= (Gen,Enc,Dec) has indis-
tinguishable encryptions under CPA (CPA security) if for all PPT adversaries A, there 
exists a negligible function negl such that:

Security model for CPA 

We briefly review the notion of CPA security (Katz and Lindell 2007) which is defined 
using the game between a challenger and an adversary A. Both are given the security 
parameter 1n as input. Specifically, set a PKE experiment 

∏

= (Gen,Enc,Dec) and an 
adversary A, the CPA experiment is PubKcpa

A,
∏(n) as follows.

Setup The challenger runs KeyGen(1n) to get a pair of public and private key (pk, sk). 
The challenger gives A pk as well as oracle access to Encpk(·) and keeps sk private.

Queries phase 1 A can issue encryption queries m where message m must be in the 
plaintext space associated with pk. The challenger responds with Encrypt(pk, m) (or 
Encpk(m)).

Challenge A outputs two messages m0 and m1 of equal length to challenger. The 
challenger picks b ∈ {0, 1} at random and encrypts mb to get challenge ciphertext 
C = Encrypt(mb, pk) (or C = Encpk(mb)). The challenger gives C to A.

A ∗ x := Ax +
∑

i∈S
ui mod q, yt ∗ A := ytA+

∑

i∈S′
vti mod q

Pr[A(A,β ,A ∗ x, yt ∗ A, ytAx) = 1 : x, y ←R D]
− Pr[A(A,β ,A ∗ x, yt ∗ A, z) = 1 : x, y ←R D]| < negl(n)

Pr[PubKcpa
A,

∏(n) = 1] �
1

2
+ negl(n)
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Queries phase 2 A continues to have access to Encpk(·) oracle and issues encryption 
queries m as in phase 1, with the added constraint that m �= mb. The challenger responds 
with Encrypt(pk, m) (Encpk(m)).

Guess A outputs its guess (a bit) b′ ∈ {0, 1} of b. If b′ = b, the simulator outputs 
1 (indicating that A wins the game (experiment)); otherwise the simulator outputs 0. 
And the output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. (In case 
PubK

cpa

A,
∏(n) = 1, we say that A succeeds.)

Define the advantage of A in this game as Advcpa
A,

∏(n) = |Pr[b′ = b] − 1
2 |. A PKE is 

CPA-secure if no PPT adversaries A have non-negligible advantage in this CPA game.

Select parameters

Here the parameters are chosen the same as that in Wang et  al. (2014): q = O(n2) is 
prime, m = O(n log n), β ≥

√
m, q/ω(

√

n log n) > β ≥
√
m, and m ≥ 2n log q, e.g. for 

the typical parameters q = n2, m = 2n log q, and β =
√
m = 2

√

n log n.

A lattice‑based PKE scheme
In this section, we give a direct construction of a CPA-secure PKE scheme under DBi-
ISIS assumption: a simple lattice-based PKE scheme.

The encryption scheme

In this subsection, we present the full description of our PKE scheme.
Setup Let n be the security parameter that is parameterized by three integers, 

m = m(n), q = q(n), a real number β = β(n), A ∈ Zm×m
q  with rank(A) = n, m > n. All 

computing is performed in Zq, e.g. modulus q.
Initialize Given a public matrix A ←R Zm×m

q  with rank(A) = n, a short vector set 
D = {z ∈ Zm : � Z �≤ β}. Generate V = {vt1, . . . , vtn} which is linear independent with 
row vectors of A, U = {u1, . . . ,un} which is linear independent with column vectors of 
A, and make V, U public.

KeyGen(1n) Let y be the secret key, and pB = yt ∗ A = ytA+
∑n

i=1 v
t
i mod q be 

the public key (which is used to encrypt the plaintext), where y ←R D such that 
�ui, y� = 0 mod q.

Encrypt(pB,m) To encrypt a message m ∈ Zq, first pick a random vector x ←R D 
such that �vi, x� = 0 mod q (x can be generated by pseudorandom generators). Then 
compute

The ciphertext is C = (C1,C2). Erase x secretly (if the sender and the receiver are at the 
same places, erase x directly) and output ciphertext C.

Decrypt(C = (C1,C2), y)  To decrypt the ciphertext C = (C1,C2) with the pri-
vate key yt, first calculate K = yt · C1 mod q. Then decrypt finishes as follows 
m = C2 − K mod q.

Correctness If the PKE is run honestly, then m can be obtained successfully such that 
< vi, x >= 0 mod q, < ui, y >= 0 mod q.

C1 = A ∗ x = Ax +
n

∑

i=1

ui mod q, C2 = m+ pBx mod q
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The scheme’s correctness (with overwhelming probability) follows by the form of 
C1, C2, K :

with �vi, x� = 0 mod q, �ui, y� = 0 mod q, we have that

Security under CPA

We utilize the “Game hopping” (Dent 2006) to prove its CPA security of our lattice-based 
PKE scheme. We reduce its CPA security to the DBi-ISIS assumption. If a PPT adversary 
A wins the CPA game with non-negligible advantage, then we can construct a simulator 
that distinguishes a DBi-ISIS tuple from a random tuple with non-negligible advantage.

Theorem 15 If DBi-ISIS problem is hard for a PPT algorithm G, then the lattice-based 
PKE scheme in “The encryption scheme”  section has indistinguishable encryptions under 
CPA. Namely, our PKE shcheme is CPA secure underDBi-ISIS assumption.

Proof Suppose there exists an adversary A (or an algorithm) to win the CPA game, we 
build a simulator (an algorithm), S, that has non-negligible advantage in solving DBi-
ISIS problem.

Let 
∏

 be the lattice-based PKE scheme in “The encryption scheme” section. Suppose 
that A is a PPT adversary, and define

Let ˜
∏

 be the modified PKE, where GenKey is the same as in 
∏

. But to encrypt a mes-
sage m ∈ Zq with public key (Z, q,A,PB), the sender selects x, z1, z2 ←R D and computes 
ciphertext C = (C1,C2) = (A ∗ x, (zt2 ∗ A)z1 +m).

Although the receiver cannot calculate the plaintext  m  from  ˜
∏

, PubKcpa

A, ˜
∏(n) is still 

well-defined since the experiment depends only on KeyGen(·), encrypt(·).
Now we discuss that the ciphertext in ˜

∏

 is independent of the plaintext m being 
encrypted. Virtually, when z1, z2 ←R D, zt2(A ∗ z1) mod q  and  (zt2 ∗ A)z1 mod q are two  
random elements in Zq. This implies that m+ zt2(A ∗ z1) mod q, m+ (zt2 ∗ A)z1 mod q 

C1 = A ∗ x = Ax +
n

∑

i=1

ui mod q

C2 = m+ pB · x = m+
(

ytA+
n

∑

i=1

vti

)

· x

= m+ ytA · x +
n

∑

i=1

vti x = m+ ytA · x mod q

K = yt · C1 = yt ·
(

Ax +
n

∑

i=1

ui

)

= yt · Ax + yt ·
n

∑

i=1

ui = yt · Ax mod q

C2 − K = m+ yt · Ax − yt · Ax = m mod q

ε(n) = Pr[PubKcpa
A,

∏(n) = 1]
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are independent of m. Obviously, the first element C1 = yt ∗ A mod q in ˜∏ has no rela-
tionship with plaintext m. Taken together, the ciphertext in ˜

∏

 is independent of m and 
hence contains no information about m. Thus we get

The simulator S now plays the role of challenger in the CPA game and tries to solve 
DBi-ISIS problem (we recall that when S receives (Zq ,Z

m
q ,A, q,PB,C1,C3)  where 

for ∀x, y, z1, z2 ←R D

C3 is equal to (yt ∗ A)x or C3 is equal to (zt2 ∗ A) · z1 such that �z2,ui� = 0 mod q,

�z1, vi� = 0 mod q). The simulator S that accomplishes this simulates the view of the 
adversary A as follows.
S takes Zq , q,A,C1,C2,C3 as input.
Setup The adversary A is given the public key A, pB = yt ∗ A = ytA+

∑n
i=1 v

t
i mod q 

whose corresponding private key is y ←R D such that �y,ui� = 0 mod q. (Here A, pB 
are used to encrypt the message m.)

Queries phase 1 The adversary A issues encryption queries. The adversary has unlim-
ited access to EncpB(·) oracle with input a message m, where m is an alleged plaintext.

Challenge The adversary A submits two messages m0 and m1 and sends them to the 
simulator. The simulator S flips a coin, b, constructs the challenge ciphertext C = (C1,C2) 
of mb, b ∈ {0, 1} and gives it to A, where C1 = A ∗ x mod q, C2 = C3 +mb mod q.

We note that C is a valid encryption of mb if the simulator S is given a DBi-ISIS tuple. 
Otherwise, if S is given a random tuple, C is independent of b in the A′s view.

Queries phase 2 Same as phase 1. But the adversary is not allowed to query the EncpB(·) 
oracle on message mb.

Guess Then A continues to have oracle access to EncpB(·) and outputs its guess b′ of b. 
If b′ = b, S outputs 1 and answers “DBi-ISIS” (indicating that C3 = ytAx); otherwise S 
outputs 0 and answers “random” (indicating that C3 = zt2Az1). More precisely, there are 
two corresponding cases of S ′s performances. (The simulator S takes as input a random 
challenge C = (C1,C3 +mb) where C3 is either ytAx or a random element of Zq.) The 
simulator S proceeds as follows.

1. S runs G(1n) to get (Zq ,Z
m
q ,A, q) which can be regarded as S ′s  input. S chooses 

x, y, z1, z2 ←R D and sets 

Pr

[

PubK
cpa

A, ˜
∏(n) = 1

]

=
1

2

C1 = A ∗ x = Ax +
n

∑

i=1

ui mod q, pB = yt ∗ A = ytA+
n

∑

i=1

vti mod q

C1 = A ∗ x = Ax +
n

∑

i=1

ui mod q

pB = yt ∗ A = ytA+
n

∑

i=1

vti mod q

C3 = (zt2 ∗ A) · z1 mod q

(C3 = zt2 · (A ∗ z1) mod q)
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 Then S runs algorithm A on a public key constructed as 

 and a ciphertext constructed as 

 In this case, C3 = (zt2 ∗ A) · z1 mod q (or C3 = zt2 · (A ∗ z1) mod q), Thus we have 
that C2 is completely random from the view of A, which implies that A′s view is the 
same as A′s view in PubKcpa

A, ˜
∏(n) since C is completely random. Because S outputs 1 

when A outputs b′: b′ = b, hence 

2. S runs G(1n) to obtain (Zq ,Z
m
q ,A, q) which can be regarded as the input of S. Then, S 

selects x, y ←R D, sets

Finally, S runs algorithm A on a public key constructed as

and a cipherext constructed as

Obviously, in this case, C3 = (yt ∗ A)x mod q, then C2 is a valid ciphertext. That means 
that A′s view distribution is exactly as A′s view in PubKcpa

A,
∏(n) since C is a valid cipher-

text. S outputs 1 when A outputs b′: b′ = b, hence

We see that if C3 is sampled from random, C = (C1,C2) is random; if C3 is sampled 
from DBi-ISIS game, C = (C1,C2) is the valid ciphertext. Putting together the two cases, 
it follows that A′s advantage Advcpa

A,
∏(n) in distinguishing between the real “DBi-ISIS” 

and “random” is negligibly close to

that is Advcpa
A,

∏(n) = |Pr[PubKcpa

A,
∏(n) = 1] − 1

2 |. Since the DBi-ISIS problem is hard, 
there must exist a negligible function negl(n) such that

pk = �Zq ,Z
m
q ,A, q, pB�

C = (C1,C2) = (A ∗ x,C3 +mb)

Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, (zt2 ∗ A) · z1) = 1] = Pr

[

PubK
cpa

A, ˜
∏(n) = 1

]

=
1

2

C1 = A ∗ x = Ax +
n

∑

i=1

ui mod q

pB = yt ∗ A = ytA+
n

∑

i=1

vti mod q

C3 = (yt ∗ A)x mod q

pk = (Zq , z
m
q ,A, q,PB)

C = (C1,C2) = (A ∗ x, ytAx +mb) = (A ∗ x, (yt ∗ A)x +mb)

Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, ytAx) = 1] = Pr[PubKcpa

A,
∏(n) = 1] = ε(n)

|Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, (zt2 ∗ A)z1) = 1]

− Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, yTAx) = 1]| =
∣

∣

∣

∣

1

2
− ε(n)

∣

∣

∣

∣
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which implies that ε(n) ≤ 1
2 + negl(n) (In other words, S has advantage at most negl(n) 

in solving DBi-ISIS problem). It follows that our PKE in “The encryption scheme” sec-
tion has indistinguishable encryptions under CPA. By Definition 14, we have

All in all, for all PPT adversaries A, the lattice-based PKE system in “The encryption scheme” 
section is CPA security if the DBi-problem is hard. This completes the proof.  �

 Comparison with lattice‑based PKEs

For the comparison to be meaningful, we consider the latticed-based PKEs. Table  1 
shows the comparison in the term of communication complexity (complexity of space 
or storage efficiency, e.g. Pub.size) and computation complexity (e.g Enc.comp.) of PKEs. 
Pub.size means the size of the public key, others are so; Comput.Comp. means the com-
putation complexity and is estimated by the number of the multiplications in Zq. Their 
main computation operation contains the matrix-vector multiplication in Zq. Table  1 
shows the comparison in more detail. Here n is the security parameter, q is a polynomial 
function of n.

Compared with PKEs (Regev 2005; Lindner and Peikert 2011), from the respective of 
the space complexity of view, priv.size in our system is nearly the same as that of Regev 
(2005) but smaller than that in Lindner and Peikert (2011); the public key size is slightly 
bigger than that of Regev (2005) and Lindner and Peikert (2011); the Cipher.size is almost 
the same as that of Regev (2005) and Lindner and Peikert (2011); and the range of the 
encrypted plaintext is significantly bigger than that in Regev (2005) but smaller than that 
of Lindner and Peikert (2011). As for Comput.comp, our Enc.comp is a little bigger than 
that of Regev (2005) and Lindner and Peikert (2011); our Dec.comp is nearly identical 
to that in Regev (2005), but smaller than that in Lindner and Peikert (2011). Compared 
with the BGN-type PKE (Gentry et al. 2010), the performance of our PKE is much better 
except for Plain.size and Pub.size. Obviously, Cipher.size, Enc.Comp., Dec.Com., Priv.size 
and Plain.size are all much smaller than that of Gentry et al. (2010) although Pub.size of 
Gentry et al. (2010) is a little smaller than our Pub.size.

negl(n) ≥ |Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, (zt2 ∗ A)z1) = 1]

− Pr[S(Zq , z
m
q ,A, q, y

t ∗ A,A ∗ x, yTAx) = 1]| =
∣

∣

∣

∣

1

2
− ε(n)

∣

∣

∣

∣

Pr[PubKcpa
A,
∏(n) = 1] ≤

1

2
+ negl(n)

Table 1 Comparisons with lattice‑based cryptosystems

Pub Pub.size Cipher.size Enc.Comp. Dec.Comp. Priv.size Plaint.size

Regev (2005) 2(n+ 1)n log2 q n log2 q+ log q 2n2 log q n n log q 1

Lindner and 
Peikert (2011)

2n2 log q 2n log q 3n2 n2 n2 log q n log q

Gentry et al. 
(2010)

2n2log2q 4n2log3q 4n2log2q(n+ 1) 8n3log3

q(1+ 24n3log3q)
4n2log3q 4n2log2q

Ours 2n log2

q(2n log q+ 1)
2n log2 q+ log q 2n log

q(2n log q+ 1)
2n log q 2n log2 q log q
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In short, our lattice-based scheme is equally advantageous to the scheme in Regev 
(2005) except for the plain.size. Our scheme enjoys almost the same advantages as 
that in Lindner and Peikert (2011) in the aspects of Pub.size, Cipher.size, Enc.Com., but 
Dec.comp and Priv.size are much more advantageous than that in Lindner and Peikert 
(2011), plain.size is smaller. But our scheme has more advantages than that of Gentry 
et al. (2010) in all aspects which are mentioned in Table 1 except for Plain.size, Pub.size. 
In addition, all the PKEs of Regev (2005), Lindner and Peikert (2011) and Gentry et al. 
(2010) are from the LWE problem while ours depends on the SIS problem. The PKEs of 
Regev (2005), Lindner and Peikert (2011) and Gentry et al. (2010) and ours are all CPA-
sure and resist quantum attack.

A lattice‑based extended structure PKE of matrix form

To sent plaintext with multiple bits in our PKE, one can use matrix secret and matrix 
plaintext. Now we describe the PKE in “multiple bits” scenario and show its CPA secu-
rity underlying DBi-ISIS assumption.

Basic construction

In the following, we convert the lattice-based KE on SIS (Wang et al. 2014) into an asym-
metric PKE with multiple bits: an extended structure PKE of matrix form.

Use the same parameters m = m(n), q = q(n), β = β(n) and A ∈ Zm×m
q  with rank(A)

= n, n < m as mentioned above.
Setup Generate public parameters n, m, n < m, a real number β, a prime q, a random 

matrix A ∈ Zm×m
q  with rank(A) = n, a short vector set D = {z ∈ Zm : � Z �≤ β}.

Initialize Assume that pick randomly X ←R Dk1, generate vector group V which are 
linearly independent with row vectors of A, such that V t · X = 0 mod q, then keep X 
private and make V public. Suppose that randomly pick Y ←R Dk2, choose vector group 
U which are linearly independent with column vectors of A, such that Y tU = 0 mod q, 
then keep Y private and make U public, where k1, k2 are integers.

KeyGen Let

be the public key which is used to encrypt message, Y t is the corresponding private key.
Encrypt To send a message M ∈ Z

k2×k1
q , pick X ←R Dk1 as a random value such that 

V t · X = 0 mod q (X can be generated by the pseudorandom generator. If the sender 
and the receiver are at the same local, X is deleted once the ciphertext is completed 
successfully).

Then compute

Output ciphertext C = (C1,C2) and erase X secretly.
Decrypt Upon receiving C = (C1,C2), knowing the private key Y t, decrypt the message 

by first calculating

PB = Y t ∗ A = Y tA+ V t ∈ Zk2×m
q mod q

C1 = A ∗ X = AX + U mod q

C2 = M + PBX mod q

K = Y t · C1 mod q
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Then compute C2 − K mod q to get message M.
Correctness If the system is run honestly, the message M is obtained correctly.
To show the correctness of our scheme, C1, C2, K  can be written as follows:

then we obtain message M by computing

such that V t · X = 0 mod q, Y tU = 0 mod q.

CPA security

Theorem 16 indicates that our extended PKE of matrix form in “Basic construction” sec-
tion is CPA secure under DBi-ISIS assumption.

Theorem 16 If DBi-ISIS problem is hard for a PPT algorithm G, then the lattice-based 
PKE in “Basic construction” section is security against CPA under DBi-ISIS assumption.

Proof The proof of Theorem 16 is similar to that of Theorem 15, omit it here.

Conclusion
In this paper, we present a simple PKE scheme that achieves CPA security under the 
DBi-ISIS assumption. We build it on previous works of Wang et  al. (2014) and Regev 
(2005) and believe that it is easy to understand. Table 1 gives some comparisons with 
other lattice-based PKEs which indicates that the advantages of our lattice-based PKE 
are nearly the same as that in Regev (2005), a little different from that of Lindner and 
Peikert (2011), but much more than that in Gentry et al. (2010).

In addition, we extend the lattice-based PKE in “The encryption scheme” section to 
a lattice-based extended structure PKE of matrix form with multiple bits in “Basic con-
struction” section indicate its CPA secure.

Note that our PKE schemes in both “The encryption scheme” section   and “Basic 
construction” section may be modified to be security against chosen-ciphertext attacks 
(CCA) (Stinson 2005; Katz and Lindell 2007). How to improve our proposed PKE 
schemes to interactive multiparty PKE schemes, how to modify our PKE schemes into 
signatures based on Bi-ISIS, et al are also worth considering. Maybe our construction is 
a foundation for other cryptographic primitives constructed. And our construction may 
be an important step in showing how versatile the SIS assumption can be. We leave them 
as open problems.

C1 = A ∗ X = AX + U mod q

C2 = M + PBX = M + (Y tA+ V t)X

= M + Y tAX + V tX mod q

K = Y t · C1 = Y t · (AX + U)

= Y t · AX + Y tU mod q

C2 − K = M + Y tAX + V tX − (Y t · AX + Y tU) = M mod q
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