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Abstract The principle of maximum conformality (PMC)
has been suggested to eliminate the renormalization scheme
and renormalization scale uncertainties, which are unavoid-
able for the conventional scale setting and are usually impor-
tant errors for theoretical estimations. In this paper, by apply-
ing PMC scale setting, we analyze two important inclu-
sive Standard Model Higgs decay channels, H → bb̄ and
H → gg, up to four-loop and three-loop levels, respec-
tively. After PMC scale setting, it is found that the con-
ventional scale uncertainty for these two channels can be
eliminated to a high degree. There is small residual initial
scale dependence for the Higgs decay widths due to unknown
higher-order {βi } terms. Up to four-loop level, we obtain
�(H → bb̄) = 2.389±0.073±0.041 MeV and up to three-
loop level, we obtain �(H → gg) = 0.373 ± 0.030 MeV,
where the first error is caused by varying MH = 126 ± 4
GeV and the second error for H → bb̄ is caused by vary-
ing the MS-running mass mb(mb) = 4.18 ± 0.03 GeV.
Taking H → bb̄ as an example, we present a compari-
son of three BLM-based scale-setting approaches, e.g. the
PMC-I approach based on the PMC–BLM correspondence,
the Rδ-scheme and the seBLM approach, all of which are
designed to provide effective ways to identify non-conformal
{βi }-series at each perturbative order. At four-loop level,
all those approaches lead to good pQCD convergence, they
have almost the same pQCD series, and their predictions are
almost independent on the initial renormalization scale. In
this sense, those approaches are equivalent to each other.

1 Introduction

In 2012 a new boson has been discovered by CMS and
ATLAS experiments at the large hadron collider (LHC) [1,2],
whose properties are remarkably similar to the standard
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model (SM) Higgs [3–9]. For example, its mass is determined
to be 125.5±0.2+0.5

−0.6 GeV by the ATLAS collaboration [9] or
125.7 ± 0.3 ± 0.3 GeV by the CMS collaboration [4], where
the first error stands for the statistic error and the second one
stands for the systematic error.

If the SM Higgs has a mass around 126 GeV, then its
decay width shall be dominated by H → bb̄ [10,11]. The-
oretically, many efforts have been made in studying the
Higgs decays into a bottom pair [12–25]. As a reference,
the pure QCD corrections at the two-loop or the three-loop
level have been reported in Refs. [26–28], and the explicit
expressions up to O(α5

s ) have been given by Ref. [29]. In
addition, the Higgs decay channel H → gg also plays a
crucial role in studying the properties of Higgs boson. The
coupling of Higgs to a pair of gluons, which is mediated
at one loop by virtual massive quarks (essentially gener-
ated by the top quark alone), becomes independent of the
top-quark mass mt in the limit MH � 2mt . An impor-
tant feature of H → gg is its affinity to the gluon–gluon
fusion mechanism for Higgs production. The effective cou-
pling ggH eventually may provide a way to count the num-
ber of heavy quarks beyond SM [30]. Its next-to-leading
order (NLO) QCD corrections are quite large and amount
to about 70 % in comparison to the leading order contribu-
tion [31–36]. Later on, the QCD corrections for H → gg
up to three-loop level have been calculated in the limit of
an infinitely heavy top-quark mass [37–40]. Those great
improvements on loop calculations provide us with oppor-
tunities for deriving more accurate estimations of the Higgs
properties.

The physical predictions of the theory, calculated up to all
orders, are surely independent of the choice of renormaliza-
tion scale and renormalization scheme due to the renormal-
ization group invariance [41–45]. As is well known, there are
renormalization scale and renormalization scheme ambigui-
ties at any finite order. It is helpful to find an optimal scale
setting so that there is no (or greatly suppressed) scale or
scheme ambiguity at any fixed order and one can achieve the

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81284965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2825 Page 2 of 14 Eur. Phys. J. C (2014) 74:2825

most accurate estimation based on the known perturbative
calculations.

As an estimation of the physical observable, one can first
take an arbitrary initial renormalization scale μr = μinit

r and
apply some scale-setting method to improve the pQCD esti-
mation. For the conventional scale setting, once the renormal-
ization scale is set to an initial value, it will always be fixed
during the whole analysis. That is, for the processes involving
Higgs, in the literature, one usually take μr ≡ μinit

r = MH

as the central value, which eliminates the large logs in a form
as ln(μr/MH ). Because there is no strong reasons for such
a choice, as a compensation, one will vary the scale within
a certain region, e.g. μinit

r ∈ [MH /2, 2MH ], to ascertain the
scale uncertainty. It is often argued that by setting and vary-
ing the scale in such a way, one can estimate contributions
from higher-order terms; i.e. changing in scale will affect
how much of a result comes from Feynman diagrams without
loops, and how much it comes from the leftover finite parts of
the loop diagrams. Because of its perturbative nature, it is a
common belief that those scale uncertainties can be reduced
after finishing a higher-and-higher-order calculation. How-
ever, this ad hoc assignment of scale and its range usually
constitutes an important systematic error in the theoretical
and experimental analysis. More explicitly, the conventional
scale setting cannot answer the questions: why is it MH and
not MH /2 or others that provides the central estimation? If
there are several typical energy scales for the process, then
which one provides the central value?

Several scale-setting methods have been suggested, e.g.
the renormalization group improved effective coupling
method (FAC) [46–49], the principle of minimum sensitiv-
ity (PMS) [50–52], the Brodsky–Lepage–Mackenzie method
(BLM) [53] and its underlying principle of maximum con-
formality (PMC) [54–61]. The FAC is to improve the pertur-
bative series by requiring all higher-order terms vanish and
the PMS is to force the fixed-order series to satisfy the renor-
malization group invariance at the renormalization point. The
BLM improves the perturbative series by requiring the n f

terms at each perturbative order vanish. The PMC provides
the principle underlying the BLM, and it suggests a princi-
ple to set the optimal renormalization scales up to all orders,
they are equivalent to each other through the PMC–BLM cor-
respondence principle [55]. Those methods, being designed
to eliminate the scale ambiguity, have quite different conse-
quences and may or may not achieve their goals. A detailed
introduction and comparison of these methods can be found
in a recent review [61]. In the present paper, we adopt PMC
for analyzing the Higgs decays.

The main idea of PMC lies in that the PMC scales at each
perturbative order are formed by absorbing all non-conformal
terms that govern the running behavior of the coupling con-
stant into the coupling constant. At each perturbative order,
new types of {βi } terms will occur, so the PMC scale for

each perturbative order is generally different. Even though
one can choose any value to be μinit

r , the optimal PMC scales
and the resulting finite-order PMC prediction are both to high
accuracy independent of such arbitrariness. After PMC scale
setting, the divergent renormalon series does not appear and
the convergence of the pQCD series can be greatly improved.
Because of these advantages, the PMC method can be widely
applied to high-energy physics processes, some examples of
which can be found in Refs. [55–58,60,62,63].

Because the PMC provides the underlying principle for
BLM, the previous features or properties derived by using
BLM can also be understood by using PMC. Before apply-
ing PMC or BLM to high-energy processes, one needs to use
the expression with full initial renormalization scale depen-
dence. That is, those terms that have been eliminated by set-
ting the renormalization scale to be equal to the factorization
scale or by setting the initial renormalization to be the typi-
cal momentum transfer should be retrieved. So, the previous
scale dependence analysis or conclusions drawn under the
BLM should be adopted with great care, since there is mis-
use of BLM in the literature. It is interesting to show whether
the PMC can work well for the inclusive Higgs decays and
whether the accuracy of the estimations can be improved. In
the present paper, we show the newly suggested PMC pro-
cedure, the so-called Rδ-scheme [60,64], with much more
detail. A comparison with some other suggestions to extend
the BLM scale setting up to any perturbative orders shall also
be presented.

The remaining parts of the paper are organized as follows.
In Sect. 2, we present the calculation technology for applying
PMC to Higgs decay processes H → bb̄ and H → gg up to
four-loop level. In Sect. 3, we present the numerical results
and discussions. The final section is reserved for a summary.

2 Calculation technology

In this section, we present an improved analysis for the Higgs
decay channels H → bb̄ and H → gg by using the PMC
Rδ-scheme. For this purpose, we do the following.

• We shall first rearrange the four-loop expressions [29,39]
that have been derived under the conventional scale set-
ting in a more general form. That is, the n f terms in
those expressions that are coming from the light-quark
loops and are responsible for controlling the running
behavior of the coupling constant shall be transformed
into {βi }-series. Those {βi }-series via the renormaliza-
tion group equation rightly control the running behavior
of the strong coupling constant. Every process has its
own {βi }-series and its own optimal (PMC) scales. Thus,
after absorbing all those {βi }-series into the strong cou-
pling constant via an order-by-order way, we can obtain
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the optimal running coupling constant for the specific
process.

• As stated in the Introduction, before applying the PMC
scale setting, we need to obtain the expressions with
full (initial) renormalization scale dependence. For the
purpose, at present, we need to transform the four-loop
results of H → bb̄ or the three-loop results of H → gg
derived under the conventional assumption of μinit

r ≡
MH to a more general form that explicitly contains the
initial renormalization scale μinit

r , which may or may not
equal to MH . This can be achieved by using the strong
coupling constant’s scale transformation equation up to
four-loop level, i.e.

as(Q∗) = as(Q) − β0 ln

(
Q∗2

Q2

)
a2

s (Q)

+
[
β2

0 ln2
(

Q∗2

Q2

)
− β1 ln

(
Q∗2

Q2

)]
a3

s (Q)

+
[
−β3

0 ln3
(

Q∗2

Q2

)
+ 5

2
β0β1 ln2

(
Q∗2

Q2

)

−β2 ln

(
Q∗2

Q2

)]
a4

s (Q) + O(a5
s ), (1)

where as = αs/4π , and Q∗ and Q are two arbitrary
renormalization scales.

• We shall set the PMC scales in an order-by-order manner
according to Rδ-scheme. By doing the loop calculations,
the b-quark mass is treated as massless, cf. the review on
Higgs properties [11], there is only an overall m2

b-factor
in the decay width. Since its value is irrelevant to the
PMC procedures and should be kept separate during the
PMC scale setting, either the choice of MS-running mass
or the pole mass is reasonable. In the formulas, we fix its
value to be mb(MH ) within the MS-scheme. A detailed
discussion of this point is in preparation, which shows,
by applying PMC properly, that either the choice of pole
mass or MS-running mass can lead to a consistent esti-
mation. Recently, a discussion of H → γ γ has presented
such an example [65].

In the following, we subsequently present the results
before and after PMC scale setting for the two channels
H → bb̄ and H → gg.

2.1 The general form for H → bb̄ under the conventional
scale setting

By taking the initial renormalization scale μinit
r = MH , the

analytic decay width with explicit n f dependence for the
channel H → bb̄ can be formally written as

�(H → bb̄) = 3G F MH m2
b(MH )

4
√

2π
[1 + c1,0 as(MH )

+(c2,0 + c2,1n f ) a2
s (MH ) + (c3,0 + c3,1n f

+c3,2n2
f ) a3

s (MH ) + (c4,0 + c4,1n f

+c4,2n2
f + c4,3n3

f ) a4
s (MH ) + O(a5

s )] (2)

= 3G F MH m2
b(MH )

4
√

2π
[1 + 1.804 αs(MH )

+2.953 α2
s (MH ) + 1.347 α3

s (MH )

−8.475 α4
s (MH ) + O(α5

s )] (3)

where G F is the Fermi constant and mb(MH ) is the MS run-
ning mass at the scale MH . For convenience, in the third
line, we present the values for the coefficients over the αs-
expansion by setting n f = 5, which explicitly show the rel-
ative importance of the perturbative series. The coefficients
ci, j up to four-loop levels are [29]

c1,0 = 22.667, c2,0 = 575.04, c2,1 = −21.738,

c3,0 = 10, 504.9, c3,1 = −1, 649.4, c3,2 = 16.574,

c4,0 = 10, 071, c4,1 = −56, 550, c4,2 = 2, 479.4,

c4,3 = −5.248. (4)

The Rδ-scheme [60,64] not only illuminates the {βi }-
pattern of the process but also exposes a special degener-
acy of the coefficients at different perturbative orders. Such
degeneracy is necessary, which, similar to the PMC–BLM
correspondence principle [55], ensures the one-to-one corre-
spondence between the n f -series and the {βi }-series at each
perturbative order.

Applying the Rδ-scheme [60,64] to Eq. (2), one can derive
the general form of H → bb̄ for μinit

r �= MH with the help
of Eq. (1), which can be written as

�(H → bb̄) = 3G F MH m2
b(MH )

4
√

2π
{1 + r1,0(μ

init
r ) as(μ

init
r )

+[r2,0(μ
init
r ) + β0r2,1(μ

init
r )] a2

s (μinit
r )

+[r3,0(μ
init
r ) + β1r2,1(μ

init
r )+2β0r3,1(μ

init
r )

+β2
0r3,2(μ

init
r )]a3

s (μinit
r ) + [r4,0(μ

init
r )

+β2r2,1(μ
init
r ) + 2β1r3,1(μ

init
r )

+5

2
β1β0r3,2(μ

init
r ) + 3β0r4,1(μ

init
r )

+3β2
0r4,2(μ

init
r ) + β3

0r4,3(μ
init
r )]

×a4
s (μinit

r ) + O(a5
s )}. (5)

Here, for later convenience, we have transformed the n f -
series into the required {βi }-series. Explicit expressions for
β0, β1, and β2 in the n f -series can be found in Refs. [66–68].
The ri,0 with i = (1, . . . , 4) are conformal coefficients, and
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the ri, j with 1 ≤ j < i ≤ 4 are non-conformal coefficients
that should be absorbed into the coupling constant. Those
coefficients can be obtained by comparing Eq. (2) with Eq.
(5), and they are

r1,0(μ
init
r ) = c1,0, (6)

r2,0(μ
init
r ) = c2,0 + 33

2
c2,1, (7)

r2,1(μ
init
r ) = −3

2
c2,1 − c1,0 ln

M2
H

(μinit
r )2 , (8)

r3,0(μ
init
r ) = 1

4
(−642c2,1 + 4c3,0 + 66c3,1 + 1,089c3,2),

(9)

r3,1(μ
init
r ) = 1

16

(
228c2,1 − 12c3,1 − 396c3,2 − 16c2,0

× ln
M2

H

(μinit
r )2 − 264c2,1 ln

M2
H

(μinit
r )2

)
, (10)

r3,2(μ
init
r ) = 9

4
c3,2 + c1,0 ln2 M2

H

(μinit
r )2 + 3c2,1 ln

M2
H

(μinit
r )2 ,

(11)

r4,0(μ
init
r ) = 1

16
(11,675c2,1 − 2,568c3,1

−84,744c3,2 + 16c4,0 + 264c4,1

+4,356c4,2 + 71,874c4,3), (12)

r4,1(μ
init
r ) = 1

16

[
− 1,916c2,1+152c3,1+8,226c3,2

−8c4,1 − 264c4,2 − 6,534c4,3

+2,568c2,1 ln
M2

H

(μinit
r )2 − 16c3,0 ln

M2
H

(μinit
r )2

−264c3,1 ln
M2

H

(μinit
r )2 − 4,356c3,2 ln

M2
H

(μinit
r )2

]
,

(13)

r4,2(μ
init
r ) = 1

16

(
325

3
c2,1 − 570c3,2 + 12c4,2 + 594c4,3

+16c2,0 ln2 M2
H

(μinit
r )2 + 264c2,1 ln2 M2

H

(μinit
r )2

−456c2,1 ln
M2

H

(μinit
r )2 + 24c3,1 ln

M2
H

(μinit
r )2

+792c3,2 ln
M2

H

(μinit
r )2

)
, (14)

r4,3(μ
init
r ) = 1

6

(
−81

4
c4,3 − 6c1,0 ln3 M2

H

(μinit
r )2

−27c2,1 ln2 M2
H

(μinit
r )2 − 81

2
c3,2 ln

M2
H

(μinit
r )2

)
.

(15)

It is noted that, as expected, the conformal coefficients ri,0

are independent of μinit
r , and we can omit the variable μinit

r
in ri,0.

2.2 Results for H → bb̄ after PMC scale setting

Following the standard procedure of the Rδ-scheme, by
absorbing all non-conformal {βi }-series that control the run-
ning behavior of the coupling constant into the coupling con-
stant, we can reduce Eq. (5) to the following conformal series:

�(H → bb̄) = 3G F MH m2
b(MH )

4
√

2π
[1 + r1,0as(Q1)

+r2,0a2
s (Q2) + r3,0a3

s (Q3) + r4,0a4
s (Q4)]

= 3G F MH m2
b(MH )

4
√

2π
[1 + 1.804 αs(Q1)

+1.370 α2
s (Q2) − 4.389 α3

s (Q3)

−4.430 α4
s (Q4)], (16)

where in the second line we present the values for the confor-
mal coefficients over the αs expansion, which explicitly show
the relative importance of the perturbative series. Here Qi

with i = (1, . . . , 4) are PMC scales, which can be obtained
through the following formulas:

Q1 = μinit
r exp

⎧⎪⎪⎨
⎪⎪⎩

1

2

−r2,1(μ
init
r ) + r3,2(μ

init
r )

2
∂β
∂as

− r4,3(μ
init
r )

3!
[
β

∂2β

∂a2
s

+
(

∂β
∂as

)2
]

r1,0(μinit
r ) − r2,1(μinit

r )

2

(
∂β
∂as

)
+ r3,2(μinit

r )

4

(
∂β
∂as

)2 + 1
3!
[
β

∂2β

∂a2
s

− 1
2

(
∂β
∂as

)2
]

r2
2,1(μ

init
r )

r1,0(μinit
r )

⎫⎪⎪⎬
⎪⎪⎭

, (17)

Q2 =μinit
r exp

⎧⎪⎨
⎪⎩

1

2

−r3,1(μ
init
r )+ r4,2(μ

init
r )

2

[
∂β
∂as

+ β
as

]

r2,0(μinit
r )− r3,1(μinit

r )

2

[
∂β
∂as

+ β
as

]
⎫⎪⎬
⎪⎭, (18)

Q3 = μinit
r exp

{
1

2

−r4,1(μ
init
r )

r3,0(μinit
r )

}
, (19)
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where β = −a2
s
∑∞

i=0 βi ai
s being the conventional QCD

renormalization group β-function. We note that the last scale
leaves some ambiguity in the PMC scale setting, since there
is no {βi } terms that can determine its optimal value, we set
Q4 = μinit

r . Because the PMC scales (Q1, Q2, and Q3) them-
selves are in perturbative series, the residual scale depen-
dence due to unknown higher-order {βi } terms shall be highly
suppressed.

2.3 The decay width of the H → gg

By taking the initial renormalization scale μinit
r = MH , the

analytic expression for the decay width of H → gg can be
written as

�(H → gg) = 4G F M3
H

9
√

2π
[c1,0 a2

s (MH )

+(c2,0 + c2,1n f ) a3
s (MH )

+(c3,0 + c3,1n f + c3,2n2
f ) a4

s (MH )

+(c4,0 + c4,1n f + c4,2n2
f +c4,3n3

f )

× a5
s (MH )+O(a6

s )] (20)

= 4G F M3
H

9
√

2π
× 10−3[6.333 α2

s (MH )

+36.114 α3
s (MH ) − 98.267 α4

s (MH )

+80.443 α5
s (MH ) + O(α6

s )]. (21)

For convenience, in the third line we present the values for the
coefficients over the αs-expansion by setting n f = 5, which
explicitly show the relative importance of the perturbative
series. The coefficients ci, j are [39]

c1,0 = 1; c2,0 = 95.0, c2,1 = −4.667;
c3,0 = 5898.8, c3,1 = −761.81, c3,2 = 14.428;
c4,0 = 287583, c4,1 = −68580, c4,2 = 3393.1,

c4,3 = −34.42. (22)

From Eq. (20), the general form for the Higgs decay pro-
cess H → gg with μinit

r �= MH can be written in the follow-
ing form:

�(H → gg) = 4G F M3
H

9
√

2π
{r1,0(μ

init
r )a2

s (μinit
r )

+[r2,0(μ
init
r ) + 2β0r2,1(μ

init
r )]a3

s (μinit
r )

+[r3,0(μ
init
r ) + 2β1r2,1(μ

init
r )

+3β0r3,1(μ
init
r ) + 3β2

0r3,2(μ
init
r )]

×a4
s (μinit

r ) + [r4,0(μ
init
r ) + 2β2r2,1(μ

init
r )

+3β1r3,1(μ
init
r ) + 7β1β0r3,2(μ

init
r )

+4β0r4,1(μ
init
r ) + 6β2

0r4,2(μ
init
r )

+4β3
0r4,3(μ

init
r )]a5

s (μinit
r ) + O(a6

s )}. (23)

Following the same procedures of Rδ-scheme, the confor-
mal or non-conformal coefficients ri, j (μ

init
r ) can be written

as

r1,0(μ
init
r ) = c1,0. (24)

r2,0(μ
init
r ) = c2,0 + 33

2
c2,1, (25)

r2,1(μ
init
r ) = −3

4
c2,1 − c1,0 ln

M2
H

(μinit
r )2 . (26)

r3,0(μ
init
r ) = 1

4
(−642c2,1 + 4c3,0+66c3,1 + 1,089c3,2),

(27)

r3,1(μ
init
r ) = 1

24

(
228c2,1 − 12c3,1 − 396c3,2 − 396c2,1

× ln
M2

H

(μinit
r )2 − 24c2,0 ln

M2
H

(μinit
r )2

)
, (28)

r3,2(μ
init
r ) = 3

4
c3,2 + c1,0 ln2 M2

H

(μinit
r )2 + 3

2
c2,1 ln

M2
H

(μinit
r )2 .

(29)

r4,0(μ
init
r ) = 1

8
(−12,721c2,1 − 1,284c3,1

−42,372c3,2 + 8c4,0 + 132c4,1

+2,178c4,2 + 35,937c4,3), (30)

r4,1(μ
init
r ) = 1

32

(
− 1,416c2,1 + 228c3,1

+12,018c3,2 − 12c4,1 − 396c4,2 − 9,801c4,3

+5,136c2,1 ln
M2

H

(μinit
r )2 − 32c3,0 ln

M2
H

(μinit
r )2

−528c3,1 ln
M2

H

(μinit
r )2 − 8,712c3,2 ln

M2
H

(μinit
r )2

)
,

(31)

r4,2(μ
init
r ) = 1

48

(
325c2,1 − 798c3,2 + 18c4,2 + 891c4,3

+48c2,0 ln2 M2
H

(μinit
r )2 + 792c2,1 ln2 M2

H

(μinit
r )2

−912c2,1 ln
M2

H

(μinit
r )2 + 48c3,1 ln

M2
H

(μinit
r )2

+1,584c3,2 ln
M2

H

(μinit
r )2

)
, (32)

r4,3(μ
init
r ) = − 1

32

(
27c4,3 + 32c1,0 ln3 M2

H

(μinit
r )2

+72c2,1 ln2 M2
H

(μinit
r )2 + 72c3,2 ln

M2
H

(μinit
r )2

)
.

(33)
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Table 1 Decay width for H → bb̄ up to four-loop level. For conventional scale setting, we set the renormalization scale μr ≡ MH . For PMC scale
setting, we set the initial renormalization scale μinit

r = MH . Here �i stands for the decay width at each perturbative order with i = LO, NLO, etc.,
�tot stands for the total decay width. MH = 126 GeV

Conventional scale setting PMC scale setting

LO NLO N2LO N3LO N4LO Total LO NLO N2LO N3LO N4LO Total

�i (KeV) 1,924.28 391.74 72.38 3.73 −2.65 2,389.48 1,924.28 436.23 48.12 −18.12 −1.38 2,389.13

�i /�tot (%) 80.53 16.39 3.03 0.16 −0.11 80.54 18.26 2.01 −0.76 −0.06

It is noted that, as required, the conformal coefficients ri,0 are
independent of μinit

r and we can omit the argument (μinit
r ) in

ri,0.
By absorbing all non-conformal {βi }-series that control

the running behavior of the coupling constant into the cou-
pling constant, we can reduce Eq. (23) into the following
conformal series:

�(H → gg) = 4G F M3
H

9
√

2π
[r1,0a2

s (Q1) + r2,0a3
s (Q2)

+r3,0a4
s (Q3) + r4,0a5

s (Q4) + O(a6
s )] (34)

= 4G F M3
H

9
√

2π
× 10−3[6.333 α2

s (Q1) + 9.068 α3
s (Q2)

−79.962 α4
s (Q3) − 68.804 α5

s (Q4) + O(α6
s )], (35)

where in the second line, we present the values for the con-
formal coefficients over the αs expansion. Here ri,0(μ

init
r ) are

conformal coefficients. The PMC scales Qi with i = (1, 2, 3)

can be obtained in the same way as that of Eqs. (17), (18), and
(19), Q4 is also the undetermined scale due to the unknown
higher-order {βi } terms and we also fix it to be μinit

r .

3 Numerical results and discussions

To do numerical calculation, we take G F = 1.16638 ×
10−5GeV−2, the Higgs mass MH = 126 GeV and the
top-quark mass mt = 173.5 GeV. We adopt the four-loop
αs running with its asymptotic scale determined by the

fixed point αs(MZ ) = 0.1184 [69]: 	
n f =3
QCD = 0.339 GeV,

	
n f =4
QCD = 0.296 GeV and 	

n f =5
QCD = 0.213 GeV. The MS-

running quark mass mb(mb) = 4.18 ± 0.03 GeV [69], and
by using the quark mass anomalous dimension expressions
listed in Ref. [70,71], we obtain mb(MH ) = 2.78 ± 0.02
GeV.

3.1 Basic results for H → bb̄

The decay widths of H → bb̄ before and after PMC scale
setting are presented in Table 1, where �i stands for the
decay width at each perturbative order with i = LO, NLO,
etc., and �tot stands for the total decay width. We set the

renormalization scale μr ≡ μinit
r = MH for the conven-

tional scale setting, and we take the initial renormalization
scale μinit

r = MH to initialize the PMC scale setting.
Table 1 shows that either before or after PMC scale setting

about 80 % of the contribution comes from the LO terms,
which is exact and free from the strong interactions. The
total decay width for H → bb̄ remains almost unchanged,
�(H → bb̄) � 2.39 MeV. This shows that the choice of
μr ≡ MH is a lucky guess for the conventional scale set-
ting. Because of the elimination of the renormalon terms, one
could expect a better pQCD convergence after PMC scale set-
ting. This is clearly shown in Table 1, e.g. the four-loop terms
only give ∼ 0.1 % contributions to the total decay width.

For the H → bb̄ process at O(α4
s ), we need to introduce

four PMC scales, i.e. the LO PMC scale Q1, the NLO PMC
scale Q2, the N2LO PMC scale Q3 and the N3LO PMC scale
Q4. As stated in the last section, since there is no β terms that
can determine its optimal value, we set Q4 ≡ μinit

r .1 Using
the formulas (17), (18), and (19), we show how the PMC
scales depend on the initial renormalization scale, which are
presented in Fig. 1. Figure 1 shows that the PMC scales Q1,2,3

are highly independent on the choice of initial renormaliza-
tion scale. This indicates that the PMC scale setting does
provide a principle for setting the optimal (solitary) renor-
malization scale of high-energy processes. For example, set-
ting μinit

r = MH , we obtain

Q1 = 62.3 GeV, Q2 = 40.5 GeV, Q3 = 53.1 GeV. (36)

These PMC scales are smaller than MH to a certain degree
due to the exponential suppressions from the absorption of
higher-order {βi } terms. These PMC scales are different,
which shows that they are controlled by different {βi }-series
at each perturbative order.

As a further comparison, we show the total decay width
�(H → bb̄) versus the initial renormalization scale μinit

r
before and after PMC scale setting in Figs. 2 and 3. In these
two figures, the dash-dot, dashed, dotted, and solid lines are

1 This corresponds to the second type of residual scale dependence after
PMC scale setting [63], which, as is the present case, can also be highly
suppressed when the pQCD convergence is under well control
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Fig. 1 The LO, NLO, and NNLO PMC scales Q1, Q2 and Q3 versus
the initial renormalization scale μinit

r for the H → bb̄ process, which are
shown by solid, dotted, and dashed lines, respectively. MH = 126 GeV

for NLO, N2LO, N3LO, and N4LO estimations, respectively.
From these two figures, we observe that

• Figure 2 interprets the idea of the conventional scale set-
ting. Conventionally, the renormalization scale is taken
as the typical momentum transfer of the process or a
value which minimizes the contributions of the loop dia-
grams. For the present process, μr ≡ μinit

r = MH . The
total decay width �(H → bb̄) shows a relatively strong
dependence on the value of μinit

r at the NLO level, e.g.

μinit
r = MH /2 → �(H → bb̄) � 2.36 MeV,

μinit
r = MH → �(H → bb̄) � 2.32 MeV, (37)

μinit
r = 2MH → �(H → bb̄) � 2.28 MeV,

μinit
r = 4MH → �(H → bb̄) � 2.25 MeV.

This shows that the NLO scale error is ±2 % for μinit
r ∈

[MH /2, 2MH ] and
(+2 %

−3 %

)
for μinit

r ∈ [MH /2, 4MH ].
As one includes higher-and-higher orders, the guessed
scale will lead to a better estimate. For example, at the
NNLO level, we have

μinit
r = MH /2 → �(H → bb̄) � 2.40 MeV,

μinit
r = MH → �(H → bb̄) � 2.39 MeV, (38)

μinit
r = 2MH → �(H → bb̄) � 2.37 MeV,

μinit
r = 4MH → �(H → bb̄) � 2.35 MeV.

This shows that the NNLO scale error reduces to(+0.5 %
−0.8 %

)
for μinit

r ∈ [MH /2, 2MH ] and
(+0.5 %

−1.7 %

)
for

μinit
r ∈ [MH /2, 4MH ]. When considering up to three-

loop level or four-loop level, the decay width becomes
almost invariant within the present considered region of

50 100 150 200 250 300 350 400 450 500

2.25
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2.35
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2.45

2.5
x 10
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¯

Fig. 2 Total decay width �(H → bb̄) up to four-loop level under
conventional scale setting versus the scale μr ≡ μinit

r . The dash-dot,
dashed, dotted, and solid lines are for NLO, N2LO, N3LO, and N4LO
estimations, respectively
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Fig. 3 Total decay width �(H → bb̄) up to four-loop level after PMC
scale setting versus the initial renormalization scale μinit

r . The dash-dot,
dashed, dotted and solid lines are for NLO, N2LO, N3LO, and N4LO
estimations, respectively

[MH /2, 4MH ]. This agrees with the conventional wis-
dom that by finishing a higher enough calculation, one
can get desirable convergent and scale-invariant estima-
tions.
We would like to stress that even if a proper choice of
μinit

r may lead to a value close to the experimental data
by using conventional scale setting, this may not be the
correct answer for a fixed-order estimation. Especially, if
a process does not converge enough, one has to finish a
more and more complex loop calculations so as to achieve
the precision goal.

• Figure 3 shows that after PMC scale setting, the total
decay width of H → bb̄ are almost flat versus the choice
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of renormalization scale even at the NLO level. This is
due to the fact that the PMC scales Q1, Q2 and Q3 them-
selves are highly independent on the choice of μinit

r , as
shown by Fig. 1. The residual scale dependence due to
unknown higher-order {βi }-series has been highly and
exponentially suppressed.
It is noted that there is slight difference for the decay
widths at different perturbative orders, e.g.

�(H → bb̄)|NLO � 2.36 MeV,

�(H → bb̄)|N2LO � 2.41 MeV,

�(H → bb̄)|N3LO � 2.39 MeV,

�(H → bb̄)|N4LO � 2.39 MeV.

Such difference shows that even though by absorb-
ing the non-conformal terms into the coupling con-
stant, one can greatly improve the pQCD convergence
and simultaneously eliminate the scale dependence at
lower perturbative orders, one may still need to know
higher-order conformal contributions if one wants to
achieve even higher precision. For example, the N2LO
improves NLO estimation by about 2 % and the N3LO
improves N2LO estimation by about 1 %. Moreover,
the unknown higher-order non-conformal contributions
can be roughly estimated by varying the final undeter-
mined PMC scale as Q4 via the conventional way, e.g.
[Q4/2, 2Q4].

3.2 Basic results for H → gg

We can estimate the properties of H → gg in a similar way
as that of H → bb̄.

We put the decay width for H → gg before and after
PMC scale setting in Table 2, where �i stands for the decay
width at each perturbative order with i = LO, NLO, etc.,
and �tot stands for the total decay width. The total decay
width �tot is ∼ 350 KeV under the conventional scale setting,
which improves to be ∼ 373 KeV after PMC scale setting.
Such a small increment in some sense means the choice of
μinit

r = MH is a viable choice for the conventional scale

setting up to three-loop level. Under the conventional scale
setting, we have

�LO

�tot
: �NLO

�tot
: �N2LO

�tot
: �N3LO

�tot

≈ 54 % : 35 % : 11 % : 0.9 % (39)

and after PMC scale setting, we have

�LO

�tot
: �NLO

�tot
: �N2LO

�tot
: �N3LO

�tot

≈ 89 % : 32 % : (−20 %) : 0.8 %. (40)

This shows that for the decay of H → gg, only after a
three-loop correction, one can obtain a desirable convergent
estimation. Note the pQCD convergence after PMC is weaker
than the case for the conventional scale setting for H → gg,
since the N2LO part becomes (−20 %). This could mean
that we need to know a more accurate {βi } series so as to
determine the N2LO PMC scale.

For the H → gg process at O(α5
s ), we need to introduce

four PMC scales, i.e. the LO PMC scale Q1, the NLO PMC
scale Q2, the N2LO PMC scale Q3 and the N3LO PMC
scale Q4. As stated in the last section, since there are no
β terms that can determine its optimal value, and we set
Q4 ≡ μinit

r . Figure 4 shows that the PMC scales Q1,2,3 are
highly independent of the choice of initial renormalization
scale. This indicates that the PMC scale setting do provide
a principle for setting the optimal (solitary) renormalization
scale of high-energy processes. By setting μinit

r = MH GeV,
we obtain

Q1 = 23.0 GeV, Q2 = 10.5 GeV, Q3 = 31.5 GeV. (41)

These PMC scales are also smaller than MH to a certain
degree due to exponential suppressions from the absorption
of higher-order {βi } terms. We show the total decay width
�(H → gg) versus the initial renormalization scale μinit

r
before and after PMC scale setting in Figs. 5 and 6. In these
two figures, the dash-dot, dashed, dotted, and solid lines are
for LO, NLO, N2LO and N3LO estimations, respectively.

These results show that for the decay channel of H → gg,
we can obtain similar conclusions as those of H → bb̄. More
explicitly,

Table 2 Decay width for the process H → gg up to three-loop level. For conventional scale setting, we set the renormalization scale μr ≡ MH .
For PMC scale setting, we set the initial renormalization scale μinit

r = MH . Here �i stands for the decay width at each perturbative order with
i = LO, NLO, etc., �tot stands for the total decay width. MH = 126 GeV

Conventional scale setting PMC scale setting

LO NLO N2LO N3LO Total LO NLO N2LO N3LO Total

�i (KeV) 188.27 121.18 37.21 3.26 349.92 332.36 117.84 −74.45 −2.94 372.81

�i /�tot (%) 53.80 34.63 10.63 0.93 89.15 31.61 −20.00 −0.79
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Fig. 4 The LO, NLO, and NNLO PMC scales Q1, Q2 and Q3 versus
the initial renormalization scale μinit

r for the H → gg process, which
are shown by solid, dotted, and dashed lines, respectively. MH = 126
GeV
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Fig. 5 Total decay width �(H → gg) up to three-loop level under
conventional scale setting versus the renormalization scale μr ≡ μinit

r .
The dash-dot, dashed, dotted and solid lines are for LO, NLO, N2LO,
and N3LO estimations, respectively

• Figure 5 indicates that, under the conventional scale set-
ting, the total decay width �(H → gg) shows a strong
dependence on μinit

r at the LO level, e.g.

μinit
r = MH /2 → �(H → gg) � 232 KeV,

μinit
r = MH → �(H → gg) � 188 KeV, (42)

μinit
r = 2MH → �(H → bb̄) � 156 KeV,

μinit
r = 4MH → �(H → bb̄) � 131 KeV.

This shows that the LO scale error is 40 % for μinit
r ∈

[MH /2, 2MH ] and 54 % for μinit
r ∈ [MH /2, 4MH ].

Moreover, the scale error for μinit
r ∈ [MH /2, 4MH ] shall

change down to 35, 15 and 4 % for NLO, N2LO, and
N3LO estimations, respectively. This shows that as one

100 150 200 250 300 350 400 450 500
1

2

3

4

5

x 10
−4

Fig. 6 Total decay width �(H → gg) up to three-loop level after
PMC scale setting versus the initial renormalization scale μinit

r . The
dash-dot, dashed, dotted, and solid lines are for LO, NLO, N2LO, and
N3LO estimations, respectively

includes higher-and-higher orders, the guessed scale will
lead to a better estimation. For the H → gg decay, only
after a three-loop correction, one can obtain a desirable
small about several percent scale error.

• Figure 6 shows that, after PMC scale setting, the total
decay widths of H → gg up to the mentioned pertur-
bative orders are almost flat versus the choice of initial
renormalization scale μinit

r . The residual scale depen-
dence due to unknown higher-order {βi }-series has been
highly suppressed. Similar to the case of H → bb̄, this
is due to the fact that the PMC scales Q1, Q2 and Q3

themselves are highly independent on the choice of μinit
r ,

which are shown clearly by Fig. 4.

3.3 A comparison of the approaches underlying BLM scale
setting

The BLM scale setting is designed to improve the pQCD
predictions by absorbing the n f terms via a proper way into
the coupling constant [53]. Since its invention by Brodsky–
Lepage–Mackenzie in 1983, the BLM has been widely
accepted in the literature for dealing with high-energy pro-
cesses, such as the e+e− → hadrons, the deep inelastic scat-
tering, the heavy meson or baryon productions or decays, the
exclusive processes such as the pion–photon transition form
factors, the QCD lattice perturbative theory, etc. Encour-
aged by its great successes, several approaches have been
tried to extend BLM to any perturbative orders or put it in
a more solid background, such as the PMC-I approach (first
approach to achieve the goal of PMC via the PMC–BLM
correspondence principle) [54,55], the Rδ-scheme (second
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approach to achieve the goal of PMC) [60,64] and the seBLM
approach [72,73].

It is noted that the role of the running coupling in any
gauge theory is to absorb the physics of the β function,
which governs its running behavior via the renormaliza-
tion group equations. Any approach that properly identi-
fies the {βi }-series for a physical observable will lead to
equivalently the same result. Practically, one usually cal-
culate the n f terms by considering the vacuum polariza-
tion contributions. However, different ways of identifying
n f -series to {βi }-series may lead to: I) different effective
{βi }-series at each known perturbative order; II) a different
residual {βi }-dependence because of unknown perturbative
orders; III) different conformal terms leaving at each per-
turbative order, and IV) a different pQCD convergence. If
one can do the perturbative corrections to a high enough
perturbative order, different effective schemes may result
in consistent physical predictions. The equivalence of the
PMC-I approach and the Rδ-scheme has already been shown
in Refs. [60,61,64]. In the following, we take the Higgs
decay channel H → bb̄ as an explicit example to show
that the seBLM approach is also consistent with the PMC
approaches. One subtle point of such a comparison (and
also any applications of those approaches) lies in that we
should first transform the estimations with full renormaliza-
tion scale dependence with the help of the transformation
formulas (1).

In the PMC-I approach, by introducing a PMC–BLM cor-
respondence principle in which the {βi }-series for a physi-
cal observable has the same parton as the running coupling
itself [55], the number of the effective independent {βi } terms
exactly corresponds to the number of n f terms at each pertur-
bative order. In Rδ-scheme, by introducing the “degeneracy”
properties of the {βi }-series observed by a generalization of
the conventional dimensional regularization scheme to any
dimensional-like ones [60], one can also obtain a one-to-one
correspondence between the {βi }-series and the n f -series.
The calculation technologies for those two self-consistent
approaches can be found in the corresponding references,
the interesting readers may refer to those references or to
the very recent review [61] for details. In Sect. 2, we have
presented our analysis under the Rδ-scheme.

While the seBLM scheme provides quite a different way
from those two PMC approaches, in which a general {βi }-
series at each perturbative order have been introduced, and
in order to get an one-to-one correspondence between the
n f -series with the {βi }-series, some extra approximations
(or equivalently some extra degrees of freedom) have to be
introduced [72]. More explicitly, the seBLM scheme trans-
forms the standard power series an

s (μinit
r ) to the series of the

products
∏n

i=1 as(Qi ). After applying the seBLM scheme
to Eq. (2), the decay width of the process H → bb̄ can be
expressed as follows:

�(H → bb̄) = 3G F MH

4
√

2π
m2

b(MH )

×
[

1 + r ′
1,0(μ

init
r )

β0
A1

(
1 + A2

β0
(r ′

2,0(μ
init
r )

+ A3

β0
(r ′

3,0(μ
init
r ) + A4

β0
(r ′

4,0(μ
init
r ) + . . .)))

)]
,

where r ′
i stands for the conformal coefficients of seBLM

leaving at each perturbative order, Ai = β0as(Qi ) stand
for the redefined coupling constant. Because we have no
higher-order {βi } terms to determine the scale for A4, we set
Q4 = Q3 as suggested by seBLM. Three effective seBLM
scales are

ln

(
(μinit

r )2

Q2
1

)
= 
1,0 + 
1,1 A1 + 
1,2 A2

1, (43)

ln

(
Q2

1

Q2
2

)
= 
2,0 + 
2,1 A2, (44)

ln

(
Q2

2

Q2
3

)
= 
3,0. (45)

where the explicit expressions of the coefficients 
i, j can be
found in Ref. [72].2 Then we obtain

Q1 = 62.5 GeV, Q2 = 29.1 GeV, Q3 = 127.0 GeV

(46)

for μinit
r = MH = 126 GeV. It is noted that the expressions

for Q1 in Eqs. (17) and (44) are equal at the LO and NLO
level, we obtain almost the same value for Q1 under the Rδ-
scheme and the seBLM approach.

We present a comparison of those three approaches in
Table 3, which clearly shows the pQCD convergence of the
perturbative series. Here, as a comparison, the estimations
for conventional scale setting and the results for the BKM
scheme [74] and the fractional analytic perturbation theory
(FAPT) scheme [75] are also presented.

At the present considered estimation up to four-loop lev-
els all of those schemes including the conventional scale set-
ting lead to good pQCD convergence. Especially, the PMC-I
scheme, the Rδ-scheme and the seBLM scheme have almost
the same pQCD series. This is reasonable, since those three
scale-setting schemes are designed to deal with the {βi }-
series of the process.

In addition, one will observe that after eliminating the
non-conformal {βi }-series, one may also derive the (initial)

2 Because for H → bb̄, we have no extra constraints or degrees of
freedom to set an one-to-one correspondence between the n f -series
and the {βi }-series, as an estimation, we directly adopt the same pattern
of {βi }-series in each perturbative order that has been derived for the
Adler D-function for the present process [72].
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Table 3 A comparison of several approaches for calculating the perturbative coefficients of H → bb̄, where the predictions of the PMC-I scheme,
the Rδ-scheme and the seBLM scheme, together with the ones derived under conventional scale setting, are presented. Here �i stands for the
decay width at each perturbative order with i = LO, NLO, etc., �tot stands for the total decay width. The initial renormalization scale is taken as
MH = 126 GeV. To be a useful reference, the results of Refs. [74,75] for the FAPT scheme and the BKM scheme are also presented

�tot (MeV) �LO/�tot (%) �NLO/�tot (%) �N2LO/�tot (%) �N3LO/�tot (%) �N4LO/�tot (%)

Conventional scale setting 2.389 80.53 16.39 3.03 0.16 −0.11

seBLM 2.389 80.56 18.25 1.99 −0.72 −0.08

PMC-I 2.388 80.5 18.26 2.03 −0.76 −0.10

Rδ-scheme 2.389 80.54 18.26 2.01 −0.76 −0.06

BKM [74] 2.75 74.5 17.7 5.3 1.8 0.7

FAPT with l = 2 [75] 2.38 79.5 16.2 4.3 − −
FAPT with l = 3 [75] 2.44 78.5 16.1 4.2 1.2 −

Table 4 Initial scale dependence for �NLO of H → bb̄. Here �i stands
for the decay width at each perturbative order with i = LO, NLO,
etc. The predictions of the PMC-I, Rδ and seBLM schemes are almost
independent of μinit

r . The cases for higher-order decay widths �N2LO,
�N3LO and �N4LO are the similar. MH = 126 GeV

μinit
r �NLO (KeV)

MH /2 MH 2MH

Conventional scale setting 435.42 391.73 356.18

seBLM [72] 435.95 435.95 435.95

PMC-I [55] 435.03 435.99 436.06

Rδ-scheme [60] 436.12 436.23 436.32

renormalization scale independence for a fixed-order predic-
tion for those approaches. The initial scale dependence for
the PMC-I, Rδ-scheme and seBLM approaches on the NLO
decay widths �NLO are presented in Table 4, where there typ-
ical initial scales μinit

r = MH /2, MH and 2MH are adopted.
It shows clearly that the value of �NLO are almost unchanged
with μinit

r . The higher-order terms have similar properties.

4 Summary

The conventional scale-setting procedure assigns an arbi-
trary range and an arbitrary systematic error to fixed-order
pQCD predictions. And its error analysis can only get a rough
estimation of the β-dependent non-conformal terms, not the
entire perturbative series. As a possible solution, the PMC
provides a systematic way to set the optimized renormaliza-
tion scales for high-energy processes. In principle, the PMC
needs an initial value to initialize renormalization scale and
renormalization procedures. It is found that the estimates of
PMC are to high accuracy independent of the initial renor-
malization scale; even the PMC scales themselves are in
effect independent of the initial renormalization scale and are
‘physical’ at any fixed order. This is because the PMC scale

itself is a perturbative series and those unknown higher-order
{βi } terms will be absorbed into the higher-order terms of
the PMC scale, which is strongly exponentially suppressed.
Since the renormalization scale and scheme ambiguities are
removed, the PMC can improve the precision of tests of the
Standard Model and enhances the sensitivity to new phe-
nomena. It is noted that the PMC applies the known non-
conformal {βi } terms in a strict and systematic way to deter-
mine the behavior of the coupling constant at each perturba-
tive order. It provides an accurate estimation for the known
perturbative series, and one may still need higher-order cal-
culations so as to know even higher-order conformal con-
tributions, especially when the perturbative series does not
converge enough.

The PMC can be applied to a wide variety of perturbatively
calculable collider and other processes. In addition to previ-
ous examples given in the literature, following its standard
Rδ-scheme procedures, we have done a through analysis of
these two processes up to four-loop and three-loop levels. A
comparison of the estimations under three approaches, i.e. the
PMC-I approach, the Rδ-scheme and the seBLM approach,
have also been presented. We observe,

• Under conventional scale setting, it is often argued that
by finishing a higher enough perturbative calculation, one
can get desirable convergent and scale-invariant estima-
tions. For the present considered channels, when consid-
ering up to three-loop level or four-loop level, as shown
by Figs. 2 and 5, the decay width becomes almost invari-
ant within the region of μinit

r ∈ [MH /2, 4MH ]. However,
even if a proper choice of μinit

r may lead to a value close
to the experimental data by using conventional scale set-
ting, this is guess work and may not be the correct answer
for a fixed-order estimation. Especially, if a process does
not converge enough, one has to finish a more and more
complex loop calculations so as to achieve the precision
goal.
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Fig. 7 Uncertainties for the decay width of H → bb̄ up to four-loop
level. Two shaded bands shows the uncertainties from MH = 126 ± 4
GeV and the MS b-quark mass mb(mb) = 4.18 ± 0.03 GeV, respec-
tively. The solid line is obtained by set the parameters to be their central
values

• As shown by Figs. 3 and 6, after PMC scale setting, the
total decay widths of H → bb̄ and H → gg show
a fast trend of stabilization versus the change of ini-
tial renormalization scale, which are almost flat even
at the NLO level. The residual scale dependence due to
unknown higher-order {βi }-series has been greatly sup-
pressed. This indicates that the PMC scale setting do pro-
vide a principle for setting the optimal renormalization
scale of high-energy processes.

• In comparison to the previous estimations, e.g. Refs.
[76,77], a more accurate predications for those two Higgs
decay processes can be obtained. After PMC scale set-
ting, we obtain the total decays widths for those two chan-
nels:

�(H → bb̄) = 2.389 ± 0.073 ± 0.041 MeV, (47)

�(H → gg) = 0.373 ± 0.030 MeV. (48)

where the first error is caused by varying MH with the
region of [122, 130] GeV, and the second error for the
H → bb̄ channel is caused by varying the MS running
mass mb(mb) with the region of [4.15, 4.21] GeV. For
clarity, we put the uncertainty analysis for the H → bb̄
channel in Fig. 7.

• The β function governs the running behavior of the cou-
pling constant via the renormalization group equations,
thus any approach that can properly identify the {βi }-
series for a physical observable will surely lead to equiv-
alently the same predictions. Practically, one usually cal-
culate the n f terms by considering the vacuum polariza-
tion contributions. After a certain scale setting, different
ways of identifying n f -series to {βi }-series may lead to

different effective {βi }-series at each known perturba-
tive order, different residual {βi }-dependence because of
unknown perturbative orders, or a different pQCD con-
vergence. A comparison of H → bb̄ for the PMC-I
approach, the Rδ-scheme, and the seBLM approach has
been presented in Table 3. At the four-loop level all those
approaches lead to good pQCD convergence, they have
almost the same pQCD expansion series, and all of them
are almost independent of the wide choice of the ini-
tial renormalization scale. This shows that these three
approaches are equivalent. The residual differences of
these approaches are caused by the unknown {βi } terms
that could be suppressed to a required accuracy by fin-
ishing a higher-order calculation.

• As one subtle point, one may meet the problem of quite
small (or near the fixed point) effective scales for a spe-
cific scale-setting method. For example, we have noted
that for the case of R(e+e− → hadron) at the mea-
sured scale Q, we can obtain a convergent and precise
conformal series up to four-loop level by applying the
Rδ-scheme, whose LO, NLO, and NNLO PMC scales
are [60] Q1 = 1.3Q, Q2 = 1.2Q, and Q3 = 5.3Q,
respectively. In contrast, by using the seBLM scheme,
we shall obtain ln(Q2/Q2

2) ∼ 167 [72], which leads
to quite small Q2 out of pQCD domain. If, as sug-
gested by PMC, we only deal with the n f series that
rightly controls the running behavior of the coupling
constant into the coupling constant via the standard way
of seBLM, then we shall obtain more moderate seBLM
scales, Q1 = 1.3Q, Q2 = 1.1Q, and Q3 = 228.9Q.
Similar to the present Higgs decays, we can obtain con-
sistent results for R(e+e−) under both the seBLM and the
PMC scale settings. Moreover, it is noted that such a sit-
uation could be softened to a certain degree by using the
commensurate scale relation [78], or one may solve it by
using proper running behavior of the coupling constant
in lower scale region [79].

• As another subtle point, even if one can eliminate the
scale dependence at lower perturbative order as NLO,
it may be necessary to know the higher-order conformal
contributions if we want to achieve even higher precision.
Taking the case of H → bb̄ as an example, its N2LO
terms improve the NLO estimation by about 2 % and the
N3LO terms improve the N2LO estimation by about 1 %.
The unknown higher-order non-conformal contributions
can be roughly estimated by varying the final undeter-
mined PMC scale as Q4 via the conventional way, e.g.
[Q4/2, 2Q4]. If after PMC scale setting the final terms at
a certain fixed order give a negligible contribution, then
we shall obtain quite accurate estimations at such a fixed
order. As shown by Table 4, by setting μinit

r = MH /2,
the H → bb̄ NLO decay width �NLO under the con-
ventional scale setting is close to the PMC estimations.
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In this sense, a choice of μr ≡ MH /2 is better than the
choice of μr ≡ MH for the conventional scale setting.
In fact, under such a choice, one can also obtain a more
convergent pQCD series for the conventional scale set-
ting.

• As a minor point, taking H → bb̄ as an example, we
point out a wrong way of estimating the conventional
scale error. The correct way is to set an initial scale μinit

r
and get the full μinit

r -dependent expression (5), e.g. those
terms proportional to ln(μinit

r /MH ) are kept, and then to
vary μinit

r ∈ [MH /2, 2MH ] to discuss its scale error. In
this way, we have shown that the conventional scale error
up to four-loop level is almost eliminated, as shown in
Fig. 2. The wrong way is to adopt the expression (2) as
the starting point, and to directly vary the scale of the
coupling constant from MH to MH /2 or 2MH to discuss
the scale error. In this wrong treatment, the log terms
involving μinit

r �= MH disappear, which, however, may
have sizable contributions. In fact, such a naive treat-
ment shows the conventional scale error is still about
±2 % [76,77] for varying the scale within the region of
[MH /2, 2MH ] even at the four-loop level.

Acknowledgments We thank Stanley Brodsky, Matin Mojaza and
Andrei L. Kataev for helpful discussions. This work was supported in
part by Natural Science Foundation of China under Grant No.11075225
and No.11275280, by the Program for New Century Excellent Talents
in University under Grant No.NCET-10-0882, and by the Fundamental
Research Funds for the Central Universities under Grant No.CQDXWL-
2012-Z002

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. G. Aad et al., ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)
2. S. Chatrchyan et al., CMS Collaboration, Phys. Lett. B 716, 30

(2012)
3. [ATLAS Collaboration], ATLAS-CONF-2013-034 (2013)
4. [CMS Collaboration], CMS-PAS-HIG-13-005 (2013)
5. [CMS Collaboration], CMS-PAS-HIG-13-001 (2013)
6. [ATLAS Collaboration], ATLAS-CONF-2013-012 (2013)
7. [ATLAS Collaboration], ATLAS-CONF-2013-013 (2013)
8. [CMS Collaboration], CMS-PAS-HIG-13-002 (2013)
9. [ATLAS Collaboration], ATLAS-CONF-2013-014 (2013)

10. R. Walsh, CMS Collaboration, EPJ Web Conf. 49, 12012 (2013)
11. A. Djouadi, Phys. Rept. 457, 1 (2008)
12. S.G. Gorishnii, A.L. Kataev, S.A. Larin, Sov. J. Nucl. Phys. 40,

329 (1984)
13. S.G. Gorishnii, A.L. Kataev, S.A. Larin, L.R. Surguladze, Mod.

Phys. Lett. A 5, 2703 (1990)
14. S.G. Gorishny, A.L. Kataev, S.A. Larin, L.R. Surguladze, Phys.

Rev. D 43, 1633 (1991)

15. C. Becchi, S. Narison, E. de Rafael, F.J. Yndurain, Z. Phys, C 8,
335 (1981)

16. N. Sakai, Phys. Rev. D 22, 2220 (1980)
17. T. Inami, T. Kubota, Nucl. Phys. B 179, 171 (1981)
18. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 78,

594 (1997)
19. J. Fleischer, F. Jegerlehner, Phys. Rev. D 23, 2001 (1981)
20. B.A. Kniehl, Nucl. Phys. B 376, 3 (1992)
21. A. Dabelstein, W. Hollik, Z. Phys, C 53, 507 (1992)
22. A. Djouadi, P. Gambino, B.A. Kniehl, Nucl. Phys. B 523, 17 (1998)
23. A.L. Kataev, V.T. Kim, Mod. Phys. Lett. A 9, 1309 (1994)
24. A.L. Kataev, V.T. Kim, arXiv:0804.3992; arXiv:0902.1442
25. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, JHEP 1006, 085

(2010)
26. K.G. Chetyrkin, Phys. Lett. B 390, 309 (1997)
27. K.G. Chetyrkin, M. Steinhauser, Phys. Lett. B 408, 320 (1997)
28. C. Anastasiou, F. Herzog, A. Lazopoulos. arXiv:1110.2368
29. P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn, Phys. Rev. Lett. 96,

012003 (2006)
30. F. Wilczek, Phys. Rev. Lett. 39, 1304 (1977)
31. T. Inami, T. Kubota, Y. Okada, Z. Phys. C 18, 69 (1983)
32. S. Dawson, R.P. Kauffman, Phys. Rev. Lett. 68, 2273 (1992)
33. A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440 (1991)
34. D. Graudenz, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 70, 1372

(1993)
35. S. Dawson, R.P. Kauffman, Phys. Rev. D 49, 2298 (1994)
36. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B

453, 17 (1995)
37. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79,

353 (1997)
38. M. Steinhauser, Phys. Rept. 364, 247 (2002)
39. P.A. Baikov, K.G. Chetyrkin, Phys. Rev. Lett. 97, 061803 (2006)
40. M. Schreck, M. Steinhauser, Phys. Lett. B 655, 148 (2007)
41. E.C.G. Stuckelberg, A. Peterman, Helv. Phys. Acta 26, 499 (1953)
42. N.N. Bogoliubov, D.V. Shirkov, Dok. Akad. Nauk SSSR 103, 391

(1955)
43. A. Peterman, Phys. Rept. 53, 157 (1979)
44. C.G. Callan, Phys. Rev. D 2, 1541 (1970)
45. K. Symanzik, Commun. Math. Phys. 18, 227 (1970)
46. G. Grunberg, Phys. Lett. B 95, 70 (1980)
47. G. Grunberg, Phys. Lett. B 110, 501 (1982)
48. G. Grunberg, Phys. Rev. D 29, 2315 (1984)
49. G. Grunberg, Phys. Rev. D 40, 680 (1989)
50. P.M. Stevenson, Phys. Lett. B 100, 61 (1981)
51. Phys. Rev. D 23, 2916 (1981)
52. Nucl. Phys. B 231, 65 (1984)
53. S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, Phys. Rev. D 28, 228

(1983)
54. S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 109, 042002 (2012)
55. S.J. Brodsky, X.G. Wu, Phys. Rev. D 85, 034038 (2012)
56. S.J. Brodsky, X.G. Wu, Phys. Rev. D 85, 114040 (2012)
57. S.J. Brodsky, X.G. Wu, Phys. Rev. D 86, 014021 (2012)
58. S.J. Brodsky, L. Di Giustino, Phys. Rev. D 86, 085026 (2012)
59. S.J. Brodsky, X.G. Wu, Phys. Rev. D 86, 054018 (2012)
60. M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001

(2013)
61. X.G. Wu, S.J. Brodsky, M. Mojaza, Prog. Part. Nucl. Phys. 72, 44

(2013)
62. S.Q. Wang, X.G. Wu, X.C. Zheng, J.M. Shen, Q.L. Zhang, Nucl.

Phys. B 876, 731 (2013)
63. X.C. Zheng, X.G. Wu, S.Q. Wang, J.M. Shen, Q.L. Zhang, JHEP

1310, 117 (2013)
64. S.J. Brodsky, M. Mojaza, X.G. Wu, Phys. Rev. D 89, 014027 (2014)
65. S.Q. Wang et al. arXiv:1311.5106
66. O.V. Tarasov, A.A. Vladimirov, A.Y. Zharkov, Phys. Lett. B 93,

429 (1980)

123

http://arxiv.org/abs/arXiv:0804.3992
http://arxiv.org/abs/arXiv:0902.1442
http://arxiv.org/abs/arXiv:1110.2368
http://arxiv.org/abs/arXiv:1311.5106


2825 Page 14 of 14 Eur. Phys. J. C (2014) 74:2825

67. S.A. Larin, J.A.M. Vermaseren, Phys. Lett. B 303, 334 (1993)
68. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, Phys. Lett. B

400, 379 (1997)
69. J. Beringer et al., Particle Data Group. Phys. Rev. D 86, 010001

(2012)
70. K.G. Chetyrkin, Phys. Lett. B 404, 161 (1997)
71. K. Melnikov, T. van Ritbergen, Phys. Lett. B 482, 99 (2000)
72. S.V. Mikhailov, JHEP 0706, 009 (2007)
73. A.L. Kataev, S.V. Mikhailov, Theor. Math. Phys. 170, 139 (2012)
74. D.J. Broadhurst, A.L. Kataev, C.J. Maxwell, Nucl. Phys. B 592,

247 (2001)

75. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Rev. D 75,
056005 (2007). Erratum-ibid. D 77, 079901 (2008)

76. S. Dittmaier et al., [LHC Higgs Cross Section Working Group].
arXiv:1201.3084

77. S. Heinemeyer et al., [LHC Higgs Cross Section Working Group].
arXiv:1307.1347

78. S.J. Brodsky, H.J. Lu, Phys. Rev. D 51, 3652 (1995)
79. Q.L. Zhang, X.G. Wu, X.C. Zheng, S.Q. Wang, H.B. Fu, Z.Y. Fang.

arXiv:1401.4268

123

http://arxiv.org/abs/arXiv:1201.3084
http://arxiv.org/abs/arXiv:1307.1347
http://arxiv.org/abs/arXiv:1401.4268

	The Higgs boson inclusive decay channels H tobbarb  and H togg up to four-loop level
	Abstract 
	1 Introduction
	2 Calculation technology
	2.1 The general form for H rightarrowbbarb under the conventional scale setting
	2.2 Results for Htobbarb after PMC scale setting
	2.3 The decay width of the Hrightarrowgg

	3 Numerical results and discussions
	3.1 Basic results for Hrightarrowbbarb
	3.2 Basic results for Hrightarrowgg
	3.3 A comparison of the approaches underlying BLM scale setting

	4 Summary
	Acknowledgments
	References


