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We provide a positive answer to a question raised by Al-Thagafi and Shahzad (Nonlinear Analysis,
70 (2009), 3665-3671) about best proximity points of cyclic ϕ-contractions on reflexive Banach
spaces.

1. Introduction

As a generalization of Banach contraction principle, Kirk et al. proved, in 2003, the following
fixed point result; see [1].

Theorem 1.1. Let A and B be nonempty closed subsets of a complete metric space (X, d). Suppose
that T : A ∪ B → A ∪ B is a map satisfying T(A) ⊆ B, T(B) ⊆ A and there exists k ∈ (0, 1) such
that d(Tx, Ty) ≤ kd(x, y) for all x ∈ A and y ∈ B. Then, T has a unique fixed point in A ∩ B.

Let A and B be nonempty closed subsets of a metric space (X, d) and ϕ : [0,∞) →
[0,∞) a strictly increasing map. We say that T : A ∪ B → A ∪ B is a cyclic ϕ-contraction map
[2] whenever T(A) ⊆ B, T(B) ⊆ A and

d
(
Tx, Ty

) ≤ d
(
x, y

) − ϕ
(
d
(
x, y

))
+ ϕ(d(A,B)) (1.1)

for all x ∈ A and y ∈ B, where d(A,B) := inf{d(x, y) : x ∈ A,y ∈ B}. Also, x ∈ A ∪ B is called
a best proximity point if d(x, Tx) = d(A,B). As a special case, when ϕ(t) = (1 − α)t, in which
α ∈ (0, 1) is a constant, T is called cyclic contraction.

In 2005, Petrusel proved some periodic point results for cyclic contraction maps
[3]. Then, Eldered and Veeramani proved some results on best proximity points of cyclic
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contraction maps in 2006 [4]. They raised a question about the existence of a best proximity
point for a cyclic contraction map in a reflexive Banach space. In 2009, Al-Thagafi and
Shahzad gave a positive answer to the question [2]. More precisely, they proved some results
on the existence and convergence of best proximity points of cyclic contraction maps defined
on reflexive (and strictly convex) Banach spaces [2, Theorems 9, 10, 11, and 12]. They also
introduced cyclic ϕ-contraction maps and raised the following question in [2].

Question 1. It is interesting to ask whether Theorems 9 and 10 (resp., Theorems 11 and 12)
hold for cyclic ϕ-contraction maps where the space is only reflexive (resp., reflexive and
strictly convex) Banach space.

In this paper, we provide a positive answer to the above question. For obtaining the
answer, we use some results of [2].

2. Main Results

First, we give the following extension of [4, Proposition 3.3] for cyclic ϕ-contraction maps,
where ϕ is unbounded.

Theorem 2.1. Let ϕ : [0,∞) → [0,∞) be a strictly increasing unbounded map. Also, letA and B be
nonempty subsets of a metric space (X, d), T : A∪B → A∪B a cyclic ϕ-contraction map, x0 ∈ A∪B
and xn+1 = Txn for all n ≥ 0. Then, the sequences {x2n} and {x2n+1} are bounded.

Proof. Suppose that x0 ∈ A (the proof when x0 ∈ B is similar). By [2, Theorem 3],
d(x2n, x2n+1) → d(A,B). Hence, it is sufficient to prove that {x2n+1} is bounded. Since ϕ is
unbounded, there exists M > 0 such that

ϕ(M) > d(x0, Tx0) + ϕ(d(A,B)). (2.1)

If {x2n+1} is not bounded, then there exists a natural number n0 such that

d
(
T2x0, T

2n0+1x0

)
> M, d

(
T2x0, T

2n0−1x0

)
≤ M. (2.2)

Then, we have

M < d
(
T2x0, T

2n0+1x0

)
≤ d

(
Tx0, T

2n0x0

)
− ϕ

(
d
(
Tx0, T

2n0x0

))
+ ϕ(d(A,B))

≤ d
(
x0, T

2n0−1x0

)
−
[
ϕ
(
d
(
Tx0, T

2n0x0

))
+ ϕ

(
d
(
x0, T

2n0−1x0

))]
+ 2ϕ(d(A,B))

≤ d
(
x0, T

2x0

)
+ d

(
T2x0, T

2n0−1x0

)
−
[
ϕ
(
d
(
Tx0, T

2n0x0

))
+ ϕ

(
d
(
x0, T

2n0−1x0

))]

+ 2ϕ(d(A,B))

≤ d(x0, Tx0) + d
(
Tx0, T

2x0

)
+M −

[
ϕ
(
d
(
Tx0, T

2n0x0

))
+ ϕ

(
d
(
x0, T

2n0−1x0

))]

+ 2ϕ(d(A,B)).

(2.3)
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Since d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B, we obtain

M < 2d(x0, Tx0) +M −
[
ϕ
(
d
(
Tx0, T

2n0x0

))
+ ϕ

(
d
(
x0, T

2n0−1x0

))]
+ 2ϕ(d(A,B)). (2.4)

Since d(Tx0, T
2n0x0) ≤ d(x0, T

2n0−1x0), we have

ϕ
(
d
(
Tx0, T

2n0x0

))
≤ ϕ

(
d
(
x0, T

2n0−1x0

))
. (2.5)

Thus, we obtain ϕ(d(Tx0, T
2n0x0)) < d(x0, Tx0) + ϕ(d(A,B)). Since

M < d
(
T2x0, T

2n0+1x0

)
≤ d

(
Tx0, T

2n0x0

)
, (2.6)

ϕ(M) < ϕ(d(Tx0, T
2n0x0)). Hence, ϕ(M) < d(x0, Tx0) + ϕ(d(A,B)). This contradiction

completes the proof.

Since the proof of last result was classic, we presented it separately. Here, we provide
our key result via a special proof which is a general case of Theorem 2.1.

Theorem 2.2. Let ϕ : [0,∞) → [0,∞) be a strictly increasing map. Also, let A and B be nonempty
subsets of a metric space (X, d), T : A ∪ B → A ∪ B a cyclic ϕ-contraction map, x0 ∈ A ∪ B, and
xn+1 = Txn for all n ≥ 0. Then, the sequences {x2n} and {x2n+1} are bounded.

Proof. Suppose that x0 ∈ A (the proof when x0 ∈ B is similar). By [2, Theorem 3],
d(x2n, x2n+1) → d(A,B). Hence, either {x2n+1} and {x2n} are bounded or both are unbounded.
Suppose that both sequences are unbounded. Fix n1 ∈ N and define

en,k = d
(
T2nx0, T

2(n1+k)+1x0

)
(2.7)

for all n, k ≥ 1. Since {x2n+1} is unbounded, lim supk→∞en,k = ∞ for all n ≥ 1. Thus,
we can choose a strictly increasing subsequence {e1,k1

i
}
i≥1 of the sequence {e1,k}k≥1. Since

d(T2x0, T
2(n1+k1

i )+1x0) ≤ d(T2x0, T
4x0) + d(T4x0, T

2(n1+k1
i )+1x0), we have

lim sup
i→∞

e2,k1
i
= ∞. (2.8)

Again, we can choose a strictly increasing subsequence {e2,k2
i
}
i≥1 of the sequence {e2,k1

i
}
i≥1

such that lim supi→∞e2,k2
i
= ∞. By continuing this process, for each natural number n,

we can choose a strictly increasing subsequence {en,kn
i
}
i≥1 of the sequence {en,kn−1

i
}
i≥1 such

that lim supi→∞en,kn
i

= ∞. By the construction, if we consider the sequence {ki
i}i≥1, then

limi→∞ki
i = ∞, {en,ki

i
}
i≥1 is a strictly increasing subsequence of {en,kn

i
}
i≥1 and lim supi→∞en,ki

i
=

∞ for all n ≥ 1. Now, define n2 = n1+k2
2−k1

1. Also, by induction define the sequence {nm}m≥1 by
nm = n1 +km

m −k1
1. Note that, the sequence {nm}m≥1 is strictly increasing and lim supm→∞nm =

∞. Since T is a cyclic ϕ-contraction map, {d(T2nmx0, T
2(nm+k1

1)+1x0)}m≥1 is a decreasing
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sequence. Hence by the construction of the sequence {nm}m≥1, {d(T2nmx0, T
2(n1+km

m)+1x0)}m≥1
is a decreasing sequence. Letm ≥ 1 be given. Since enm,k

1
1
≤ enm,k

m
m
, we have

d
(
T2nmx0, T

2(n1+k1
1)+1x0

)
≤ d

(
T2nmx0, T

2(n1+km
m)+1x0

)
. (2.9)

Thus,

d
(
T2nmx0, T

2(n1+k1
1)+1x0

)
≤ d

(
T2n1x0, T

2(n1+k1
1)+1x0

)
(2.10)

for all m ≥ 1. Hence, we have

d
(
T2(n1+km

m)+1x0, T
2(n1+k1

1)+1x0

)
≤ d

(
T2nmx0, T

2(n1+k1
1)+1x0

)
+ d

(
T2nmx0, T

2(n1+km
m)+1x0

)

= d
(
T2nmx0, T

2(n1+k1
1)+1x0

)
+ d

(
T2nmx0, T

2(nm+k1
1)+1x0

)

≤ d
(
T2n1x0, T

2(n1+k1
1)+1x0

)
+ d

(
T2nmx0, T

2(nm+k1
1)+1x0

)

(2.11)

for all m ≥ 1. Since d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B, we obtain

d
(
T2(n1+km

m)+1x0, T
2(n1+k1

1)+1x0

)
≤ d

(
T2n1x0, T

2(n1+k1
1)+1x0

)
+ d

(
T2nm−1x0, T

2(nm+k1
1)x0

)

≤ d
(
T2n1x0, T

2(n1+k1
1)+1x0

)
+ d

(
x0, T

2k1
1+1x0

) (2.12)

for all m ≥ 1. Consequently

d
(
T2(n1+km

m)+1x0, T
2(n1+k1

1)x0

)
≤ d

(
T2(n1+km

m)+1x0, T
2(n1+k1

1)+1x0

)
+ d

(
T2(n1+k1

1)+1x0, T
2(n1+k1

1)x0

)

≤ d
(
T2n1x0, T

2(n1+k1
1)+1x0

)
+ d

(
x0, T

2k1
1+1x0

)

+ d
(
T2(n1+k1

1)+1x0, T
2(n1+k1

1)x0

)

(2.13)

for all m ≥ 1. This implies that

e(n1+k1
1),k

m
m
≤ μ (2.14)

for all m ≥ 1, where

μ = d
(
T2n1x0, T

2(n1+k1
1)+1x0

)
+ d

(
x0, T

2k1
1+1x0

)
+ d

(
T2(n1+k1

1)+1x0, T
2(n1+k1

1)x0

)
(2.15)

is a constant. But, lim supi→∞en,ki
i
= ∞ for all n ≥ 1. This contradiction completes the proof.
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Now by using this key result, we provide our main results which give positive answer
to the question. Their proofs are basically due to Al-Thagafi and Shahzad [2]. However, the
crucial role is played by our key result. Weak convergence of {xn} to x is denoted by xn

w−→ x.

Theorem 2.3. Let ϕ : [0,∞) → [0,∞) be a strictly increasing map. Also, let A and B be nonempty
weakly closed subsets of a reflexive Banach space and T : A ∪B → A ∪B a cyclic ϕ-contraction map.
Then there exists (x, y) ∈ A × B such that

∥
∥x − y

∥
∥ = d(A,B). (2.16)

Proof. If d(A,B) = 0, the result follows from [2, Theorem 1]. So, we assume that d(A,B) >
0. For x0 ∈ A, define xn+1 = Txn for all n ≥ 1. By Theorem 2.2, the sequences {x2n} and
{x2n+1} are bounded. Since X is reflexive and A is weakly closed, the sequence {x2n} has a
subsequence {x2nk} such that x2nk

w→ x ∈ A. As {x2nk+1} is bounded and B is weakly closed,
we can say, without loss of generality, that x2nk+1

w→ y ∈ B as k → ∞. Since x2nk − x2nk+1
w→

x−y /= 0 as k → ∞, there exists a bounded linear functional f : X → [0,∞) such that ‖f‖ = 1
and f(x − y) = ‖x − y‖. For each k ≥ 1, we have

∣∣f(x2nk − x2nk+1)
∣∣ ≤ ∥∥f

∥∥‖x2nk − x2nk+1‖ = ‖x2nk − x2nk+1‖. (2.17)

Since limk→∞f(x2nk − x2nk+1) = f(x − y) = ‖x − y‖, by using [2, Theorem 3] we obtain

∥∥x − y
∥∥ = lim

k→∞

∣∣f(x2nk − x2nk+1)
∣∣ ≤ lim

k→∞
‖x2nk − x2nk+1‖ = ‖x2nk − x2nk+1‖ = d(A,B). (2.18)

Hence, ‖x − y‖ = d(A,B).

Definition 2.4. (see [2]) Let A and B be nonempty subsets of a normed space X, T : A ∪ B →
A ∪ B, T(A) ⊆ B, and T(B) ⊆ A. We say that T satisfies the proximal property if

xn
w−→ x ∈ A ∪ B, ‖xn − Txn‖ −→ d(A,B) =⇒ ‖x − Tx‖ = d(A,B). (2.19)

Theorem 2.5. Let ϕ : [0,∞) → [0,∞) be a strictly increasing map. Also, let A and B be nonempty
subsets of a reflexive Banach space X such that A is weakly closed and T : A ∪ B → A ∪ B a cyclic
ϕ-contraction map. Then, there exists x ∈ A such that ‖x − Tx‖ = d(A,B) provided that one of the
following conditions is satisfied

(a) T is weakly continuous on A.

(b) T satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from [2, Theorem 1]. So, we assume that d(A,B) > 0.
For x0 ∈ A, define xn+1 = Txn for all n ≥ 1. By Theorem 2.2, the sequence {x2n} is bounded.
SinceX is reflexive andA is weakly closed, the sequence {x2n} has a subsequence {x2nk} such
that x2nk

w→ x ∈ A as k → ∞.

(a) Since T is weakly continuous on A and T(A) ⊆ B, we have x2nk+1
w→ Tx ∈ B as

k → ∞. So x2nk − x2nk+1
w→ x − Tx /= 0 as k → ∞. The rest of the proof is similar to

that of Theorem 2.3.
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(b) By [2, Theorem 3], we have

‖x2nk − Tx2nk‖ = ‖x2nk − x2nk+1‖ −→ d(A,B) (2.20)

as k → ∞. Since T satisfies the proximal property, we have ‖x − Tx‖ = d(A,B).

Theorem 2.6. Let ϕ : [0,∞) → [0,∞) be a strictly increasing map. Also, let A and B be nonempty
closed and convex subsets of a reflexive and strictly convex Banach space and T : A ∪ B → A ∪ B
a cyclic ϕ-contraction map. If (A − A) ∩ (B − B) = {0}, then there exists a unique x ∈ A such that
T2x = x and ‖x − Tx‖ = d(A,B).

Proof. If d(A,B) = 0, the result follows from [2, Theorem 1]. So, we assume that d(A,B) > 0.
Since A is closed and convex, it is weakly closed. By Theorem 2.3, there exists (x, y) ∈ A × B
with ‖x − y‖ = d(A,B). To show the uniqueness of (x, y), suppose that there exists another
(x′, y′) ∈ A × B with ‖x′ − y′‖ = d(A,B). Since (A − A) ∩ (B − B) = {0}, we conclude that
x − y /=x′ − y′. As both A and B are convex, by the strict convexity of X, we have

∥∥∥∥
x + x′

2
− y + y′

2

∥∥∥∥ =
∥∥∥∥
x − y

2
+
x′ − y′

2

∥∥∥∥ < d(A,B), (2.21)

which is a contradiction. Since ‖Ty − Tx‖ = ‖Tx − Ty‖ = ‖x − y‖ = d(A,B), we obtain, from
the uniqueness of (x, y), that (Ty, Tx) = (x, y). Hence Tx = y, Ty = x and T2x = x.

Theorem 2.7. Let ϕ : [0,∞) → [0,∞) be a strictly increasing map. Also, let A and B be nonempty
subsets of a reflexive and strictly convex Banach space X such that A is closed and convex and T :
A∪B → A∪B a cyclic ϕ-contraction map. Then, there exists a unique x ∈ A such that T2x = x and
‖x − Tx‖ = d(A,B) provided that one of the following conditions is satisfied

(a) T is weakly continuous on A.

(b) T satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from [2, Theorem 1]. So, we assume that d(A,B) > 0.
Since A is closed and convex, it is weakly closed. By Theorem 2.5 that there exists x ∈ Awith
‖x − Tx‖ = d(A,B). Thus, T2x = x. Indeed, if we assume that T2x − Tx /=x − Tx. Then from
the convexity of A and the strict convexity of X, we have

∥∥∥∥∥
T2x + x

2
− Tx

∥∥∥∥∥
=

∥∥∥∥∥
T2x − Tx

2
+
x − Tx

2

∥∥∥∥∥
< d(A,B), (2.22)

which is a contradiction. The uniqueness of x follows as in the proof of [2, Theorem 8].
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