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Abstract A natural presymplectic structure for non-
Lagrangian equations of motion governing the dynamics
of free higher-spin fields in four-dimensional anti-de Sitter
space is proposed. This presymplectic structure is then used
in the derivation of the conserved currents associated with
the relativistic invariance and to the construction of local
functionals of fields that are gauge invariant on shell.

1 Introduction

The higher-spin (HS) gauge theories are the general-covariant
field-theoretical models involving massless fields of spin
s > 2. The nonlinear equations of motion for massless HS
fields were proposed by Vasiliev in [1]. They exhibit some
rather unusual properties compared to the low spins:

• The equations cannot be consistently perturbed about flat
space-time; the most symmetrical vacuum solution is that
corresponding to the (anti-)de Sitter space with nonzero
cosmological constant.

• The dynamical content is given by an infinite spectrum of
fields of increasing spins, admitting no finite truncation
with fields of spin s > 2.

• After exclusion of auxiliary fields, the interaction vertices
and the gauge symmetry transformations involve arbitrar-
ily high space-time derivatives of dynamical fields.

The infinite number of interacting fields together with the
higher derivatives may pose some technical difficulties, but
the real challenge is the non-Lagrangian form of the Vasiliev
equations. It is the absence of a closed Lagrangian formu-
lation which constrains our understanding of the quantum
properties of HS theories and prompts a search for alterna-
tive quantization methods that are not rigidly bound to the
Lagrangian form of dynamics. One of such methods was pro-
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posed in [2]. It is based on the concept of Lagrange structure,
which may be thought of as a strong homotopy generaliza-
tion of the Batalin–Vilkovisky antibracket. In [3] and [4], this
quantization method was applied to the unfolded representa-
tion of the scalar field theory and to the Bargmann–Wigner
equations for massless fields of spin s ≥ 1/2. Unfortunately,
this approach, while general, becomes unduly cumbersome
when applied to HS theories in unfolded representation.

In the present paper, an alternative method of quantizing
unfolded HS dynamics is developed. It exploits the notion of
covariant presymplectic structure pioneered by Crnković and
Witten [5] and independently by Zuckerman [6]. An exten-
sive historical overview of the subject and further references
can be found in [7]. Specifically, we show that the free HS
fields on four-dimensional anti-de Sitter space admit quite a
natural presymplectic structure which is compatible with the
unfolded representation of HS dynamics and generalizes the
covariant presymplectic structures for low-spin theories. As
is well known, every presymplectic structure gives rise to a
Poisson bracket in the space of gauge invariant functionals
of fields and can be quantized, in principle, by means of the
deformation quantization technique. There is reason to hope
that the proposed presymplectic structure admits a consistent
extension to the interacting HS fields. If this is the case we
get a good starting point for the covariant quantization of
nonlinear HS dynamics.

The concept of covariant presymplectic structure is found
to be useful in the study of some other aspects of HS dynam-
ics, not directly related to the problem of quantization. For
example, every presymplectic structure is well known to pro-
vide a systematic correspondence between symmetries and
conservation laws. So far such a correspondence has been
established indirectly just by comparing tensor parameters
entering the conserved currents and the symmetry transfor-
mations of the free HS fields. Furthermore, given a presym-
plectic structure, it is possible to define a local functional of
fields whose stationary surface includes all the solutions to
the original field equations [8,9]. It is hoped that function-
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als of this kind may find applications in the context of the
AdS/CFT correspondence [10–13].

The plan of the paper is as follows. In Sect. 2, we provide
some background material on presymplectic geometry and its
relation to classical mechanics. Next, in Sect. 3, we briefly
discuss the covariant phase-space approach to field theory
and, by way of illustration, derive the covariant presymplec-
tic structures for various fields of low spins. There, we also
define a general notion of covariant presymplectic structure
for not necessarily Lagrangian field theories. In Sect. 4, we
review the unfolded representation for the free HS fields on
four-dimensional anti-de Sitter space. The main result of the
paper is presented in Sect. 5, where we derive a covariant
presymplectic structure for the free HS equations in unfolded
representation. In Sect. 6, this presymplectic structure is used
to define the gauge noninvariant conserved currents associ-
ated with the anti-de Sitter invariance of the free HS equa-
tions. As a byproduct this proves nontriviality of the proposed
presymplectic structure. Section 7 is devoted to the deriva-
tion of on-shell gauge invariant functionals of HS fields. In
the last Sect. 8, we summarize our results and discuss further
perspectives.

2 Presymplectic mechanics

Let us briefly recall some basic notions of presymplectic
geometry and geometrical mechanics.

By definition, a presymplectic manifold is a pair (M,�)

consisting of a smooth manifold M endowed with a closed
2-form �, the presymplectic form. Denote by ker � the space
of all vector fields V on M satisfying the equation

iV� = 0.

The form � being closed, the space ker � generates an inte-
grable distribution on M . In the case that ker � = 0 one
speaks of the symplectic 2-form � and the symplectic man-
ifold M .

A vector field X (a function f ) is called Hamiltonian if
there exists a function f (a vector field X ) such that

iX� = d f. (2.1)

In order to indicate the relationship between the Hamiltonian
vector fields and functions we will write X f for X and refer
to f as a Hamiltonian of the vector field X f . Note that the
above correspondence f ↔ X f is far from being one-to-one.
On the one hand we can add to X any vector field from ker �

without any consequence for f , on the other it is possible to
shift f by an arbitrary constant. This motivates us to consider
two Hamiltonian fields as equivalent if they differ by an ele-
ment from ker �. By definition, the space ker � consists of
the Hamiltonian vector fields with constant Hamiltonians. In

the following we will often identify a Hamiltonian vector X f

with its equivalence class X f +ker �. It is easy to see that the
Hamiltonian vector fields form a subalgebra X�(M) in the
Lie algebra of all smooth vector fields X(M). Furthermore,
ker � is an ideal in X�(M) and we can define the quotient
Lie algebraX�(M)/ ker � of “nontrivial Hamiltonian vector
fields”.

An elementary, yet important, fact is that the action of a
Hamiltonian vector field preserves the presymplectic struc-
ture. Indeed,

LX f � = diX f � + iX f d� = d2 f = 0. (2.2)

Another simple observation is that Hamiltonian functions
form a commutative algebra with respect to the point-wise
multiplication: If f and g are two Hamiltonian functions,
then X f g = f · Xg + g · X f . The space of Hamiltonian
functions can be endowed with the Poisson bracket

{ f, g} = iX f iXg�. (2.3)

One can easily verify that this expression is well defined and
satisfies all the required properties: antisymmetry, bilinearity,
the Leibniz rule, and the Jacobi identity. Denoting the Poisson
algebra of Hamiltonian functions by F�(M), one can also
see that the map f �→ X f is actually a homomorphism of
the Lie algebras, meaning that X{ f,g} = [X f , Xg].

From the physical viewpoint, the Hamiltonian functions
represent the physical observables. It follows from the defi-
nition (2.1) that each physical observable is invariant under
the action of the integrable distribution ker �, i.e.,

X f = 0 ∀X ∈ ker �, ∀ f ∈ F�(M).

The vector fields of ker � play thus the role of infinites-
imal gauge symmetry transformations on M and the inte-
gral leaves of the distribution ker � should be regarded as
gauge orbits. The physical phase space is then identified
with the space of gauge orbits, though the latter may not
be a smooth manifold in general. According to this interpre-
tation the physical observables are those smooth functions
on M that are constant along the gauge orbits. Therefore,
they can be viewed as functions on the physical phase space
M ′ = M/ker � and the Poisson bracket (2.3) passes through
the quotient.

In order to define the time evolution of physical observ-
ables one needs to specify a particular vector field X that
leaves invariant the presymplectic structure, that is,

LX� = 0. (2.4)

Then the equation of motion for an observable f reads

ḟ = X f. (2.5)
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Each vector field X satisfying (2.4) is called locally Hamilto-
nian. From (2.2) it follows that each Hamiltonian vector field
is locally Hamiltonian. Equation (2.4) is clearly equivalent
to diX� = 0, which implies the existence of a smooth func-
tion f such that iX�|U = d f |U for any contractable open
domain U ⊂ M (the Poincaré Lemma). In other words, each
locally Hamiltonian vector field becomes Hamiltonian when
restricted to a small vicinity, hence the name.

The flow generated by a locally Hamiltonian vector field
X defines a one-parameter group of automorphisms of the
Poisson algebra F�(M), provided X is complete. In case X
is Hamiltonian, that is, X = Xh for some h ∈ F�(M), Eq.
(2.5) assumes the more familiar form

ḟ = { f, h}.
Bringing the classical dynamics into the Hamiltonian form

is usually considered as “a must” step toward quantization.

3 Covariant phase space

Recall that in the conventional Hamiltonian formalism the
phase space of fields is identified with the space of Cauchy
data to the field equations. This requires a priori splitting
of physical space-time into space and time, violating thus
the relativistic invariance. This drawback is avoided in the
covariant approach to Hamiltonian mechanics, where the
phase space of fields is identified with the space of solutions
to the field equations, rather than the Cauchy data. Under cer-
tain technical assumptions, like global hyperbolicity of the
underlying space-time manifold, these two spaces may be
viewed as equivalent. For Lagrangian equations of motion the
solution space comes equipped with a natural presymplectic
structure, making the space of gauge invariant functionals of
fields into a Poisson algebra.

Consider, for example, the action functional

S[φ] =
∫
V
L(φi , φi

μ)dnx (3.1)

for a collection of bosonic fields φi (x). Here φi
μ = ∂μφi and

integration is performed over a bounded domain V in an n-
dimensional space-time manifold with local coordinates xμ.
Varying the action, we get

δS =
∫
V

(
∂L
∂φi

− ∂μ

∂L
∂φi

μ

)
δφi ∧ dnx

+
∫

∂V

∂L
∂φi

μ

δφi ∧ dn−1xμ. (3.2)

Hereafter we use the following properties of the de Rham
and variational exterior differentials:

d2 = δ2 = 0, dδ = −δd, ∂μδ = δ∂μ, (3.3)

dxμ ∧ dxν = −dxν ∧ dxμ,

δφi ∧ δφ j = −δφ j ∧ δφi ,

dxμ ∧ δφi = −δφi ∧ dxμ.

The bulk term in (3.2) defines the classical equations of
motion

∂L
∂φi

− ∂μ

∂L
∂φi

μ

= 0, (3.4)

while the boundary term gives rise to a functional 1-form

�[φ, δφ] =
∫

�

∂L
∂φi

μ

δφi ∧ dn−1xμ,

with � being a Cauchy surface. To make contact with the
notation of the previous section, we denote by M the space
of all solutions to the field equations (3.4). This will be con-
sidered as an infinite-dimensional submanifold in the space
of all field configurations 	. Some authors refer to 	 and
M as the spaces of all and true histories, respectively. We
will call M the dynamical shell or just shell. Applying the
variational differential to � gives the functional 2-form on
	

� = δ� =
∫
�

δ

(
∂L
∂φi

μ

)
∧ δφi ∧ dn−1xμ

=
∫
�

(
∂2L

∂φ j ∂φi
μ

δφ j ∧ δφi + ∂2L
∂φ

j
ν ∂φi

μ

δφ
j
ν ∧ δφi

)
∧ dn−1xμ.

(3.5)

By construction, the 2-form � is δ-closed and, upon restric-
tion to M , endows the solution space with a presymplectic
structure. For simplicity we will denote the restriction �|M
by the same symbol �. The functional 1-form � is called the
presymplectic potential.

An important property of the form � is its on-shell inde-
pendence of the Cauchy surface �. Let 	 be the space of
fields that vanish at spatial infinity together with their deriva-
tives and let �� and ��′ denote two presymplectic forms
associated with nearby space-like hyper-surfaces � and �′.
By Stokes’ theorem

�� − ��′ =
∫
V
d

(
δ

∂L
∂φi

μ

∧ δφi

)
∧ dn−1xμ,

where ∂V = � − �′. Using Eqs. (3.3) and the identity

dxν ∧ dn−1xμ = δν
μd

nx,
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we find

�� − ��′ =
∫
V

(
−δ

(
d

∂L
∂φi

μ

)
∧ δφi + δ

(
∂L
∂φi

μ

)
∧ δdφi

)
∧ dn−1xμ

=
∫
V

(
δ

(
∂μ

∂L
∂φi

μ

)
∧ δφi + δ

(
∂L
∂φi

μ

)
∧ δφi

μ

)
∧ dnx

≈
∫
V

(
δ

(
∂L
∂φi

)
∧ δφi + δ

(
∂L
∂φi

μ

)
∧ δφi

μ

)
∧ dnx

=
∫
V

δ2L ∧ dnx = 0.

Here we introduced the sign “≈”, meaning the equality “on
shell”.

If there is no gauge symmetry in the theory, then the Hes-
sian matrix
(

∂2L
∂φi

0∂φ
j
0

)

is nondegenerate and one can pass directly to the Hamilto-
nian formalism. It can be seen that the canonical symplectic
structure on the phase space of fields and conjugate momenta
is essentially equivalent to the presymplectic structure (3.5).
In particular, the on-shell presymplectic form � appears to be
nondegenerate in this case and defines actually a symplectic
structure.

For gauge invariant action functionals (3.1) the corre-
sponding 2-form � is necessarily degenerate [14,15]. This
can be seen as follows. For each solution φ ∈ M , the on-
shell presymplectic structure defines an antisymmetric bilin-
ear form �[δφ, δφ] on the tangent space TφM . Let δζ φ be
an infinitesimal gauge transformation of fields, with ζ being
an arbitrary gauge parameter. Since the gauge transforma-
tions map solutions to solutions, δζ φ ∈ TφM . We want to
show that �[δφ, δζ φ] = 0 for all φ ∈ M and δφ ∈ TφM .
By definition, the functional �[δφ, δζ φ] is given by the inte-
gral over � of a smooth form depending linearly on ζ and
its derivatives. This means that �[δφ, δζ φ] = 0, whenever
� ∩ supp ζ = ∅. On the other hand, we have shown that the
on-shell presymplectic form does not depend on the choice
of the hyper-surface �; and hence, �[δφ, δζ φ] must vanish
for any compactly supported function ζ . In view of locality,
the last fact implies that �[δφ, δζ φ] vanishes identically for
arbitrary gauge parameter ζ and every infinitesimal gauge
transformation corresponds to a degenerate direction for the
on-shell presymplectic form �.

As usual one can factor out the presymplectic manifold
M by the action of gauge transformations and obtain thus
the physical phase space M ′. The latter is equipped with the
symplectic structure p∗(�) given by the pull-back of the on-
shell 2-form � with respect to the canonical projection p :
M → M ′. The physical observables, i.e., functions on M ′,
can then be identified with the gauge invariant function(al)s

on 	; in so doing, two physical observables are considered
equivalent if they coincide on shell.

Let us now illustrate the general formalism above by a few
well-known examples from field theory.

Example 1 (Scalar field) The dynamics of a single scalar
field ϕ in four-dimensional Minkowski space are governed
by the action

S[ϕ] =
∫ (

1

2
∂μϕ∂μϕ − V (ϕ)

)
d4x .

Varying this action functional, we get the equation of motion
and the presymplectic potential:

�ϕ + V ′(ϕ) = 0, � =
∫

�

∂μϕδϕ ∧ d3xμ.

Note that only the terms with derivatives of ϕ contribute to
�. The corresponding presymplectic structure is

� =
∫

�

δϕ ∧ ∂μδϕ ∧ d3xμ. (3.6)

If we choose � to be a time slice x0 = const , then the
presymplectic structure takes the form

� =
∫

δϕ ∧ δϕ̇ ∧ d3x. (3.7)

The corresponding equal-time Poisson brackets of fields and
velocities read

{ϕ(x), ϕ(x′)} = 0, {ϕ̇(x), ϕ(x′)} = δ3(x − x′), {ϕ̇(x), ϕ̇(x′)} = 0.

This is in line with the usual Hamiltonian formalism as for
the scalar field ϕ̇ = π , where π is the canonical momentum.
Thus, the on-shell presymplectic structure (3.7) is nondegen-
erate and coincides with the canonical one.

Example 2 (Spinor field) Consider the Majorana spinor field
ψ of mass m with the action

S[ψ] =
∫ (

iψ̄σ̄ μ∂μψ − m

2
ψψ − m

2
ψ̄ψ̄

)
d4x .

For the two-component spinor formalism and definition of σ -
matrices see e.g. [23]. Notice that the very possibility to write
the mass term implies that the components of the Majorana
spinor ψ anticommute.

The equations of motion and the presymplectic structure
following from this action are given by

i σ̄ μ∂μψ = mψ̄, � =
∫

�

iδψ̄ ∧ σ̄ μδψ ∧ d3xμ. (3.8)

For the Cauchy surface � : x0 = const, the equal-time
Poisson brackets of component fields are
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{ψα(x), ψβ(x′)} = 0, {ψα(x), ψ̄α̇(x′)} = −iσ 0
αα̇δ3(x − x′).

Notice that the matrices of the presymplectic structure and
Poisson brackets are purely imaginary for fermionic fields.
Again, this is in harmony with the canonical formalism where
the canonical momentum of the spinor field ψα is given by
πα = i(ψ̄σ̄ 0)α .

Example 3 (Gauge vector field) The standard action func-
tional for the free, massless, vector field A = Aμdxμ is
given by

S[A] = 1

4

∫
FμνF

μνd4x, Fμν = ∂μAν − ∂ν Aμ.

The action is clearly invariant under the gauge transforma-
tions

δζ Aμ = ∂μζ, (3.9)

where ζ is an arbitrary scalar function. The variation of this
action yields the following field equations and the presym-
plectic potential:

∂νFνμ = 0, � =
∫

�

FμνδAμ ∧ d3xν .

Because of the gauge invariance (3.9) the corresponding
presymplectic form

� =
∫

�

δFμν ∧ δAμ ∧ d3xν . (3.10)

is on-shell degenerate. Indeed,

�[δA, δζ A] =
∫

�

δFμν∂μζ ∧ d3xν

=
∫

�

∂μ(δFμνζ ) ∧ d3xν

−
∫

�

ζδ(∂μF
μν) ∧ d3xν

≈
∫

∂�

ζδFμν ∧ d2xμν = 0.

The last integral vanishes due to the zero boundary conditions
for A.

Example 4 (General relativity) In the vierbein formulation
of general relativity the space-time geometry is described by
a vierbein ea = eaμdxμ and a Lorentz connection ωab =
ωab

μ dxμ, ωab = −ωba . The curvature tensor of the Lorentz
connection has the standard form

Rμν
a
b = ∂μων

a
b − ∂νωμ

a
b + [ωμ,ων]ab.

Hereafter all the Lorentz indices are raised and lowered with
the help of the Minkowski metric ηab.

The Einstein–Hilbert action with cosmological term can
be written as

S[e, ω] = 1

2

∫
εμνλδεabcde

a
μe

b
ν

(
Rcd

λδ + 1

2
�ecλe

d
δ

)
d4x . (3.11)

Variation with respect to the connection ω yields

Dμe
a
ν − Dνe

a
μ = 0,

where D = d + ω is the Lorentz-covariant derivative. This
equation allows one to express the Lorentz connection in
terms of the vierbein, ω = ω(e, ∂e). Varying (3.11) with
respect to e, we get

eν
a R

a
μνb = �eμb,

where eν
a is the inverse matrix of eaν . This equation is equiva-

lent to the vacuum Einstein equation with cosmological term.
Using the general definition (3.5), one can find the follow-

ing presymplectic form on the space of vierbeins and Lorentz
connections:

� = 2
∫

�

εμνλδεabcde
a
μδebν ∧ δωcd

λ ∧ d3xδ. (3.12)

Notice that the cosmological term does not contribute to �.
Besides the space-time diffeomorphisms, action (3.11) is

invariant under the local Lorentz transformations

δζ e
a = ζ abeb, δζ ω

ab = Dζ ab,

with ζ ab = −ζ ba being infinitesimal gauge parameters. As
a result, the presymplectic form (3.12) is necessarily degen-
erate on shell.

Unlike the previous example, the Einstein–Hilbert action
is rather nonlinear and so is the presymplectic structure (the
components of � depend on the vierbein field e). Lineariza-
tion about a particular vacuum solution e = h, ω = w, e.g.
(anti-)de Sitter one, brings the presymplectic structure (3.12)
into the form

�̂ = 2
∫

�

εμνλδεabcdh
a
μδêbν ∧ δω̂cd

λ ∧ d3xδ, (3.13)

where ê and ω̂ are fluctuations around the background vier-
bein h and the Lorentz connection w. This presymplectic
form is also degenerate along the directions of the linearized
gauge transformations.

More examples of presymplectic structures, including
those associated with the frame-like Lagrangians for mass-
less higher-spin fields, can be found in [16].

In the following it will be convenient to work with the
nonintegrated density Ω of the presymplectic form �. This
is defined as

� =
∫

�

Ω. (3.14)
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Here the integrand Ω = Ω(δφ, δφ) may be viewed as an
antisymmetric, bidifferential operator in δφ’s with coeffi-
cients depending on the derivatives of φ’s and taking values
in (n−1)-forms on the space-time manifold. Another way of
thinking of Ω is to interpret it as a “hybrid” differential form
of type (2, n − 1), that is, a variational 2-form in the func-
tional space 	 and a usual (n − 1)-form on the space-time
manifold. This last point of view can be formalized within the
concept of variational bicomplex, see e.g. [17,18], although
we will not dwell on it here. In the sequel we will refer to Ω

as a presymplectic current. In order to have a one-to-one cor-
respondence between the covariant presymplectic structures
(3.14) and their currents we will identify two presymplectic
currents Ω and Ω ′ if they differ by a d-exact (2, n−1)-form,
i.e.,

Ω ′ − Ω = dβ

for some (2, n − 2)-form β. In this case we write Ω ′ � Ω .
Besides, we assume the space	 to consist of fields that vanish
at space infinity.

The notions of presymplectic form and presymplectic cur-
rent can be extended beyond the scope of variational dynam-
ics. Let we have given a set of (not necessarily Lagrangian)
field equations

Ea(φ, ∂φ, . . . , ∂nφ) = 0 (3.15)

for a collection of fields φi living on an n-dimensional man-
ifold N . Following [8,9], we say that a (2, n − 1)-form Ω

on 	 × N defines a presymplectic current compatible with
equations of motion (3.15) if

δΩ � 0, dΩ ≈ 0. (3.16)

The form Ω is assumed to have the following appearance:

Ω =
K ,L∑
k,l=0

Ω
ν(k),λ(l)
i jμ1···μn−1

δφi
ν(k) ∧ δφ

j
λ(l) ∧dxμ1 ∧· · ·∧dxμn−1 ,

(3.17)

where

φi
ν(k) = φi

ν1ν2···νk = ∂ν1∂ν2 · · · ∂νkφ
i

and the coefficients Ω
ν(k),λ(l)
i jμ1···μn−1

are given by smooth func-
tions of fields and their derivatives up to some finite order.

The second equation in (3.16) ensures the independence
of the corresponding presymplectic structure of the choice
of the Cauchy surface �. Therefore, it induces a 2-form on
the phase space of all solutions to the field equations (3.15).
Then the first condition in (3.16) identifies this 2-form as a
presymplectic one. This presymplectic structure gives rise to

a Poisson bracket in the space of Hamiltonian (0, n − 1)-
forms on 	 × N in a similar way to the finite-dimensional
presymplectic manifolds of Sect. 4.2. For a more detailed dis-
cussion of the covariant phase space and the Poisson algebra
of physical observables we refer the reader to [18].

4 Free HS fields in AdS4

The four-dimensional anti-de Sitter space, AdS4, is a maxi-
mally symmetric solution to the vacuum Einstein equations
with negative cosmological constant. As was first noticed
by Fradkin and Vasiliev [19,20] it is the only background
geometry with maximal symmetry that admits a consistent
interaction of higher-spin massless fields. In the vierbein
approach the geometry of AdS4 is described by the vier-
bein ha = haμdxμ and the compatible Lorentz connection
wab = wab

μ dxμ. All Lorentz indices are raised and lowered
by the Minkowski metric ηab.

In the unfolded formulation of the free HS dynamics the
massless particles of all spins in AdS4 are described in terms
of two master fields: the gauge field ω and the Weyl field C .
These are given, respectively, by 1- and 0-form on AdS4 with
values in an infinite-dimensional associative algebra W , the
Weyl algebra. It is the infinite-dimensionality of W which
allows the master fields to accommodate the whole spectrum
of spins, from zero to infinity. Since the Weyl algebra is in
the core of the HS field equations, we begin with explaining
of its structure. A comprehensive account of the subject can
be found in [21,23].

As a linear space the algebra W is given by formal power
series in the complex variables yα , ȳα̇ , α, α̇ = 1, 2, so that
the general element of W reads

f =
∑
m,n

1

m!n! fα(m)α̇(n)(y
α)m(ȳα̇)n, fα(m)α̇(n) ∈ C.

(4.1)

As above we use the shorthand notation for symmetric
indices,

fα(m)α̇(n) = fα1···αm α̇1···α̇n (yα)m = yα1 · · · yαm .

The mutually conjugate complex variables yα and ȳα̇ may
viewed as components of the left-handed and right-handed
Weyl spinors for the Lorentz algebra so(3, 1) ∼ sl(2,C).

The multiplication in W is given by the so-called Weyl–
Moyal ∗-product:

f ∗ g = exp

(
iεαβ ∂

∂yα

∂

∂zβ
+ iεα̇β̇ ∂

∂ ȳα̇

∂

∂ z̄β̇

)

× f (y, ȳ)g(z, z̄)|z=y .
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Here εαβ and εα̇β̇ are the pair of sl(2,C)-invariant tensors
defined by the rule

εαβ = −εβα, ε12 = 1,

and the same for εα̇β̇ . All spinor indices are raised and low-
ered by εαβ , εα̇β̇ and their inverse: yα = εαβ yβ , yα = yβεβα

and the same for dotted indices. The two main properties of
the ∗-product above are associativity and unitality, meaning
that

( f ∗ g) ∗ h= f ∗ (g ∗ h), 1 ∗ f = f = f ∗ 1, ∀ f, g, h ∈ W.

One more important property of the Weyl algebra, explain-
ing to some extent its relevance to the HS dynamics, is that the
Lie algebra of internal derivations of W contains the anti-de
Sitter algebra so(3, 2) ∼ sp(4) as a finite-dimensional sub-
algebra. This is generated by all the quadratic monomials

Mαβ = − i

2
yα yβ, M̄α̇β̇ = − i

2
ȳα̇ ȳβ̇ , Pαα̇ = − i

2
yα ȳα̇

with respect to the ∗-commutator. The monomials Mαβ and
M̄α̇β̇ span the Lorentz subalgebra so(3, 1) ⊂ so(3, 2) and
Pαα̇ correspond to the anti-de Sitter translations. Using the
standard vector–spinor dictionary (see e.g. [23]) we can also
pass to a more familiar basis of so(3, 2) generators labeled
by the Lorentz indices:

Pa = σαα̇
a Pαα̇, Mab = σ

αβ
ab Mαβ + σ̄

α̇β̇
ab Mα̇β̇ . (4.2)

In this basis the commutation relations take the form

[Mab, Mcd ]∗ = ηbcMad − ηacMbd − ηbdMac + ηadMbc,

[Mab, Pc]∗ = ηbc Pa − ηac Pb,
[Pa, Pb]∗ = Mab.

Tensoring now the Weyl algebra W with the exterior alge-
bra � = ⊕

k �k of differential forms on AdS4, we arrive
at the associative algebra F = � ⊗ W with the �-product
defined by the rule

(α ⊗ f ) � (β ⊗ g) = (α ∧ β) ⊗ ( f ∗ g) ∀α, β ∈ �, ∀ f, g ∈ W.

The �-product algebra is naturally graded with respect to the
form degree:

F =
4⊕

p=0

F p, F p = �p ⊗ W, F p � Fq ⊂ F p+q .

We will denote the form degree of a homogeneous element
F ∈ F p by |F | = p.

Geometrically, the elements of F may be viewed as dif-
ferential forms with values in W :

F(y, ȳ|x, dx) =
∑
m,n

1

m!n! Fα(m)α̇(n)(x, dx)(yα)m(ȳα̇)n .

The expansion coefficients Fα(m)α̇(n)(x, dx) are then natu-
rally interpreted as form-valued, spin-tensor fields on AdS4.
In accordance with the standard relationship between spin
and statistics the component fields with even number of
spinor indices are treated as bosons, while those with odd
number of spinor indices are declared to be fermions.

Associated to F is the Lie superalgebra L(F) with the
�-commutator

[F,G]� = F � G − (−1)|F ||G|G � F.

Considering the first factor in the tensor product F = �⊗W
as basic ring, one can endow the algebra F with a supertrace
operation Str : F → � and a nondegenerate inner product
〈 · | · 〉 : F ⊗ F → �. These are given by [21]

Str(F) = F(0, 0|x, dx), 〈F |G〉 = Str(F � G). (4.3)

By definition, the supertrace vanishes on the �-commutators,

Str([F,G]�) = 0 ∀F,G ∈ F ,

and the inner product is invariant under the adjoint action of
L(F):

〈[H, F]�|G〉 + (−1)|H ||F |〈F |[H,G]�〉 = 0 ∀H, F,G ∈ F .

For later use we also define the �-anticommutator

{F,G}� = F � G + (−1)|F ||G|G � F.

The background geometry of AdS4 allows us to endow the
algebra F with the Lorentz covariant differential D : F p →
F p+1. This is defined in terms of the Lorentz connection wab

as

DF = dF + [w, F]�, w = 1

2
wabMab,

with Mab being given by (4.2).
By definition, the operator D differentiates the �-product

by the Leibniz rule,

D(F � G) = (DF) � G + (−1)|F |F � DG ∀F,G ∈ F ,

but is not nilpotent; instead, we have the curvature 2-form

D2F = [R, F], R = �

3
ha ∧ hbMab ∈ F2, (4.4)

which is proportional to the cosmological constant �. In the
following we set � = −3.

Besides the covariant differential and curvature, the alge-
bra F possesses a distinguished element associated to the
AdS4 vierbein, namely, h = ha Pa ∈ F1. The compatibil-
ity of the Lorentz connection and vierbein implies that the
1-form h is covariantly constant, that is,

Dh = 0. (4.5)
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By making use of h, we can write the curvature 2-form as
the �-square of the vierbein form

R = −h � h. (4.6)

Taken together the last two equations imply the Bianchi iden-
tity DR = 0 for the curvature. It is worthy of note that all
three Eqs. (4.4), (4.5), and (4.6) are equivalent to a single
zero-curvature condition for the anti-de Sitter covariant dif-
ferential

D = D + [h, · ]�, D2 = 0. (4.7)

Now we are ready to present the free HS equations for the
master fields C ∈ F0 and ω ∈ F1. These read [21,23]

Dω + [h, ω]� = Ĥ+C− + Ĥ−C+, DC + {h,C}� = 0.

(4.8)

Here we introduced the projections onto the purely holomor-
phic and anti-holomorphic sectors of the Weyl field,

C+ = C(y, 0|x), C− = C(0, ȳ|x),
together with the pair of differential operators

Ĥ+ = H α̇β̇ ∂α̇∂β̇ , Ĥ− = Hαβ∂α∂β,

H α̇β̇ = hγ α̇ ∧ hγ
β̇ , Hαβ = hαγ̇ ∧ hβ

γ̇ .

Notice that the left hand side of the first equation in (4.8) is
given by the anti-de Sitter covariant differential (4.7) of the
gauge field ω.

Since the system (4.8) is linear, it decouples into an
infinite set of subsystems for the particles of definite spin
s = 0, 1/2, 1, . . . . In order to single out the contribution of
each particular spin, it is convenient to introduce the pair of
operators

N̂± = yα∂α ± ȳα̇∂α̇,

which count the number of y’s and ȳ’s. Then the master fields
decompose into the sums

ω =
∞∑
s=1

ω(s) , C =
∞∑
s=0

(C(s) + C̄(s) ),

where

N̂+ω(s) = 2(s − 1)ω(s) , N̂−C(s) = 2sC(s) , N̂−C̄(s) = −2sC̄(s) .

The massless particle of spin s is now described by the
component fields (ω(s) ,C(s) ) with the understanding that
ω(0) = ω(1/2) = 0 (no gauge fields for the scalar and spin-
1/2 particles). Being expanded in y’s and ȳ’s, these fields
generate an infinite number of spin-tensor fields on AdS4:

ω(s) = {ωα(2s−2−n)α̇(n)}2s−2
n=0 , C(s) = {Cα(2s+n)α̇(n)}∞n=0.

(4.9)

Most of these fields are auxiliary and can in principle be
excluded from consideration by means of the equations of
motion.

The system of field equations (4.8) is well known to be
non-Lagrangian. This fact can be seen as follows. First, we
note that the Eq. (4.8) are not independent, rather they obey a
set of gauge identities that follow from applying the covariant
differential D to both sides of (4.8). This property is usually
referred to as the formal consistency of the HS system (no
hidden integrability conditions). The space of gauge identi-
ties is naturally parameterized by the elements of F1 ⊕ F2.
Besides the gauge identities, the system (4.8) enjoys the obvi-
ous gauge invariance

δζ ω = Dζ, δζC = 0, ∀ζ ∈ F0. (4.10)

If the system (4.8) were Lagrangian then, according to the
second Noether theorem [24], there would be a one-to-one
correspondence between the gauge symmetries and identi-
ties, which is not the case asF0 �= F1⊕F2. Furthermore, the
gauge identities appear to be reducible, while the gauge sym-
metries (4.10) are not. The last disagreement is also impos-
sible for Lagrangian systems.

It is the non-Lagrangian nature of the free HS equa-
tions (4.8) and their nonlinear extensions, see [21,23], which
presents a real challenge to the quantization of HS theories.

Let us now explain how the system (4.8) works in the case
of low spins.

Spin 0. As is seen from (4.9) no gauge fields correspond to
the scalar massless particle; all the fields are accommodated
in C(0) = {Cα(n)α̇(n)}∞n=0. The first term of this sequence is
identified with the scalar field itself

ϕ(x) = C(0, 0|x).
This takes values in the center of the Weyl algebra. The sec-
ond equation in (4.8) gives rise to an infinite chain of equa-
tions for the fields C(0) . The chain starts with the equation

dϕ = −ihαα̇Cαα̇ ⇔ Cαα̇ = i

2
Dαα̇ϕ, (4.11)

where Dαα̇ = σ a
αα̇h

μ
a Dμ and hμ

a is the inverse vierbein. In
fact, Cαα̇ is just the notation for the first partial derivatives
of ϕ. The next equation is given by

DCαα̇ = −ihββ̇Cαβα̇β̇ + ihαα̇ϕ.

Converting the world indices into the Lorentz ones by the
inverse vierbein and using (4.11), one can find that this equa-
tion is equivalent to
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(� − 8)ϕ = 0, Cαβα̇β̇ = i

2
D(αα̇Cββ̇) = −1

4
D(αα̇Dββ̇)ϕ,

where � is the d’Alembert operator on AdS4 and the
round brackets mean symmetrization of dotted and undot-
ted indices. We see that the scalar field ϕ does satisfy the
Klein–Gordon equation for the massless particle on AdS4,
while the spin tensors Cαα̇ and Cαβα̇β̇ play the role of auxil-
iary fields. The same mechanism works for all higher-spin-
tensor fields: the second equation in (4.8) can be solved for
Cα(n)α̇(n) in terms of the successive derivatives of ϕ, bringing
no new constraints on the dynamical field ϕ itself. This way
of formulating field dynamics trough an infinite system of the
first-order equations is known as the unfolded representation
[21,23].

Spin 1/2. The massless spin-1/2 particle is described by the
sequence of spin-tensor fields C(1/2) = {Cα(n+1)α̇(n)}∞n=0. As
there is no gauge symmetry, the first equation in (4.8) is
absent, while the second one gives an infinite chain of equa-
tions starting with

DCβ = −ihαα̇Cβαα̇.

The Dirac equation is a simple consequence of this one,

Dαα̇C
α = 0,

cf. (3.8). All the rest equations impose no restrictions on the
dynamical field ψα = Cα , just expressing the higher-spin
tensors via the covariant derivatives of ψα .

Spin 1. The gauge potential of the electromagnetic field is
identified with

A = ω(0, 0|x, dx).

The gauge transformations (4.10) imply that

δζ A = dζ

for arbitrary scalar field ζ . The first equation in (4.8) just
provides the standard connection between the gauge potential
and the strength tensor of the electromagnetic field

d A = hαα̇ ∧ hβ
α̇Cαβ + hαα̇ ∧ hα

β̇C̄α̇β̇ . (4.12)

From the second equation in (4.8) we then deduce that

Dβα̇C
β

α = 0, Dαβ̇C̄
β̇

α̇ = 0.

This is nothing but the spinorial version of the standard
Maxwell equations for the free electromagnetic field on the
anti-de Sitter background.

All the other spin-tensor fieldsCα(n+2)α̇(n) and C̄α(n)α̇(n+2)

with n > 0 appear to be auxiliary and can be expressed
through the successive derivatives of the strength tensor
(4.12) in perfect analogy to the cases of scalar and spin-1/2
fields.

Spin 2. The sector of gauge fields ω(2) includes now the 1-
forms

ωαβ, ωαβ̇ , ω̄α̇β̇ .

These are naturally identified with the fluctuations of the
background vierbein hαα̇ and the Lorentz connection wαβ ,
w̄α̇β̇ . Compatibility between the full Lorentz connection and
the vierbein implies a certain relation between the aforemen-
tioned fluctuations. This relation is exactly reproduced by the
first equation in (4.8), namely,

Dωαα̇ + ωα
γ ∧ hγ α̇ − hαγ̇ ∧ ω̄γ̇

α̇ = 0.

Besides, it gives the following relations between the compo-
nents of the gauge and Weyl fields:

Dωαβ + hα
γ̇ ∧ ωβγ̇ + hβ

γ̇ ∧ ωαγ̇ = hγ δ̇ ∧ hδ
δ̇Cαβγ δ,

Dω̄α̇β̇ + hγ
α̇ ∧ ωγ β̇ + hγ

β̇ ∧ ωγ α̇ = hδγ̇ ∧ hδ
δ̇C̄

α̇β̇γ̇ δ̇ .

(4.13)

The left hand sides of these equations involve the linearized
curvature of the Lorenz connection plus terms proportional
to the cosmological constant.

The role of these equations is twofold. First, they identify
the spin-tensor fields Cαβγ δ and C̄ α̇β̇γ̇ δ̇ as the components of
the linearized Weyl tensor associated to the curvature tensor.
(This justifies the name “Weyl field” for C .) Second, they
imply that the linearized Einstein equations with cosmolog-
ical constant hold for ω’s.

It should be noted that Eq. (4.13) are consistent provided
that the Weyl tensor obeys the Bianchi identities

Dαα̇C
α

βγ δ = 0, Dαα̇C̄
α̇

β̇γ̇ δ̇ = 0.

These identities are encoded by the second equation in (4.8).
Again, one can see that, similar to the Weyl tensor, all the
higher spin-tensor fields Cα(n+4)α̇(n) and C̄α(n)α̇(n+4) play
an auxiliary role and can be consistently excluded from the
theory by means of the second equation.

5 Presymplectic currents for free HS fields

In this section, we propose a family of covariant presymplec-
tic structures for the non-Lagrangian field equations (4.8).
Since the HS fields we are dealing with are free, it is natural
to look for the presymplectic structure (3.17) whose com-
ponents are independent of fields. Then the presymplectic
current in question can be written schematically as

Ω = K δω ∧ δω + Lδω ∧ δC + NδC ∧ δC, (5.1)

where K , L , and N are some field-independent 3-forms on
AdS4 with values in bidifferential operators acting on the
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variational differentials of the master fields. Being field inde-
pendent, the form (5.1) is automatically δ-closed and the
only nontrivial condition to satisfy is the on-shell closedness
with respect to the de Rham differential d. The anti-de Sit-
ter invariance of the form (5.1)—a necessary condition for
the relativistic symmetry to survive quantization—imposes
further restrictions on the structure coefficients K , L , and N .

In order to facilitate the analysis of expression (5.1) we
will make use of the natural grading in the field space.
According to the expansion (4.1) the Weyl algebra decom-
poses into the direct sumW = ⊕

Wn,m of finite-dimensional
subspaces spanned by homogeneous polynomials in y’s and
ȳ’s,

N̂± f = (n ± m) f ⇔ f ∈ Wn,m .

This bigraduation extends immediately to the space F =⊕Fn,m by setting Fn,m = �⊗Wn,m and one can easily see
that the different homogeneous subspaces Fn,m are orthog-
onal to each other with respect to the inner product (4.3),

〈F |G〉 ∝ δm,kδn,l ∀F ∈ Fm,n, ∀G ∈ Fk,l .

Expanding now the master fields into homogeneous com-
ponents,

ω =
∑
m,n

ωmn, C =
∑
m,n

Cmn,

we can bring the HS equations (4.8) into the form

Dωmn + ĥ+ωm−1,n+1 + ĥ−ωm+1,n−1

= δm,0 Ĥ+C0,n+2 + δ0,n Ĥ−Cm+2,0,

DCmn + ĥ0Cm+1,n+1 + 2h · Cm−1,n−1 = 0,

m, n = 0, 1, . . . , (5.2)

where the operators ĥ± and ĥ0 are defined by the relations

ĥ=[h, · ]� = ĥ+ + ĥ−, ĥ+ = hαα̇ yα∂α̇, ĥ− =hαα̇ yα̇∂α,

and

ĥ0 = ihαα̇∂α∂α̇, h = − i

2
hαα̇ yα ȳα̇ .

The introduced operators possess the following properties:

ĥ2± = ĥ2
0 = 0, [D, ĥ±] = [D, ĥ0] = Dh = 0,

ĥ± Ĥ± = ĥ0 Ĥ± = 0,

〈A|ĥ+B〉 = −(−1)|A|〈ĥ−A|B〉 ∀A, B ∈ F . (5.3)

The last relation is enough to check for homogeneous A and
B.

Let us now introduce the following set: Ω̂ = {Ωmn}∞m,n=0
of complex (2, 3)-forms:

Ωmn =
{

〈δωmn|ĥ+δωm−1,n+1〉, for m > 0;
−〈δω0,n|Ĥ+δC0,n+2〉, for m = 0.

(5.4)

Considering Ω̂ as an infinite square matrix, we first observe
that the matrix Ω̂ is anti-Hermitian modulo equations of
motion and d-exact forms. Namely,

Ωmn + Ω̄nm ≈ d�mn, �mn = −1

2
〈δωmn|δωmn〉. (5.5)

Then using Eq. (5.3),1 we find that for m > 0

Ω̄mn = 〈δωnm |ĥ−δωn+1,m−1〉 = −〈ĥ+δωnm |δωn+1,m−1〉
= −〈δωn+1,m−1|ĥ+δωnm〉 = −Ωn+1,m−1.

Taken together with (5.5), the last equality implies that

Ωmn � Ωm−1,n+1 ∀m > 0, (5.6)

where the sign � means equality modulo equations of motion
and d-exact forms.

Now we claim that the entries of the matrix Ω̂ are given
by on-shell closed forms. In view of the equivalence relation
(5.6) it is enough to check the statement only for representa-
tives of the equivalence classes, e.g. the forms Ωm,0. Let us
first assume that m > 0, then

dΩm,0 = d〈δωm,0|ĥ+δωm−1,1〉
= −〈δDωm,0|ĥ+δωm−1,1〉 + 〈δωm,0|ĥ+δDωm−1,1〉
= −〈δDωm,0|ĥ+δωm−1,1〉 − 〈ĥ−δωm,0|δDωm−1,1〉
≈ −〈ĥ+δωm−1,1 + Ĥ−δCm+2,0|ĥ+δωm−1,1〉

−〈ĥ−δωm,0|ĥ−δωm,0 + ĥ+δωm−2,2〉
= −〈Ĥ−δCm+2,0|ĥ+δωm−1,1〉

−〈ĥ−δωm,0|ĥ+δωm−2,2〉
= −〈ĥ− Ĥ−δCm+2,0|δωm−1,1〉

+〈δωm,0|ĥ2+δωm−2,2〉 = 0.

Here we used the equations of motion (5.2) and identities
(5.3). In the case m = 0, we find

dΩ0,0 = −d〈δω0,0|Ĥ+δC0,2〉
= −〈Dδω0,0|Ĥ+δC0,2〉 − 〈δω0,0|Ĥ+DδC0,2〉
≈ 〈Ĥ−δC2,0 + Ĥ+δC0,2|Ĥ+δC0,2〉 − 〈δω0,0|Ĥ+ĥ0δC1,3〉
= 〈Ĥ−δC2,0|Ĥ+δC0,2〉 = 0.

The last term vanishes due to the identity Hαβ
+ ∧ H α̇β̇

− = 0.
From the general considerations of Sect. 2 we know that

the forms Ωmn are gauge invariant modulo trivial ones. Fur-
thermore, this gauge invariance is a consequence of a more
general property that the gauge variations of fields belong
to the kernel of the presymplectic form. The last fact can be

1 Note that |A| is given now by the total form degree which counts the
differentials of the space-time coordinates and the variational differen-
tials of bosonic fields. The variational differentials of fermionic fields
are Grassmann even, and hence commute.
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verified directly. In terms of homogeneous components the
gauge symmetry transformations (4.10) read

δζ ωmn = Dζmn + ĥ+ζm−1,n+1 + ĥ−ζm+1,n−1, δζCmn = 0. (5.7)

The right hand sides of these equations define a variational
vector field V on the space of fields 	. Because of the equiva-
lence equation (5.6) the desired equalities iV�mn � 0 follow
immediately from

iVΩ0,n = −〈δζ ω0,n|Ĥ+δC0,n+2〉
= −〈Dζ0,n + ĥ−ζ1,n−1|Ĥ+δC0,n+2〉
� 〈ζ0,n|Ĥ+DδC0,n+2〉 + 〈ζ1,n−1|ĥ+ Ĥ+δC0,n+2〉
≈ 〈ζ0,n|Ĥ+ĥ0δC1,n+3〉 = 0.

For integer spins it is convenient to represent the equiva-
lence classes (5.6) by the diagonal elements of the matrix Ω̂ .
We set

Ωs = Im Ωs−1,s−1, s = 1, 2, . . . . (5.8)

By definition, the sequence {Ωs}∞s=1 consists of real presym-
plectic currents that are on-shell equivalent to the diagonal
elements of the matrix Ω̂ . Notice that the form Ωs depends
on the fields of spin s.

In particular, for spin-one fields Eq. (5.8) yields

Ω1 = − 1

2i
〈δω0,0|Ĥ+δC0,2 − Ĥ−δC2,0〉.

Being rewritten in the vector notation, the last expression is
proportional to the presymplectic current for electromagnetic
field (3.10).

For spin-two fields we get

Ω2 = 1

2i
〈δω1,1|ĥ+δω0,2 − ĥ−δω2,0〉.

Again, one can easily verify that, up to an overall factor, this
expression defines nothing but the presymplectic current for
the linearized gravity (3.13).

For half-integer spins it is convenient to choose the rep-
resentatives of presymplectic currents on the super-diagonal
of the matrix Ω̂ , namely,

Ωs = Im Ωs−1/2,s−3/2, s = 3/2, 5/2, . . . . (5.9)

The one-parameter family (5.8), (5.9) provides nontrivial
presymplectic structures for massless fields of all but two
spins. The presymplectic structures for the remaining two
cases, s = 0, 1/2, can be read off from (3.6) and (3.8). By
making use of the identifications of Sect. 4, we set

Ω0 = 〈δC0,0|Ĥ0δC1,1〉, Ω1/2 = 〈δC1,0|Ĥ+δC0,1〉,
(5.10)

where

Ĥ0 = hαβ̇ ∧ hββ̇ ∧ hβα̇∂α∂α̇, Ĥ+ = yαh
αβ̇ ∧ hββ̇ ∧ hβα̇∂α̇.

One can also include these presymplectic currents into two
families of on-shell closed (2, 3)-forms, namely,

Ω ′
nm =〈δCnm |Ĥ0δCn+1,m+1〉, Ω ′′

nm = 〈δCn+1,m |Ĥ+δCn,m+1〉.
All these currents, however, appear to be trivial except when
n = m = 0.

Now the general presymplectic structure on the space of
free HS fields can be written as

� =
∞∑
s=0

as

∫
�

Ωs, as ∈ R. (5.11)

Up to rescalings of fields of definite spin, ω(s) → αsω(s) and
C(s) → αsC(s) , this presymplectic structure is equivalent to
one defined by the current

Ω = Im〈δω|ĥ+δω − Ĥ+δC−〉 + Im〈δC |Ĥ+δC〉 + 〈δC |Ĥ0δC〉.
The anti-de Sitter invariance and nontriviality of the above

presymplectic structure will be proved in the next section.

6 Symmetries and conservation laws

As an immediate application of the covariant presymplec-
tic structure above we are going to derive the conservation
laws associated with the anti-de Sitter invariance of the HS
equations (4.8). Since the equations are non-Lagrangian, the
first Noether theorem [24] is not directly applicable to them
and the presence of global symmetries does not automati-
cally imply the existence of the corresponding conservation
laws. Actually, it is the presymplectic structure, rather than
the Lagrangian itself, which enables one to convert global
symmetries to conservation laws.2 Here by a conservation
law we understand a 3-form J built from the (derivatives of)
dynamical fields such that

d J ≈ 0. (6.1)

Two conservation laws J and J ′ are considered equivalent if
they differ on shell by an exact form, that is, J � J ′. Due to
the Stokes theorem, equivalent conservation laws share the
same charge Q defined by the integral

Q =
∫

�

J.

2 The correspondence is not generally one-to-one due to the possible
degeneracy of the presymplectic structure for non-Lagrangian dynam-
ics. Reversely, it is the concept of Lagrange structure [2] which allows
one to relate conservation laws to global symmetries for not necessarily
Lagrangian theories [4,25].
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By virtue of (6.1) the value of Q is independent of the choice
of the Cauchy surface �.

The global symmetries of free HS fields are known to
form an infinite-dimensional Lie group. Below we restrict
our consideration to the subgroup of symmetries associated
with the isometries of AdS4. These have a clear geometric
interpretation and constitute a finite-dimensional subgroup,
the anti-de Sitter group SO(3, 2). The infinitesimal action of
the anti-de Sitter group in the space of free HS fields is given
by the relations

δξω = [ξ, ω]� + 2Ĥ ξ

+C− + 2Ĥ ξ

−C+,

δξC = [ξ ′′,C]� + {ξ ′,C}�, (6.2)

where

ξ = ξ ′ + ξ ′′, (6.3)

ξ ′ = − i

2
ξαα̇ yα ȳα̇ ∈ F0

1,1,

ξ ′′ = − i

4
ξαβ yα yβ − i

4
ξ α̇β̇ ȳα̇ ȳβ̇ ∈ F0

2,0 ⊕ F0
0,2

are infinitesimal parameters and

Ĥ ξ

− = ξα
α̇hαβ̇∂α̇∂β̇ , Ĥ ξ

+ = ξα
α̇h

βα̇∂α∂β.

The parameters (6.3) are assumed to satisfy the condition

Dξ = Dξ + [h, ξ ] = 0. (6.4)

For the derivation and explanation of these formulas we refer
the reader to [26, Sec. 5], [27].

Strange as it may seem, the symmetry transformations
(6.2) induced by the isometries of AdS4 do not involve
the space-time derivatives of fields. One important point to
remember is that the generators of global symmetries are
defined only modulo equations of motion and the unfolded
form of dynamics enables the derivatives to be expressed
through nondifferentiated fields. Notice also that the sym-
metry transformations (6.2) do not mix the fields of different
spins.

Considering that D2 = 0, Eq. (6.4) is integrable and
allows one to reconstruct the function ξ(x) by its value
ξ(x0) at any given point x0 of AdS4. We are led to con-
clude that there are exactly ten linearly independent solutions
to Eq. (6.4). These solutions—the spin-tensors ξ—are natu-
rally identified with the Killing vectors of the anti-de Sitter
metric. Since the operator D differentiates the �-product, the
solutions to Eq. (6.4) form a closed Lie algebra with respect
to the �-commutator, the anti-de Sitter algebra. If ξ1 and ξ2

are two such solutions, then [δξ1 , δξ2 ] = δ[ξ1,ξ2].
By definition, the generators of symmetry transformations

(6.2) are given by the variational vector fields that are tangent
to the subspace M ⊂ 	of solutions to the HS equations (4.8).

Let us show that these vector fields are Hamiltonian relative to
the presymplectic structure (5.11). This obviously the case
for the fields of low spins (s ≤ 2) where the presymplec-
tic structures come from the standard Lagrangians. By the
Noether theorem the global symmetries of a Lagrangian give
rise to the conserved currents. These currents are nothing but
the Hamiltonians that generate the symmetry transformations
through the Poisson bracket on the covariant phase space. So,
without loss in generality, we can restrict ourselves to the case
s > 2. For higher spins the expressions for the presymplectic
structure (5.11) and the symmetry transformations (6.2) are
considerably simplified. In terms of homogeneous compo-
nents, the transformations of the gauge field can be written
as

δξωmn = ξ̂ ′′ωmn + ξ̂ ′−ωm+1,n−1 + ξ̂ ′+ωm−1,n+1, mn > 0,

where

ξ̂ ′′ = [ξ ′′, · ]� = ξαβ yα∂β + ξ̄ α̇β̇ ȳα̇∂β̇ ,

ξ̂ ′ = [ξ ′, · ]� = ξ̂ ′− + ξ̂ ′+, ξ̂ ′− = ξαα̇ ȳα̇∂α, ξ̂ ′+ = ξαα̇ yα∂α̇.

Let us mention the following useful properties of the intro-
duced operators:

〈ξ̂ ′′A|B〉 = −〈A|ξ̂ ′′B〉, 〈ξ̂ ′+A|B〉 = −〈A|ξ̂ ′−B〉 ∀A, B ∈ F,

[ξ̂ ′±, ĥ±] = 0, [D, ξ̂ ′±] + [ĥ±, ξ̂ ′′] = 0.

Denoting by U the variational vector field defined by the
r.h.s. of Eq. (6.2) and using the relations above, one can check
that

iUΩs ≈ δ Js + d�s, s > 2, (6.5)

where

Js = −Im〈ωmn|ξ̂ ′′ĥ+ωm−1,n+1 + ĥ+ξ̂ ′−ωmn〉
−Im〈ωm+1,n+1|ξ̂ ′+ĥ+ωm−1,n+1〉 (6.6)

and

�s = Im〈δωmn|ξ̂ ′+ωm−1,n+1〉.
In these formulas one should put m = n = s − 1 for integer
spins and m = s − 1/2, n = s − 3/2 for half-integer spins.

Equation (6.5) implies two things. First, applying δ to both
sides of the relation yields

LUΩs � 0.

This means the anti-de Sitter invariance of the form Ωs . Sec-
ond, acting by the exterior differential d on the left and right
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hand sides of (6.5), we get δd Js ≈ 0.3 The form Js being
field-dependent, the last relation is equivalent to

d Js ≈ 0.

In other words, the Hamiltonian Js is conserved. A direct
verification shows that the forms Js are nontrivial. Thus, the
presymplectic structure (5.11) enables us to relate the anti-de
Sitter invariance of the HS equations with the conservation
laws. Up to trivial redefinitions the forms Js are seemed to
coincide with some of spin-two currents obtained recently in
[28]. In that paper the authors argued that the forms Js are
bound to be gauge noninvariant whenever s ≥ 2. This last
fact can also be seen from Eq. (6.5). In the previous section
we have proved the relation

iVΩs ≈ d�s,

where V is the vector field defining the gauge variations of
fields (5.7) and �s is some local (1, 2)-form. Contracting
(6.5) with V yields

LV Js ≈ d(iU�s + iV�s).

We see that, in the general case, the conserved currents Js
are gauge invariant only modulo d-exact forms.

As a byproduct we have shown nontriviality of the presym-
plectic structure (5.11): for if it were trivial, then the con-
served currents (6.6) would be trivial as well.

7 Weak Lagrangians

Let Ω be a presymplectic current compatible with (not nec-
essarily Lagrangian) equations of motion (3.15). As is shown
in [8,9], such a current defines a weak Lagrangian. This is
given by a top form L on N built of the fields φi and their
derivatives. Regarding L as a conventional Lagrangian den-
sity, one can define the Euler–Lagrange equations

δL
δφi

= 0. (7.1)

The adjective ‘weak’ means that all solutions to (3.15) also
solve (7.1). In general, the Euler–Lagrange system (7.1) is
not equivalent to the original system of equations, but only
to a subsystem thereof, hence the name.

The form L is constructed with the help of the cohomo-
logical descent method. Assuming that the δ-cohomology is
trivial4 in positive degree, we can write the presymplectic

3 Let us mention the useful identity iU d + diU = 0, which holds for
all (even) variational vector fields U .
4 This is always the case where the target space of fields is contractible
[17]. If the equations of motion are regular, then the differential δ

remains acyclic upon restriction to the shell.

current as

Ω = δΘ

for some presymplectic potential current Θ . By definition,
Θ is a hybrid form of type (1, n − 1). Applying now the de
Rham differential d to both sides of the last equation and
taking into account (3.16), we find

δdΘ ≈ 0.

Using the acyclicity of δ once again, we conclude that there
exists a (0, n − 1)-form � such that

dΘ ≈ δ�.

For regular equations of motion (3.15), the last weak equality
can be replaced by the following one:

dΘ = δ� +
N∑

n=0

(
δEa,μ(n) ∧ νaμ(n) − Ea,μ(n)λ

aμ(n)
)

.

Here Ea,μ(n) = ∂μ1 · · · ∂μn Ea are the differential conse-
quences of the field equations (3.15); λ’s and ν’s are some
forms of type (1, n) and (0, n), respectively. By making use
of Leibniz’s rule for the differential δ, we can rewrite the last
relation as

δ

(
� +

∑
n

Ea,μ(n)ν
aμ(n)

)

= dΘ +
∑
n

Ea,μ(n)(λ
aμ(n) + δνaμ(n)). (7.2)

The weak Lagrangian is defined now by

L = � +
∑
n

Ea,μ(n)ν
aμ(n) ≈ �.

Integrating the r.h.s. of Eq. (7.2) by parts, we can bring the
variation of L into the standard form,

δL =
Ñ∑

n=0

Ea,μ(n)M
aμ(n)
i ∧ δφi

+d

⎛
⎝� +

Ñ∑
n=0

Ea,μ(n)λ̃
aμ(n)

⎞
⎠

for some M’s and λ̃’s. This amounts to the equations

δL
δφi

=
∑
n

Ea,μ(n)M
aμ(n)
i ,

d

(
Θ +

∑
n

Ea,μ(n)λ̃
aμ(n)

)
= dΘL,

whereΘL is the current of the canonical presymplectic poten-
tial associated with the Lagrangian density L. We see that
each solution to the original equations of motion Ea = 0
obeys also the Euler–Lagrange equations (7.1) for the weak
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Lagrangian. The off-shell acyclicity of d implies that Θ �
ΘL; and hence,

Ω � ΩL.

In other words, the presymplectic structure associated to the
weak Lagrangian and the original presymplectic structure are
equivalent.

Let the field equations (3.15) enjoy infinitesimal gauge
symmetry transformations δζ φ = V , i.e.,

LV Ea = iV δEa ≈ 0.

Then contracting the form (7.2) with the variational vector
field V , we obtain

LVL � 0. (7.3)

This means the on-shell gauge invariance of the weak
Lagrangian.

Let us now apply this general construction to the case at
hand. In Sect. 5, we introduced the set of complex presym-
plectic currents (5.4) compatible with the HS field equations
(5.2). The currents are δ-exact and can be written in the form

Ωmn = δΘmn, �mn =
{ 〈ωmn |ĥ+δωm−1,n+1〉, for m > 0;

−〈ω0,n |Ĥ+δC0,n+2〉, for m = 0.

Let us first assume that m > 0. Then, using identities (5.3),
we find

dΘmn = 〈Dωmn |ĥ+δωm−1,n+1〉 − 〈ωmn |ĥ+δDωm−1,n+1〉
= 〈Eω

mn |ĥ+δωm−1,n+1〉 − 〈ĥ+ωm−1,n+1|ĥ+δωm−1,n+1〉
−〈ωmn |ĥ+δEω

m−1,n+1〉 + 〈ωmn |ĥ+δĥ−ωmn〉
= 〈Eω

mn |ĥ+δωm−1,n+1〉 + 〈ĥ+ωm−1,n+1|δĥ+ωm−1,n+1〉
−〈ĥ−ωmn |δEω

m−1,n+1〉 + 〈ĥ−ωmn |δĥ−ωmn〉
= δLmn + 〈ĥ+Eω

m−1,n+1|δωmn〉 − 〈ĥ−Eω
mn |δωm−1,n+1〉,

(7.4)

where Eω = 0 is the first equation in (4.8) or (5.2) and

Lmn = 1

2
〈ĥ+ωm−1,n+1|ĥ+ωm−1,n+1〉

+1

2
〈ĥ−ωmn|ĥ−ωmn〉 − 〈Eω

m−1,n+1|ĥ−ωmn〉.
By construction, the imaginary part of Lmn gives us the two-
parameter family of weak Lagrangians

Lmn = Im Lmn, m > 0.

These depend only on the gauge fields. Equation (7.4) implies
the following Euler–Lagrange equations:

δLmn

δωpq
= δp,m−1δq,n+1ĥ−Eω

mn − δp,mδq,nĥ+Eω
m−1,n+1 = 0.

(7.5)

We see that the operators ĥ± play the role of integrating
multipliers for the HS equations. Since ĥ2± = 0, the opera-
tors ĥ± are characterized by nonzero kernels. In particular,
im ĥ± ⊂ ker ĥ±. As a result the Lagrangian equations (7.5)
are weaker than the original system (5.2).

For m = 0 we obtain

dΘ0,n = −〈Dω0,n|Ĥ+δC0,n+2〉 − 〈ω0,n|Ĥ+δDC0,n+2〉
= δL0,n − 〈Ĥ+EC

0,n+2|δω0,n〉 − 〈Eω
0,n|Ĥ+δC0,n+2〉,

where EC = 0 denotes the second equation in (4.8) or (5.2)
and

L0,n = 〈ω0,n|Ĥ+EC
0,n+2〉 − 1

2
〈Ĥ+C0,n+2|Ĥ+C0,n+2〉.

Taking the imaginary part, we get one more family of weak
Lagrangians,

L0,n = Im L0,n,

which involves the Weyl fields. Now the most general weak
Lagrangian associated with the real presymplectic currents
{ImΩmn}∞m,n=0 reads

L =
∞∑

n,m=0

λnmLnm, λnm ∈ R.

As for the presymplectic currents (5.10), they give the stan-
dard Lagrangians for the massless scalar and spinor fields.

Notice that the Lagrangians Lnm belonging to one and the
same spin are on-shell equivalent to each other modulo total
divergence:

Lnm � �s = −1

2
Im〈Ĥ+C0,2s |Ĥ+C0,2s〉, n + m = 2s − 2.

Due to Eq. (7.3), the local functional

S =
∫
AdS4

L

is gauge invariant when evaluated on the solutions to the HS
equations (4.8). There are strong grounds to believe that func-
tionals of this type may be used for establishing the AdS/CFT
correspondence. Usually, the role of functional S is played
by the ‘genuine’ action of the bulk fields. If such an action is
unavailable or does not exist for a given set of bulk fields, one
can try to use some other local functionals that are compatible
with fundamental symmetries of the model. In the context of
nonlinear HS theories, a concrete proposal for the construc-
tion of an appropriate functional S has been put forward in
[13].
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8 Conclusion

Let us comment on the obtained results and further per-
spectives. In Sect. 5, we proposed an anti-de Sitter invari-
ant presymplectic structure which is compatible with the
unfolded representation for the free HS fields in AdS4.
Although this presymplectic structure may not exhaust all the
possibilities, it looks most natural and reproduces the stan-
dard presymplectic structures in the case of low spins. The
classification of all possible presymplectic currents in the free
HS theories, especially for color multiplets, is an interesting
open problem. In many respects it is similar to the classifica-
tion of the usual conserved currents. The existence of gauge
invariant HS currents [29] suggests that such extra presym-
plectic structures are likely to exist in the sector of Weyl
fields. As discussed in Sect. 6, every covariant presymplectic
structure establishes a specific correspondence between the
global HS symmetries and the conservation laws. It would
also be interesting to relate the found presymplectic struc-
tures with those resulting from the frame-like Lagrangians
for the free HS fields [16,22]. Although the equations consid-
ered in this paper are non-Lagrangian, the study of presym-
plectic structures may in principle allow one to identify a
canonical presymplectic structure which is associated to an
action principle upon adding/removing auxiliary fields.

Another open problem is finding a nontrivial presymplec-
tic structure for nonlinear HS theories. The problem can be
attacked in two ways. First, one can proceed perturbatively,
adding quadratic vertices to the free field equations. Such
vertices are now available in a more or less explicit form;
see [23,30,31]. Deformation of the free equations of motion
implies a compatible deformation of the free presymplectic
structure. It would be interesting to find the latter or identify
obstructions to its existence. If we take this approach seri-
ously, then the quantum correlators of fields have to involve
the vertices coming from the deformed presymplectic struc-
ture in addition to those contained in the classical equations
of motion. This also opens the way for the study of quantum
anomalies. Second, one can start from the nonlinear Vasiliev
equations and try to find a compatible presymplectic struc-
ture. The problem here is worse than it was with the free
fields as the nonlinear system involves a larger Weyl algebra
and more field equations.

One way or the other, we see that the covariant presym-
plectic structure offers a far more flexible approach to the
study and quantization of HS theories than the conventional
Lagrangian formalism.

Acknowledgments The author would like to thank Evgeny Skvortsov
for useful discussions and acknowledges support from the Russian
Foundation for Basic Research (Project No. 16-02-00284 A).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. M.A. Vasiliev, Consistent equations for interacting gauge fields of
all spins in 3+1 dimensions. Phys. Lett. B 243, 378–382 (1990)

2. P.O. Kazinski, S.L. Lyakhovich, A.A. Sharapov, Lagrange structure
and quantization. JHEP 0507, 076 (2005)

3. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, A remark on the
Lagrange structure of the unfolded field theory. Int. J. Mod. Phys.
A 26, 1347–1362 (2011)

4. D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, Lagrange anchor
and characteristic symmetries of free massless fields. SIGMA 8,
021 (2012)
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