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In this review, we introduce well-known Bell inequalities, the relations between the Bell inequality and quantum separability, and the
entanglement distillation of quantum states. It is shown that any pure entangled quantum state violates one of Bell-like inequalities.
Moreover, quantum states that violate any one of these Bell-like inequalities are shown to be distillable. New Bell inequalities that
detect more entangled mixed states are also introduced.
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The contradiction between local realism and quantum me-
chanics was first highlighted by the paradox of Einstein,
Podolsky and Rosen (EPR) [1]. Nonlocality can be deter-
mined from violation of conditions, called Bell inequalities
[2], that are satisfied by any local variable theory. In 1964,
Bell formulated an inequality that is obeyed by any local
hidden-variable theory. However, he showed that the EPR
singlet state |ψ+〉 = 1√

2
(|00〉 + |11〉) violates the inequality. In

fact, the Bell inequality provided the first possibility to distin-
guish experimentally between quantum-mechanical predic-
tions and predictions of local realistic models. Bell inequal-
ities are of great importance in understanding the concep-
tual foundations of quantum theory and investigating quan-
tum entanglement, as they can be violated by quantum entan-
gled states. On the other hand, violation of the inequalities is
closely related to the extraordinary power of realizing certain
tasks in quantum information processing, which outperforms
its classical counterpart, such as building quantum protocols
to decrease communication complexity [3] and providing se-
cure quantum communication [4, 5].

One of the most important Bell inequalities is the Clauser-
Horne-Shimony-Holt (CHSH) inequality [6] for two-qubit
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systems. It can be generalized to the N-qubit case, known as
the Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality
[7–9]. A set of multipartite Bell inequalities has been ele-
gantly derived in terms of two dichotomic observables per
site [10, 11]. The set includes the MABK inequality as a spe-
cial case [12] and can detect entangled states that the MABK
inequality fails to detect. Ref. [13] introduced another fam-
ily of Bell inequalities for N-qubit systems that are maxi-
mally violated by all Greenberger-Horne-Zeilinger states. A
method of extending Bell inequalities from n to (n+1)-partite
states is described in [14]. In the higher dimensional bipartite
case, Collins et al. [15] constructed a CHSH-type inequal-
ity for arbitrary d-dimensional (qudit) systems known as the
Collins-Gisin-Linden-Masser-Popescu (CGLMP) inequality.

Gisin [16] presented a theorem in 1991 that states that any
pure entangled two-qubit state violates the CHSH inequal-
ity. Specifically, the CHSH inequality is both sufficient and
necessary for the separability of two-qubit states. Soon af-
ter, Gisin and Peres [17] provided an elegant proof of this
theorem for the case of pure two-qudit systems. Chen et al.
[18] showed that all pure entangled three-qubit states violate
a Bell inequality. Nevertheless, it has remained an open prob-
lem for a long time whether Gisin’s theorem can be general-
ized to the multi-qudit case. In addition, Bell inequalities that
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can detect more (mixed) entangled quantum states are being
searched for.

Bell inequalities are also useful in verifying the security
of quantum key distribution protocols [19, 20]. There is a
simple relation between nonlocality and distillability: if any
two-qubit [21] or three-qubit [22] pure or mixed state vio-
lates a specific Bell inequality, then the state must be distill-
able. Dür showed that for the case N > 8, there exist N-qubit
bound entangled (non-distillable) states that violate Bell in-
equalities [23]. However, Acı́n has demonstrated that for all
states violating an inequality, there exists at least one kind of
bipartite decomposition of the system such that a pure entan-
gled state can be distilled [24, 25]. However generally it is an
open problem whether violation of a Bell inequality implies
distillability.

In this review, we first give a brief introduction of several
important Bell inequalities in section 1. We introduce a set of
Bell-like inequalities in section 2 that can be shown to be both
sufficient and necessary for the separability of general pure
bipartite quantum states in arbitrary dimensions. We then
show that pure entangled states can be distilled from quan-
tum mixed states that violate one of these Bell inequalities.
New Bell operators are constructed in section 3 and used to
detect more entangled quantum states. We further derive the
maximal violation of such Bell inequalities. We give conclu-
sions and remarks in section 4.

1 Some well-known Bell inequalities

In this section we recall several useful Bell inequalities in-
cluding the CHSH inequality, WWZB inequality (including
the MABK inequality as a special case), CGLMP inequality
and some other generalized inequalities.

1.1 Bell inequalities for two and three-qubit systems

The famous CHSH [6] inequality is a kind of improved Bell
inequality that is more feasible for experimental verification.
Suppose two observers, Alice and Bob, are separated spa-
tially and share two qubits. Alice and Bob each measure
a dichotomic observable with possible outcomes ±1 in one
of two measurement settings: A1, A2 and B1, B2 respectively.
The CHSH inequality is a constraint on correlations between
Alice’s and Bob’s measurement outcomes if a local realistic
description is assumed. The Bell function for the CHSH in-
equality has been given as [26]

B(λ) = A1(λ)(B1(λ) + B2(λ)) + A2(λ)(B1(λ) − B2(λ)), (1)

where λ is a collection of local hidden variables and the vari-
ables Ai(λ) and B j(λ) take values ±1. According to the lo-
cal hidden-variable theory, the statistical average of the Bell
function must satisfy the inequality [6, 26], |〈B(λ)〉| 6 2,
where the statistical average 〈B(λ)〉 =

∫
ρ(λ)B(λ)dλ with

ρ(λ) the probability density distribution.

Quantum mechanically the statistical average of the Bell
function is replaced by a quantum average of the correspond-
ing operator given by

B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2, (2)

where Ai = ~ai · ~σA = ax
i σ

x
A + ay

iσ
y
A + az

iσ
z
A, B j = ~b j · ~σB =

bx
jσ

x
B + by

jσ
y
B + bz

jσ
z
B, ~ai = (ax

i , a
y
i , a

z
i ) and ~b j = (bx

j , b
y
j, b

z
j) are

real unit vectors satisfying |~ai| = |~b j| = 1 with i, j = 1, 2, and
σ

x,y,z
A/B are Pauli matrices. The CHSH inequality says that if

there exist local hidden-variable models to describe the sys-
tem, the inequality

|〈B〉| 6 2 (3)

must hold.
For entangled states, it is always possible to find suitable

observables A1, A2, B1 and B2 such that inequality (3) is vio-
lated. For instance, taking |ψ+〉 = (|01〉 − |10〉)/√2, A1 = σx,
A2 = σz, B1 = (σx + σz)/

√
2, and B2 = (σx − σz)/

√
2, we

obtain |〈B〉| = 2
√

2, which gives the maximal violation [27].
For three-qubit states, the Mermin inequality states that

[7–9]

|〈A2B1C1〉 + 〈A1B2C1〉 + 〈A1B1C2〉 − 〈A2B2C2〉| 6 2, (4)

where observables Ai, Bi, and Ci, i = 1, 2, are associated
with three qubits respectively. The maximal violation of the
inequality (4) is 4. The quantum mechanical violation of the
Bell inequalities has been demonstrated experimentally, e.g.
[28].

1.2 Bell inequalities for multipartite qubit systems

The MABK inequality is a kind of Bell inequality for multi-
partite qubits [7–9] whereas the WWZB inequality [10, 11]
is a kind of generalization of the MABK inequality. Here
we introduce the WWZB inequality and consider the MABK
inequality as a special case of the WWZB inequality.

Consider an N-qubit quantum system and allow each part
to choose independently between two dichotomic observ-
ables A j, A

′
j for the jth observer, specified by local parame-

ters. Each measurement has two possible outcomes 1 and −1.
The WWZB quantum mechanical Bell operator is defined by

BN =
1

2N

∑

s1,s2,··· ,sN =±1

S (s1, s2, · · · , sN)

×
∑

k1,k2,··· ,kN =±1

sk1
1 sk2

2 · · · skN
N ⊗N

j=1 O j(k j), (5)

where S (s1, s2, · · · , sN) is an arbitrary function taking only
values ±1 and O j(1) = A j and O j(2) = A

′
j with k j = 1, 2. It is

shown in [10, 11] that local realism requires |〈BN〉| 6 1.
The MABK inequality is recovered by taking S (s1, s2, · · · ,

sN) =
√

2 cos[(s1 + s2 + · · · + sN − N + 1)/(π/4)] in (5).
Employing an inductive method from the (N − 1)-partite

WWZB Bell inequality to the N-partite inequality, a family
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of Bell inequalities was presented in [13]. The new Bell op-
erator is defined by

BN = BN−1 ⊗ 1
2

(AN + A
′
N) + IN−1 ⊗ 1

2
(AN − A

′
N), (6)

where BN−1 represents the normal WWZB Bell operators
defined in (5). Such new Bell operators yield violation of
the Bell inequality for the generalized GHZ states, |ψ〉 =

cosα|00 · · · 0〉+ sinα|11 · · · 1〉, in the whole parameter region
of α and for any number of qubits, thus overcoming the draw-
back of the WWZB inequality. In the three-qubit case, one
can construct three different Bell operators from B2 by taking
the approach of (6). The corresponding three Bell inequalities
can distinguish full separability, detailed partial separability
and true entanglement [29].

1.3 Bell inequalities for high-dimensional systems

For bipartite high-dimensional quantum systems, we intro-
duce the CGLMP inequality given in [15]. We consider the
standard Bell-type experiment: two spatially separated ob-
servers, Alice and Bob, share a copy of a pure two-qudit state
|ψ〉 ∈ Cd ⊗ Cd in the composite system. Suppose that Alice
and Bob both have the choice of performing one of two dif-
ferent projective measurements, each of which has d possible
outcomes. Let A1 and A2 denote observables measured by
Alice and B1 and B2 the observables measured by Bob. Each
measurement has d possible outcomes: 0, 1, · · · , d − 1. Any
local variable theory must then obey the well-known CGLMP
inequality [15]:

Id ≡
[ d

2 ]−1∑

k=0

(1 − 2k
d − 1

){[P(A1 = B1 + k)

+P(B1 = A2 + k + 1) + P(A2 = B2 + k)

+P(B2 = A1 + k)] − [P(A1 = B1 − k − 1)

+P(B1 = A2 − k) + P(A2 = B2 − k − 1)

+P(B2 = A1 − k − 1)]} 6 2. (7)

Here [x] denotes the integer part of x. The joint probability
P(Aa = Bb + m) =

∑d−1
j=0 P(Aa = j, Bb = j − m), a, b = 1, 2, in

which the measurements Aa and Bb have outcomes that differ
by m (mod d).

Chen et al. show that all bipartite entangled states violate
the CGLMP inequality [30], which gives a detailed proof of
Gisin’s Theorem for two-qudit quantum systems.

Let X[1]
j and X[2]

j , where j = 1, 2, denotes the two ob-
servables for the jth party. Each has d possible outcomes:
x[1]

j , x
[2]
j = 0, 1, · · · , d−1. Fu introduced the correlation func-

tion Qi j [31],

Qi j =
1
S

d−1∑

m,n=0

f i j(m, n)P(X[i]
1 = m, X[ j]

2 = n), (8)

where S = (d − 1)/2 is the spin of the particle for the d-
dimensional system, and P(X[i]

1 = m and X[ j]
2 = n) are the

joint probabilities. f i j(m, n) = S − M[ε(i − j)(m + n), d];
ε(x) = 1 for x > 0 and −1 for x < 0; M(x, d) = x mod d,
0 6 M(x, d) 6 d − 1. On the basis of these correlation
functions, a tight Bell inequality for two-qudit systems is ob-
tained:

I[2]
d ≡ Q11 + Q12 − Q21 + Q22 6 2. (9)

Inequality (9) is equivalent to the CGLMP inequality.
Chen et al. further generalized this kind of correlation

function to arbitrary N-qudit systems [32].Let X[1]
j and X[2]

j ,
where j = 1, 2, · · · ,N, denote the two observables for the jth
party. Each has d possible outcomes: x[1]

j , x
[2]
j = 0, 1, · · · , d −

1. The generalized correlation functions are then defined as

Qi1,··· ,iN =
1
S

d−1∑

x[i1]
1 =0

· · ·
d−1∑

x[iN ]
N =0

f i1···iN (x[i1]
1 , · · · , x[iN ]

N )

× P(X[i1]
1 = x[i1]

1 , · · · , X[iN ]
N = x[iN ]

N ), (10)

where S =
d − 1

2
, f i1···iN (x[i1]

1 , · · · , x[iN ]
N ) = S − M[(−1)χ

×(
∑N

j=1 x[i j]
j ), d] and χ = ΠN

j=1i j. According to these corre-
lation functions, the generalized multipartite Bell inequality
can be written as

I[2N]
d = Q1···1 + Q1212···12 + Q2121···21 − Q2···2 6 2,

I[2N+1]
d = Q1···1 + Q1212···21 + Q2121···12 − Q2···2 6 2.

(11)

1.4 Bell inequalities for many-setting systems

Gisin [33] investigated the CHSH inequalities for two-qubit
quantum systems with many settings. Let a j = ±1 and
b j = ±1 for all indices j = 1, 2, · · · , n. The inequality

n∑

j=1

( n+1− j∑

k=1

a jbk −
n∑

k=n+2− j

a jbk

)
6

[n2 + 1
2

]
(12)

can be easily derived, where [x] denotes the largest integer
smaller or equal to x. Inspired by this, one can set the Bell
operator to be

B =

n∑

j=1

( n+1− j∑

k=1

A jBk −
n∑

k=n+2− j

A jBk

)
, (13)

where A j = ~a j · ~σ, Bk = ~bk · ~σ,~a = (ax, ay, az) and ~b =

(bx, by, bz) are real unit vectors, and ~σ = (σx, σy, σz). The
Bell inequalities for two-qubit systems with many settings
are then

〈B〉 6
[n2 + 1

2

]
. (14)

The ratio of the maximal violation of the inequality decreases
with the increasing number of settings. The usual two-setting
CHSH inequality has a maximal violation ratio

√
2. For large

n-settings, the ratio tends to 4/π ∼ 1.273 [33].
The authors studied d ⊗ d-dimensional bipartite systems

with d a prime integer [34]. Two observers are allowed each
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to choose one of d variables. Consider a classical Bell func-
tion,

B(λ) =
1

d − 1

d−1∑

n,i, j=1

ωni jAn
i (λ)Bn

j (λ), (15)

where ω = e
i2π

d is the primitive d-th root of unity, Ai(λ) =

ωai(λ) and B j(λ) = ωb j(λ) with ai(λ) and b j(λ) integer-valued
functions of hidden variable λ.

The quantum Bell operator, corresponding to the classical
Bell function, is given by

B =
1

d − 1

d−1∑

n,i, j=1

ωni jAn
i Bn

j , (16)

where Ai and B j are local unitary operators with eigenvalues
1, ω, ω2, · · · , ωd−1. It is shown that the statistical average of
the Bell operator satisfies

− d2

d − 1
6 〈B〉 6 d(2d − 3)

d − 1
. (17)

This Bell inequality is maximally violated quantum me-
chanically by mutually unbiased measurements of a max-
imally entangled state, whereas other Bell inequalities for
high-dimensional systems such as the CGLMP inequality
[15] and that of Son et al. [35] do not have such a property.

2 Gisin’s theorem

In this section we introduce a set of Bell-like inequalities that
can be shown to be both sufficient and necessary for sepa-
rability of general pure bipartite quantum states in arbitrary
dimensions [36].

2.1 Bell inequalities for bipartite quantum systems

We first consider general N×M bipartite quantum systems in
vector spaceHAB = HA⊗HB with dimensions dimHA = M
and dimHB = N. We aim to find Bell inequalities like (3)
such that any quantum entangled states violates a Bell in-
equality.

Let LA
α and LB

β be the generators of special unitary groups
S O(M) and S O(N) respectively. The M(M − 1)/2 generators
LA
α are given by {| j〉〈k| − |k〉〈 j|}, 1 6 j < k 6 M, where |i〉,

i = 1, · · · ,M, is the usual orthonormal basis ofHA, a column
vector with the ith row 1 and the rest zeros. LB

β is similarly
defined. The matrix operators Lα (resp. Lβ) have M−2 (resp.
N − 2) rows and M − 2 (resp. N − 2) columns that are iden-
tically zero. We define the operators Aα

i (resp. Bβj ) from Lα
(resp. Lβ) by replacing the four entries in the positions of the
two nonzero rows and two nonzero columns of Lα (resp. Lβ)
with the corresponding four entries of the matrix ~ai · ~σ (resp.
~b j · ~σ), and keeping the other entries of Aα

i (resp. Bβj ) zero.
We define the Bell operators as

Bαβ = Ãα
1 ⊗ B̃β1 + Ãα

1 ⊗ B̃β2 + Ãα
2 ⊗ B̃β1 − Ãα

2 ⊗ B̃β2, (18)

where Ãα
i = LαAα

i L†α, B̃βj = LβBβj L
†
β, and i, j = 1, 2.

Theorem 1 Any bipartite pure quantum state is entan-
gled if and only if at least one of the following Bell inequali-
ties is violated [36]:

|〈Bαβ〉| 6 2, (19)

where α = 1, 2, · · · , M(M−1)
2 , β = 1, 2, · · · , N(N−1)

2 .
Proof Assume that the state |ψ〉 violates one of the Bell

inequalities in (19): i.e. there exist α0 and β0 such that
|〈Bα0β0〉| > 2. Equivalently one has that the state |ψ〉α0β0 =

LA
α0
⊗LB

β0
|ψ〉

||LA
α0⊗LB

β0
|ψ〉|| violates the CHSH inequality in (3). As the local

operation LA
α0
⊗LB

β0
does not change the separability of a state,

|ψ〉 must be entangled.
Now assume that |ψ〉 ∈ HAB is an entangled state. We

prove that at least one of the Bell inequalities in (19) is vio-
lated. Set ρ = |ψ〉〈ψ|. By projecting |ψ〉 onto 2×2 subsystems
[37], we get the following pure states

ραβ =
LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†

||LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†|| , (20)

where α = 1, 2, · · · , M(M−1)
2 , β = 1, 2, · · · , N(N−1)

2 , and ||X|| =√
Tr(XX†). Here ραβ are pure states with rank one. As the

matrix LA
α ⊗ LB

β has MN − 4 rows and MN − 4 columns that
are identically zero, there are at most 4× 4 = 16 nonzero ele-
ments in the matrix ραβ. The states ραβ are called “two-qubit”
states in this sense.

The concurrence of |ψ〉 is defined by C(|ψ〉) =√
2(1 − Tr(ρ2

A)) with ρA = TrB(ρ) the reduced density ma-
trix of ρ by tracing over the subsystem B [39, 40]. A
pure quantum state |ψ〉 can be generally expressed as |ψ〉 =
M∑

i=1

N∑
j=1

ai j|i j〉, ai j ∈ C, in the computational basis |i〉 and

| j〉 of HA and HB respectively, where i = 1, · · · ,M and
j = 1, · · · ,N. Therefore, the concurrence can be expressed
as

C(|ψ〉) =

√√√ M∑

α=1

N∑

β=1

|C(ραβ)|2, (21)

where ραβ are defined in (20). Since we have assumed that
|ψ〉 is an entangled quantum state, C(|ψ〉) must be nonzero:
i.e. at least one of ραβ, say ρα0β0 , has nonzero concurrence:
C(ρα0β0 ) > 0. As discussed above, ρα0β0 is actually a “two-
qubit” quantum pure state. It has been shown that an entan-
gled two-qubit pure state must violate the Bell inequality (3)
[16, 17]. Therefore, the inequality |〈Bα0β0〉| 6 2 is violated.

As an example we consider a bipartite 3× 3 quantum state

|ψ〉 with Schmidt decomposition |ψ〉 =
3∑

i=1
λi|iA〉|iB〉, λi > 0

and
∑

i λi
2 = 1. The concurrence of |ψ〉 is given by

C(|ψ〉) = 4(λ1λ2)2 + 4(λ1λ3)2 + 4(λ2λ3)2. (22)
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If |ψ〉 is entangled, the concurrence must have at least one
nonzero term in (22), say λ1λ3 , 0. The corresponding ob-

servables are LA
2 = LB

2 =



0 0 1

0 0 0

−1 0 0


and

ρ =



λ2
3 0 0 0 0 0 0 0 λ1λ3

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

λ1λ3 0 0 0 0 0 0 0 λ2
1



.

We select the Bell operator in (18) to be

B22 = Ã2
1 ⊗ B̃2

1 + Ã2
1 ⊗ B̃2

2 + Ã2
2 ⊗ B̃2

1 − Ã2
2 ⊗ B̃2

2, (23)

where Ã2
k = LA

2 A2
k(LA

2 )†, B̃2
l = LB

2 B2
l (LB

2 )†, and

A2
k =



−a3
k 0 a1

k + a2
k i

0 0 0

a1
k − a2

k i 0 a3
k


,

B1
l =



−b3
l 0 b1

l + b2
l i

0 0 0

b1
l − b2

l i 0 b3
l


, k, l = 1, 2.

We then obtain the maximal violation of the inequality (19):

2
√

1 +
4λ2

1λ
2
3

(λ2
1+λ2

3)2 > 2.

2.2 Inequalities for multipartite quantum systems

We now consider multipartite quantum systems. For conve-
nience we consider that all subsystems have the same dimen-
sions. However, as seen in the following, our discussions also
apply to multipartite quantum systems with different dimen-
sions.

Let H denote a d-dimensional vector space with basis |i〉,
where i = 1, 2, ..., d. An L-partite pure state in H ⊗ · · · ⊗ H is
generally of the form

|Ψ〉 =

d∑

i1,i2,···iL=1

ai1,i2,···iL |i1, i2, · · · iL〉, ai1,i2,···iL ∈ C. (24)

Let α and α
′

(resp. β and β
′
) be subsets of the subindices

of a, associated with the same sub-vector spaces but having
different summing indices. α (or α

′
) and β (or β

′
) span the

whole space of the given sub-index of a. A possible combi-
nation of the indices of α and β can be considered as a kind of
bipartite decomposition of the L subsystems, say part A and
part B, containing m and n = L − m subsystems respectively.

For a given bipartite decomposition, we can employ anal-
ysis similar to the bipartite case. Let LA

α and LB
β be the gen-

erators of special unitary groups S O(dm) and S O(dn). By
projecting |Ψ〉 onto 2 × 2 subsystems, we have “two-qubit”
pure states:

ρ
p
αβ =

LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†

||LA
α ⊗ LB

βρ(LA
α)† ⊗ (LB

β )†|| , (25)

where α = 1, 2, · · · , dm(dm−1)
2 , β = 1, 2, · · · , dn(dn−1)

2 , and p is
the bipartite decomposition of the L subsystems.

For each pure state ρp
αβ we define the corresponding Bell

operators

Bp
αβ = Ãα

1 ⊗ B̃β1 + Ãα
1 ⊗ B̃β2 + Ãα

2 ⊗ B̃β1 − Ãα
2 ⊗ B̃β2, (26)

where Ãα
i = LA

αAα
i (LA

α)† and B̃βj = LB
β Bβj (L

B
β )† are the Hermi-

tian operators similarly defined as in (18).
Theorem 2 Any multipartite pure quantum state is en-

tangled if and only if at least one of the following inequalities
is violated [36]:

|〈Bp
αβ〉| 6 2. (27)

Proof Obviously, multipartite quantum states that vio-
late any one of the Bell inequalities in (27) must be entan-
gled.

We now prove that, for any entangled multipartite pure
quantum state, at least one of the inequalities in (27) is vi-
olated. The concurrence of |Ψ〉 is given by [41]

CL
d (|Ψ〉) =

√√√√
K

∑

p

d∑

{α,α′ ,β,β′ }
|aαβaα′β′ − aαβ′ aα′β|2, (28)

where K = d/2m(d − 1), m = 2L−1 − 1, and
∑
p

is the summa-

tion over all possible combinations of the indices of α and β.
(28) can be rewritten as

CL
d (|Ψ〉) =

√
K

∑

p

∑

αβ

(C(ρp
αβ))

2, (29)

where ρp
αβ are defined in (25). As |Ψ〉 is an entangled state,

C(|Ψ〉) must be nonzero: i.e. at least one of ρp
αβ, say ρ

p0
α0β0

,
has nonzero concurrence. As discussed above, ρp0

α0β0
is actu-

ally a two-qubit quantum pure state. An entangled two-qubit
quantum pure state must violate the Bell inequality (3).

As an example, we consider three-qubit systems. Acin et
al. verified that any general pure three-qubit state |Ψ〉 can be
uniquely written as [42]

|Ψ〉 = λ0|000〉+λ1eiψ|100〉+λ2|101〉+λ3|110〉+λ4|111〉, (30)

where λi > 0, 0 6 ψ 6 π, and
∑

i λ
2
i = 1. From straightfor-

ward mathematics, we have

C2(|Ψ〉) = 2(λ0λ2)2 + 2(λ0λ4)2 + |2eiψλ1λ4 − 2λ2λ3|2



950 Li M, et al. Chinese Sci Bull April (2011) Vol. 56 No. 10

+2(λ0λ3)2 + 2(λ0λ4)2 + |2eiψλ1λ4 − 2λ2λ3|2
+2(λ0λ2)2 + 2(λ0λ3)2 + 2(λ0λ4)2.

We now give a detailed analysis of how the entangled pure
three-qubit state( i.e. at least one of the terms on the right
hand side of (31) is non-zero) must violate one of the inequal-
ities in (27).

Case 1 If λ0λ2 , 0, the corresponding operator LA
2⊗LB

1 =

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0


⊗


0 1

−1 0

 and

ρ12|3
21 =



λ2
2 −e−iψλ1λ2 0 0 0 λ0λ2 0 0

−eiψλ1λ2 λ2
1 0 0 0 −eiψλ0λ1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

λ0λ2 −e−iψλ0λ1 0 0 0 λ2
0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

We choose the Bell operator in (26) to be that with respect to
the bipartite decomposition of the first two qubits and the last
one:

B12|3
21 = Ã2

1 ⊗ B̃1
1 + Ã2

1 ⊗ B̃1
2 + Ã2

2 ⊗ B̃1
1 − Ã2

2 ⊗ B̃1
2, (31)

where Ã2
k = LA

2 A2
k(LA

2 )†, B̃1
l = LB

1 B1
l (LB

1 )†, and A2
k =

−a3
k 0 a1

k + a2
k i 0

0 0 0 0

a1
k − a2

k i 0 a3
k 0

0 0 0 0


, B1

l =


−b3

l b1
l + b2

l i

b1
l − b2

l i b3
l

,

with k, l = 1, 2. We thus have the maximal violation of the

inequality (27), 2
√

1 +
4λ2

0λ
2
2

(λ2
0+λ2

1+λ2
2)2 > 2.

Case 2 If |eiψλ1λ4 − λ2λ3| , 0, the corresponding opera-

tor is LA
6 ⊗ LB

1 =



0 0 0 0

0 0 0 0

0 0 0 1

0 0 −1 0


⊗


0 1

−1 0

. The matrix

ρ12|3
61 has only nonzero entries at the right down corner with

the form,


λ2
4 −λ3λ4 −λ2λ4 e−iψλ1λ4

−λ3λ4 λ2
3 λ2λ3 −e−iψλ1λ3

−λ2λ4 λ2λ3 λ2
2 −e−iψλ1λ2

eiψλ1λ4 −eiψλ1λ3 −eiψλ1λ2 λ2
1


.

The Bell operator in (26) has the form

B12|3
61 = Ã6

1 ⊗ B̃1
1 + Ã6

1 ⊗ B̃1
2 + Ã6

2 ⊗ B̃1
1 − Ã6

2 ⊗ B̃1
2, (32)

where Ã6
k = LA

6 A6
k(LA

6 )†, B̃1
l = LB

1 B1
l (LB

1 )†, and A6
k =

0 0 0 0

0 0 0 0

0 0 −a3
k a1

k + a2
k i

0 0 a1
k − a2

k i a3
k


, B1

l =


−b3

l b1
l + b2

l i

b1
l − b2

l i b3
l

,

k, l = 1, 2. The corresponding maximal violation is given by

2
√

1 +
4|eiψλ1λ4−λ2λ3 |2
(λ2

1+λ2
2+λ2

3+λ2
4)2 , which is obviously strictly larger than

2. Other cases can be discussed similarly.
Nevertheless, (27) is not yet a Bell-type inequality in the

usual sense, because we treated the problem by considering
all possible bipartite decompositions. Generally it only ser-
vices as a sufficient and necessary condition for separability
of multipartite pure states. For some particular cases, the op-
erators (26) for multipartite systems become local ones as in
the standard Bell inequalities. For instance, the Bell operator
(32) in the example can be written in a very simple form:

B12|3
61 = Ã6

1 ⊗ B̃1
1 + Ã6

1 ⊗ B̃1
2 + Ã6

2 ⊗ B̃1
1 − Ã6

2 ⊗ B̃1
2

=
(

I−σz

2

)
⊗ (Ã′61 ⊗ B̃1

1+Ã′61 ⊗ B̃1
2+Ã′62 ⊗ B̃1

1−Ã′62 ⊗ B̃1
2),

where Ã′6k =


a3

k −a1
k + ia2

k

−a1
k − ia2

k −a3
k

, with k = 1, 2. There-

fore, our Bell operators acting on multipartite states can be
expressed as real linear combinations of local operators in
this case.

2.3 Bell inequalities and distillation

A bipartite state ρ is called distillable, if and only if maxi-
mally entangled bipartite pure states (e.g. |ψ+〉 = 1√

2
(|00〉 +

|11〉)) can be created from a number of identical copies of the
state ρ by means of local operations and classical communi-
cation. We call a multipartite state distillable if and only if
there exists at least one bipartite decomposition of the system
such that pure entangled states can be distilled. It has been
shown that all quantum entangled pure states are distillable.
However, it is a challenge to give an operational criterion of
distillability for general mixed states. A sufficient condition
of distillability has been presented [37]. Our inequalities (27)
are both sufficient and necessary for the separability of pure
states, but generally not for the separability of mixed states.
However, surprisingly (27) can serve as a criterion for distil-
lability.

Theorem 3 Any bipartite quantum state ρ that violates
any one of the Bell inequalities in (19) (i.e. Tr{Bαβρ} > 2) is
always distillable. In addition, if a multipartite quantum state
ρ violates one of the Bell inequalities in (27) (i.e. ρ satisfies
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Tr{Bp
αβρ} > 2), then bipartite maximally entangled pure states

can be distilled from the copies of ρ.
Proof It has been shown that a density matrix ρ is dis-

tillable if and only if there are projectors P, and Q that map
high-dimensional spaces to two-dimensional spaces such that
the state P ⊗ Qρ⊗sP ⊗ Q is entangled for some s copies [43].
Thus if any one of the Bell inequalities in (19) is violated,
there exists a submatrix ραβ, like (20), that has nonzero con-
currence. For a generally given operator Lα = |i〉〈 j| − | j〉〈i|,
Lβ = |k〉〈l| − |l〉〈k|, the operators P and Q are explicitly given
by P = ALα and Q = BLβ, where A = |0A〉〈i| + |1A〉〈 j|,
B = |0B〉〈k| + |1B〉〈l|, |0A/B〉 and |1A/B〉 are the orthonormal
bases of a two-dimensional vector space. P ⊗ Q maps state
ρ to a two-qubit state that has the same nonzero concurrence
as ραβ. Since any entangled two-qubit state is distillable, ρ is
distillable. The multipartite case can be discussed similarly.

Remark It has been shown that positive partial trans-
position (PPT) entangled quantum states are not distillable
[44, 45]. Therefore PPT quantum states should never vio-
late the Bell inequalities in (19) or (27). This can be seen
from the following. A density matrix ρ is said to have a
PPT property if the partial transposition of ρ with respect
to any subsystem(s) is still positive. Let ρTB denote the
partial transposition with respect to the subsystem B. As-
sume that there is a PPT state ρ violating one of the Bell
inequalities in (27), say Tr{Bp0

α0β0
ρ} > 2. This can be equiv-

alently understood as there exists two-qubit state ρp0
α0β0

in the
form of (25) such that Tr{Bp0

α0β0
ρ

p0
α0β0
} > 2, where Bp0

α0β0
=

Aα0
1 ⊗ Bβ0

1 + Aα0
1 ⊗ Bβ0

2 + Aα0
2 ⊗ Bβ0

1 − Aα0
2 ⊗ Bβ0

2 . On the other
hand, using the PPT property of ρ, we have

ρTB
α0β0

= LA
α0
⊗ (LB

β0
)∗ρTB (LA

α0
)† ⊗ (LB

β0
)T > 0. (33)

As both LA
α0

and LB
β0

are projectors to two-dimensional sub-
spaces, ρp0

α0β0
can be considered as a 2× 2 state. While a 2× 2

PPT state ρα0β0 must be separable [46], it contradicts with
Tr{Bp0

α0β0
ρ

p0
α0β0
} > 2.

3 Bell inequalities detecting more (mixed)
entangled bipartite states

We now consider bipartite states for N ×N systems. For even
N, let Γx, Γy and Γz be block-diagonal matrices in which each
block is an ordinary Pauli matrix, σx, σy and σz repectively,
as described in [17] for Γx and Γz. When N is odd, we set the
elements of the kth row and the kth column in Γx, Γy and Γz

to be zero. The other elements of Γx, Γy and Γz are the block-
diagonal matrices as for the even-N case. Let Π(k) be an
N × N matrix whose only nonvanishing entry is (Π(k))kk = 1,
k ∈ 1, 2, · · · ,N, for odd N and be a null matrix for even N.
We define observables

A = ~a · ~Γ + Π(k) = axΓx + ayΓy + azΓz + Π(k) (34)

and

B = ~b · ~Γ + Π(k) = bxΓx + byΓy + bzΓz + Π(k), (35)

where ~a = (ax, ay, az) and ~b = (bx, by, bz) are real unit vectors.
We define the Bell operator as [38]

B = A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2, (36)

where

Ai = ~ai · ~Γ + Π(k) = ax
i Γx + ay

i Γy + az
i Γz + Π(k),

Bi = ~b j · ~Γ + Π(k) = bx
jΓx + by

jΓy + bz
jΓz + Π(k).

Theorem 4 If there exists a local hidden-variable model
to describe the system, the inequality

|〈B〉| 6 2 (37)

must hold for any ~ai, ~bi, i = 1, 2, and all k ∈ 1, 2, · · · ,N.
The proof of this theorem is straightforward. Note that for

any three-dimensional unit vectors ~a and ~b, the eigenvalues
of A and B are either 1 or −1. Then as discussed for the
two-qubit case, if there exists a local hidden-variable model
to describe the system, we have

|〈B〉|= |〈A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2〉|
= |〈A1 ⊗ (B1 + B2)〉 + 〈A2 ⊗ (B1 − B2)〉|
6 |〈A1〉||〈(B1 + B2)〉| + |〈A2〉||〈(B1 − B2)〉| 6 2.

We now compute the maximal violation of the Bell in-
equality.

Proposition 1 For any bipartite pure state |ψ〉 with even
N, the maximal violation of the Bell inequality (37) is given
by [38]

max〈ψ|B|ψ〉 = 2
√
τ1 + τ2, (38)

where τ1 and τ2 are the two largest eigenvalues of the matrix
RT R, R is the matrix with entries Rαβ = 〈ψ|Γα ⊗ Γβ|ψ〉, with
α, β = x, y, z.

Proof If N is even, we have the maximal violation of the
Bell inequalities (37)

max〈ψ|B|ψ〉= max
~a1,~a2,~b1,~b2

[〈ψ|
∑

α=x,y,z

aα1 Γα ⊗
∑

β=x,y,z

(bβ1 + bβ2)Γβ|ψ〉

+〈ψ|
∑

α=x,y,z

aα2 Γα ⊗
∑

β=x,y,z

(bβ1 − bβ2)Γβ|ψ〉]

= max
~a1,~a2,~b1,~b2

[~a1 · R(~b1 + ~b2) + ~a2 · R(~b1 − ~b2)]

= max
~b1,~b2

[||R(~b1 + ~b2)|| + ||R(~b1 − ~b2)||]

= max
θ,~c⊥~c′

2[cos θ||R~c|| + sin θ||R~c′ ||]

= max
~c⊥~c′

2
√
||R~c||2 + ||R~c′ ||2 = 2

√
τ1 + τ2,

where ~ai = (ax
i , a

y
i , a

z
i ), ~b j = (bx

j , b
y
j, b

z
j), i, j = 1, 2.
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Proposition 2 For any bipartite pure state |Ψ〉 in the
Schmidt bi-orthogonal form,

|Ψ〉 =

N∑

i=1

ci|ii〉, ci ∈ IR,
∑

i

c2
i = 1 (39)

with odd N, the maximal violation of the Bell inequality (37)
is given by [38]

max〈Ψ|B|Ψ〉 = 2
√
τ1 + τ2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉, (40)

where τ1 and τ2 are defined in Proposition 1.
Proof For odd N and any k ∈ {1, 2, · · · ,N}, similarly we

have

max〈Ψ|B|Ψ〉= max
~a1,~a2,~b1,~b2

[
〈Ψ|

( ∑

α=x,y,z

aα1 Γα + Π(k)
)

⊗
( ∑

β=x,y,z

(bβ1 + bβ2)Γβ + 2Π(k)
)
|Ψ〉

+〈Ψ|
( ∑

α=x,y,z

aα2 Γα + Π(k)
)

⊗
( ∑

β=x,y,z

(bβ1 − bβ2)Γβ

)
|Ψ〉

]

= max
~a1,~a2,~b1,~b2

[~a1 · R(~b1 + ~b2) + ~a2 · R(~b1 − ~b2)]

+2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉
= max

~b1,~b2

[||R(~b1 + ~b2)|| + ||R(~b1 − ~b2)||]

+2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉
= max
θ,~c⊥~c′

2[cos θ||R~c|| + sin θ||R~c′ ||]
+2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= max
~c⊥~c′

2
√
||R~c||2 + ||R~c′ ||2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉

= 2
√
τ1 + τ2 + 2〈Ψ|Π(k) ⊗ Π(k)|Ψ〉.

Remark For even N, formula (38) is also valid for any
bipartite mixed quantum state ρ. One only needs to redefine
Rαβ = Tr[ρΓα ⊗ Γβ] for α, β = x, y, z. Formula (40) does
not fit for general quantum states with odd N. However, for
some quantum mixed states the maximal violation of the Bell
inequality (37) can still be computed using the formula (see
example 2 below).

Moreover, the Bell inequality in [17] is a special case of
(37) in the sense that it can be obtained by setting ay and by

in (34) and (35) to be zero, and k = N in the Bell operator
(36). For k = N, the maximal violation of (37) for an arbi-
trary bipartite quantum state (39) is the same as the violation
values given in [17]. This means that the parameters ay and by

do not contribute to the maximal violation in this case. How-
ever, even in this case the formulae (38) and (40) have their
own advantages. On one hand, one can compute the maximal

violation without choosing proper Bell operator as is needed
in [17]. On the other hand, for odd N, more entangled quan-
tum states can be detected by adjusting k. In the following
we give two examples to illustrate these properties.

Example 1 Consider a 3× 3 pure state with Schmidt de-
composition |ψ〉 = (|11〉 + |33〉)/√2. Using the Bell operator
given in [17] we obtain the maximal violation 2, which fails
to detect the entanglement. Now taking k = 2 we obtain
the maximal violation of the Bell inequality (37) 2

√
2, which

means that |ψ〉 is entangled.
The Bell inequality (37) is valid also for all mixed states

with even N and for some mixed states with odd N. There-
fore it can be used to detect experimentally the entanglement
of mixed states.

Example 2 Consider the maximally entangled state

|ψ+〉 =
N∑

i=1

1√
N
|ii〉 mixed with noise:

ρ(x) =
x

N2 I + (1 − x)|ψ+〉〈ψ+|. (41)

For even N, the maximal violation of ρ(x) is 2
√

2(1 − x).
Therefore, the Bell inequality (37) detects entanglement of
ρ(x) for 0 6 x < 0.292893. If N is odd, we note that for any
k ∈ {1, 2, · · · ,N} and α ∈ {x, y, z}, (Γα)kk = 0. Thus we have

Tr[ρ(x)(Γα ⊗ Π(k))] = Tr[ρ(x)(Π(k) ⊗ Γα)] = 0. (42)

Taking into account (42) we have the maximal violation

max Tr[ρ(x)B] = max
~a1,~a2,~b1,~b2

Tr
[
ρ(x)

( ∑

α=x,y,z

aα1 Γα + Π(k)
)

⊗
( ∑

β=x,y,z

(bβ1 + bβ2)Γβ + 2Π(k)
)]

+Tr
[
ρ(x)

( ∑

α=x,y,z

aα2 Γα + Π(k)
)

⊗
( ∑

β=x,y,z

(bβ1 − bβ2)Γβ

)]
= max
~a1,~a2,~b1,~b2

[~a1 · R(~b1 + ~b2) + ~a2 · R(~b1 − ~b2)]

+2Tr[ρ(x)Π(k) ⊗ Π(k)]

= max
~c⊥~c′

2
√
||R~c||2 + ||R~c′ ||2

+2Tr[ρ(x)Π(k) ⊗ Π(k)]

= 2
√
τ1 + τ2 + 2Tr[ρ(x)Π(k) ⊗ Π(k)],

where Rαβ = Tr[ρΓα ⊗Γβ]. For N = 3, the maximal violation
of ρ(x) is 2

25 (5 − 4x) + 8
√

2
5 (1 − x). Hence the Bell inequality

(37) can detect the entanglement of ρ(x) for 0 6 x < 0.2566
in this case.
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4 Conclusions and remarks

In this review, we have introduced several kinds of Bell in-
equalities such as the CHSH, MABK, WWZB and CGLMP
Bell inequalities that rule out the local hidden-variable the-
ories and help detect quantum entanglement experimentally.
We have also introduced a series of Bell inequalities for bipar-
tite quantum states by projecting the whole quantum systems
to “two-qubit” subsystems. It has been shown that quantum
states violating any one of these Bell inequalities are entan-
gled. On the other hand, any entangled pure quantum state
must violate at least one of these Bell-like inequalities. It has
also been shown that quantum mixed states that violate the
Bell inequalities must be distillable.

By constructing new Bell operators bipartite Bell inequal-
ities that include Gisin’s Bell inequalities in [17] as a spe-
cial case have been also been introduced. The maximal vi-
olation of these Bell inequalities for pure states in Schmidt
forms has been obtained. The formulae of maximal violation
are valid also for all pure and mixed quantum states in even-
dimensional bipartite systems and for some mixed states in
odd-dimensional bipartite systems. The new Bell inequality
has been shown to be capable of detecting quantum entangle-
ment more effectively.

In regards to the quantum separability most Bell inequali-
ties so far work only for pure states. In [47] the authors used
the fact that the PPT criterion [44, 45] is both sufficient and
necessary for the separability of two-qubit mixed states and
presented a formula for the detection of all entangled two-
qubit mixed states experimentally in principle. Nevertheless,
generally for mixed states less has been known for Bell in-
equalities. Concerning the conceptual foundations of quan-
tum mechanics, to avoid state dependence in ruling out the
local hidden-variable model in experiments, some “loophole-
free” Bell inequalities have also been investigated [48, 49].
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