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Abstract

Background: Mobile health monitoring using wearable sensors is a growing area of interest. As the world’s
population ages and locomotor capabilities decrease, the ability to report on a person’s mobility activities
outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare
interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility
monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for
able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier
on fifteen able-bodied participants and fifteen participants who suffered a stroke.

Methods: Participants performed a consecutive series of mobility tasks and daily living activities while wearing
a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were
derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity
and F-scores were calculated to evaluate HAR classifier performance.

Results: The classifier performed well for both populations when differentiating mobile from immobile states
(F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased
for the stroke population, particularly when using information derived from participant posture to make classification
decisions.

Conclusions: Human activity recognition using a smartphone based system can be accomplished for both
able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in
HAR performance with a stroke population. The study results can be used to guide smartphone HAR system
development for populations with differing movement characteristics.

Keywords: Activities of Daily Living, Monitoring, Ambulatory/instrumentation, Cellular Phone, Movement,
Accelerometry/instrumentation

Background
Mobile health monitoring using wearable sensors is a
growing area of interest. As the world’s population
ages and locomotor capabilities decrease, the ability
to monitor a person’s mobility activities outside a
hospital setting becomes valuable for clinical decision-
making. Human Activity Recognition (HAR) systems
combine wearable sensor and computing technologies

to monitor human movement in the person’s chosen
environment.
HAR systems typically use accelerometer and gyro-

scope sensors since these are small, affordable, and gen-
erally unobtrusive [1]. Other HAR systems combine
sensor types, such as accelerometer and ECG [2], or
use multiple sensor locations, such as sternum and
thigh [3], or thigh and chest [4]. However, multiple sen-
sors can be cumbersome and inconvenient for reliable
implementation in everyday life. Smartphones are ubi-
quitous, carried by most individuals on a daily basis,
and many devices contain integrated accelerometer and
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gyroscope sensors, which are commonly used to measure
posture and movement [5].
HAR systems typically follow a machine learning

structure [6]. Raw sensor signals are collected, pre-
processed, and segmented into time windows. Feature
extraction is then performed to retrieve relevant infor-
mation from sensor signals over each window. Features
are abstractions of raw data; such as statistical calcula-
tions (mean, variance etc.) or frequency domain fea-
tures that describe the signal’s periodic structure. Since
many features could be used in a model, a selection
process is typically used to reduce the data’s dimension-
ality. Feature selection methods may be filter-based,
which evaluate features characteristics without a classi-
fier, or wrapper based, which use classifier accuracy to
evaluate features [7]. Finally, a classifier is constructed
using training data and evaluated on testing data. The
literature has previously focused on offline human ac-
tivity recognition, although recent work is moving to-
wards algorithms that can be implemented in real time
using the onboard sensors and computational power of
a smartphone [8].
Many HAR systems have been developed for able-

bodied participants; however, few systems have been
tested on the elderly or people with disabilities [9]. A
recent study showed that an activity classification
model trained on an older cohort and tested on a
younger sample performed better than model training
with the younger cohort and testing on the older
sample. This suggested that a model trained on eld-
erly participants may be more generalizable and result
in more a robust classifier [10], since younger people
may perform activities of daily living with more inten-
sity than older or disabled people. Stroke is a leading
cause of disability among adults and can lead to limited
activities of daily living, balance and walking problems,
and a need for constant care [11]. For a clinician, reliable
data about a patient’s activity is important, particularly in-
formation about the type, duration and frequency of daily
activities (i.e., standing, sitting, lying, walking, climbing
stairs). This information can help therapists design re-
habilitation programmes and monitor progress of patients
outside of the hospital. An objective record of a patient’s
daily activities can avoid mistaken or intentionally mis-
leading self-reporting. Mobility monitoring could provide
large datasets with information about the mobility habits
of people who have suffered a stroke, guiding future re-
search in the field of healthcare and intervention.
The current research compared the performance of a

smartphone-based wearable mobility monitoring sys-
tem (WMMS) between able-bodied participants and
people who had suffered a stroke. By studying differ-
ences in classifier performance between populations,
we addressed the hypothesis that a WMMS developed

using sensor data from able-bodied participants would
perform worse on a population of stroke participants
due to differences in walking biomechanics. This re-
search also identified where the classifier performed
poorly, thereby providing guidance for future research
on HAR for populations with mobility problems.

Methods
Population
A convenience sample of 15 able-bodied participants
(age 26 ± 8.9 years, height 173.9 ± 11.4 cm, weight 68.9 ±
11.1 kg) and 15 stroke participants (age 55 ± 10.8 years,
height 171.6 ± 5.79 cm, weight 80.7 ± 9.65 kg) partici-
pated in this study. Stroke participants were recruited at
the University Rehabilitation Institute in Ljubljana,
Slovenia, and able-bodied participants were recruited at
the Ottawa Hospital Rehabilitation Centre in Ottawa,
Canada. Stroke participants were identified by a physical
and rehabilitation medicine specialist as capable of safely
completing the mobility tasks and able to commit to
the time required to complete the evaluation session
(approximately 30 min). Six stroke patients had left
hemiparesis and nine had right hemiparesis. Thirteen
stroke patients had ischemic stroke, one subarachnoid
hemorrhage and one had impairment because of a benign
cerebral tumor. Six stroke patients used one crutch, two
had one arm in a sling, and one used an ankle-foot orth-
osis. The stroke event averaged 9.6 months before the
study and the average FIM score was 107 points. The
study was approved by the Ottawa Health Science
Network Research Ethics Board and the Ethics Board of
University Rehabilitation Institute (Ljubljana, Slovenia).
All participants provided informed consent.

Equipment
Accelerometer, magnetometer, and gyroscope data were
collected with a Blackberry Z10 smartphone using the
TOHRC Data Logger [12] in both the Ottawa and
Ljubljana locations. Smartphone sampling rates can
vary [13], therefore the Z10 sensors were sampled at
approximately 50Hz, with a mean standard deviation of
15.37Hz across all trials. The WMMS used the Blackberry’s
gravity and linear acceleration output to calculate fea-
tures. Linear acceleration is the Z10 acceleration minus
the acceleration due to gravity. On the BlackBerry Z10,
the inertial measurement unit fuses the accelerometer,
gyroscope, and magnetometer sensors and splits accel-
eration components into applied linear acceleration and
acceleration due to gravity (the gravity signal); however,
the device manufacturer does not report how this is
accomplished.
Since the phone’s orientation on the pelvis can differ

between individuals due to a larger mid-section or differ-
ent clothing, a rotation matrix method was used to
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correct for phone orientation [14]. Ten seconds of accel-
erometer data were collected while the participant was
standing still and a 1-s data segment with the smallest
standard deviation was used to calculate the rotation
matrix constants. The orientation correction matrix was
applied to all sensor data.
While the WMMS application can run entirely on the

smartphone, for the purposes of this research, the raw
sensor output was exported as a text file and run in a
custom Matlab program to observe WMMS algorithm
performance in detail and calculate outcome measures.

WMMS algorithm
Raw sensor data from the smartphone were converted
into features, over 1 s data windows. Data interpolation
was not used and, since the results remained accept-
able, this method was not sensitive to within window
sampling rate variability with a standard deviation of
15.37 Hz.”. The features were used to classify move-
ment activities. The features derived from acceleration
due to gravity, linear acceleration, and gyroscope sig-
nals are displayed in Table 1. Features were selected
based on the literature and observing feature behaviour
from pilot data with the target activities.
A custom decision tree used these features to classify

six activity states: mobile (walk, stairs) and immobile
(sit, stand, lie, and small movements). The decision tree
structure is shown in Fig. 1.
The WMMS has three activity stages. The first stage

used a combination of three features (L-SMA, SOR,
SoSD: Table 1) to identify if the person was mobile
(walking, climbing stairs) or immobile (sitting, stand-
ing, lying down, or small movements). All thresholds
were determined using a separate experimental set of
able-bodied participant data, collected for this purpose.
Figure 2 shows plots of L-SMA, SOR, and SoSD that
demonstrate how these features change during immo-
bile and mobile activities.
In stage 2, if the person was in an immobile state,

trunk orientation was examined using the “difference to
Y” signal feature (Table 1). Based on thresholds, the clas-
sifier determined if the person was upright (standing),

leaning back (sitting), or horizontal (lying down). If the
person was standing, a weighting factor was calculated
based on how many of the stage 1 features passed
thresholds. If the weighting factor exceeded 1 for two
consecutive data windows and the person was standing
for more than 3 s, the person was considered to be per-
forming a small movement (i.e., standing and washing
dishes at a sink, etc.). Figure 3 shows how the DifftoY
feature changes when a person walks to a bed, lies down,
and stands up again to continue walking.
In stage three, the default classification was walking. If

the participant walked for more than 5 s and the slope
of G-SMAvar feature passed a threshold, then the activ-
ity was classified as climbing stairs. Figure 4 shows how
G-SMAvar changes when a person is walking and when
they are climbing stairs. The set of stairs used in this ex-
ample had a landing in the middle, corresponding to the
downward slope in G-SMAvar.

Protocol
Data collection took place under realistic but controlled
conditions. Participants follow a predefined path in The
Ottawa Hospital Rehabilitation Centre or University
Rehabilitation Institute, including living spaces within
the rehab centres, and perform a consecutive series of
mobility tasks: standing, walking, sitting, riding an ele-
vator, brushing teeth, combing hair, washing hands,
drying hands, setting dishes, filling the kettle with
water, toasting bread, a simulated meal at a dining
table, washing dishes, walking on stairs, lying on a bed,
and walking outdoors [15] Appendix.
Before the trial, participant characteristics were

recorded (i.e., age, gender, height, weight). Participants
wore the smartphone in a holster attached to their
right-front belt or pant waist, with the camera
pointed forward. Trials were video recorded using a
separate smartphone for activity timing comparison
and contextual information. Video time was synchro-
nized with the smartphone sensor output by shaking
the phone at the beginning and end of the trial, pro-
viding a recognizable accelerometer signal and video
event.

Table 1 Features derived from smartphone sensor signals. Acceleration due to gravity = (Xgrav, Ygrav, Zgrav), linear
acceleration = (Xlin, Ylin, Zlin), SD = standard deviation

Signal Feature Formula Abbreviation

Simple moving average of sum of range
of linear acceleration (4 windows)

Σ4 i¼1 range Xlinið Þð Þ � range Ylinið Þð Þ � range Zlinið Þð Þ½ �
4

L-SMA

Difference to Y Ygrav–Zgrav–Xgrav DifftoY

Sum of range of linear acceleration (range(Xlini)) + (range(Ylini)) + (range(Zlini)) SOR

Sum of standard deviation of linear acceleration (SD(Xlini)) + (SD(Ylini)) + (SD(Zlini)) SoSD

Maximum slope of simple moving average
of sum of variances of gravity

SMAvar ¼ Σ4 i¼1 Var Xgravð Þi � Var Ygravð Þi � Var Zgravð Þið Þ
4

max(SMAvar(2)–SMAvar(1), SMAvar(3)–SMAvar(2), SMAvar(4)–SMAvar(3))
G-SMAvar
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Gold-standard activity event times were manually iden-
tified from the video recordings. Each 1 s window was
considered an occurrence. For example, sitting for 5 s was
considered 5 occurrences. When segmenting the data, a
1 s window on either side of a change of state was consid-
ered part of the transition; to reduce error from inter-rater
variability in identifying the start of an activity. Transitions
were not considered when calculating outcomes. The
number of 1 s instances (class distribution) of each activity
is shown in Table 2. Since this is a realistic data sample
representing activities of daily living, class imbalances
occur. For example, there were more instances of walking
or sitting than climbing stairs or lying down.
Data analysis involved calculating the number of

true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN) in Matlab. Sensitivity,
specificity, and F-scores were calculated for each indi-
vidual, and the average and standard deviation of all
participants were calculated for each activity. F-score
was calculated as F = 2TP/(2TP + FP + FN). Results for
each data window were compared to the gold-standard re-
sults from the video recording using descriptive statistics.
Descriptive statistics and t-tests (p < 0.05) were used to
compare sensitivity, specificity, and f-scores between able-
bodied and stroke groups.

Results
The WMMS performed similarly with able-bodied and
stroke populations when detecting immobile and mobile

states (stage 1), with all sensitivity and specificity results
greater than 0.92 and F-scores greater than 0.94
(Table 3). No significant differences were found between
groups for stage 1, although sensitivity and F-score for
the stroke population were lower for immobile states
and specificity was higher for mobile states.
In stage 2, specificity and F-scores for stroke partici-

pants were significantly lower for stand detection, but
specificity was greater than 0.94 for both groups
(Table 4). Specificity for lie detection was significantly
greater for stroke participants, but results for both
groups were greater than 0.97. Sitting sensitivity and
F-Score were lower than the other activities, with re-
sults for both groups less than 0.68.
In stage 3, stand F-scores for stroke participants were

significantly lower than the able-bodied group (Table 5).
Lie specificity was significantly greater for stroke partici-
pants, but outcomes for both groups were greater than
0.98. For the stroke group, walk sensitivity and F-score
were lower. Specificity was significantly lower for stair
recognition and sensitivity and small movement recogni-
tion was poor for both groups.

Discussion
This research demonstrated that a smartphone-based
HAR approach can provide relevant information on
human movement activities for both able-bodied and
stroke populations, at a broad level of detail; however,
sensitivity and specificity decrease as the classification

Fig. 1 WMMS Decision Tree Structure
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tasks become more complex. Thus, our hypothesis that
the WMMS would perform worse for stroke participants
was valid at higher detail levels, but invalid at a broad
classification level.
For stage 1, mobile and immobile activity states

were well classified for both able-bodied and stroke
populations. From the accelerometer-based HAR lit-
erature, activity classification accuracy ranged from 71
to 97 % [6, 16], with studies in the past two years
typically reporting results from 92 to 96 % for able
bodied [17, 18] and 82-95 % for older people [19].
Since this stage has only 2 classes, and the feature

differences are large, thresholds can be set such that
variability between people and populations has less of
an effect on classification accuracy. Classification er-
rors at stage1 may not be purely due to WMMS is-
sues. For example, annotating gold-standard video can
be difficult for small movements, such as washing
dishes, since the person may move their body enough
to be classified in a mobile state but human interpret-
ation of the video could indicate an immobile state.
The WMMS may provide a more consistent method
of assessing an appropriate movement threshold for
daily activity assessment since human raters could

Fig. 2 Plots of L-SMA, SOR and SoSD showing how these features change during mobile and immobile activities
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differ in their interpretation of movement-type and
movement-onset during activities of daily living.
In stage 2, classification algorithm performance de-

creased when identifying if an immobile person was
standing, sitting, or lying down. Specificity and F-score
were significantly lower for stand detection and the algo-
rithm performed poorly for sit identification, for both
populations. Classification was based on static thresholds
from a single feature (DifftoY). Since stroke can cause
posture asymmetry during standing [20] and the stroke
population was much older than the able-bodied sample,
with posture changing with age [21], the DifftoY feature
and threshold may not be sufficient to identify standing
across populations, and could benefit from a combin-
ation of multiple features. In addition, inaccurate results
could occur if the phone shifted or changed orientation
during the trial. The therapist manually repositioned the

phone during the trial for two stroke participants, one
stroke participant unintentionally moved the smart-
phone with her paretic hand, and another participant
intentionally re-adjusted his phone. The changed pos-
ition may have affected application performance for
activities that require a consistent phone orientation
(i.e., standing, sitting, lying).
Inclination angle is typically used to classify posture

when using a single accelerometer location [22]. In this
case, sit identification relies on the pelvis tilting slightly
back while sitting, which was not always the case in this
study. For example, when a person sits at the dinner
table they often lean forward to reach for objects or
when eating. If the person did not sit back enough to
pass the threshold before leaning forward, sitting was
not identified. In many cases, stroke participants were
detected as standing during the dinner table sequence.

Fig. 3 Plot of DifftoY showing how this feature change during waling and lying down activities

Fig. 4 Plot of Sum of variance, SMAvar and G-SMAvar showing how these features change during waling and stair climbing activities
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This reduced sitting sensitivity and standing specificity.
Improvements in sit detection from one pelvis-worn
sensor location could be achieved by using additional
features or expanding the duration of sit analysis beyond
the 1-s data window to compensate for forward-back
transitions when sitting and performing daily activities
(eating, office work, etc.). The DifftoY threshold setting
was also attributed to classification problems for three of
the able-bodied participants, for whom some sit periods
were classified as lie. This outcome also demonstrated
the importance of assessing HAR systems across a range
of daily activities since the results would have been
much better if only “pure” sit, stand, and lie tasks were
included.
In stage 3, lower walk detection sensitivity and F-score

were observed for the stroke group. The smartphone
was worn on the right side of the pelvis and nine of the
participants had right hemiparesis, thereby reducing
pelvis movement on the right side and affecting sensor
and feature output. In most cases, the people with right
hemiparesis had slightly lower outcomes than those with
left hemiparesis (<0.18 % difference in sensitivity and
specificity), however the differences were not significant
(p < 0.05). Many stroke participants wore the phone with
cotton pants that had an elastic waist strap, which may
have provided an inferior anchor point for the phone’s
holster (i.e., as compared with a leather belt or fitted
pants). This may have increased sensor signal variability
for stroke participants. All able-bodied participants
had a belt or more rigid pant waist. When used in
practice, a viable HAR system must deal with mount-
ing inconsistencies.

Stair specificity for the stroke group was significantly
lower than the able-bodied group, and the algorithm
performed poorly for stair recognition for all partici-
pants. F-score was low for both populations due to the
high number of false positives detected, lowering the
precision of classification. For five able-bodied people,
the WMMS briefly detected “stairs” when lying down,
then correctly re-identified the state as lie. This occurred
because the feature used to detect stair climbing (covari-
ance) increased during the stand-to-lie movement. Inter-
estingly, this did not occur for stroke participants,
perhaps due to a difference in bed height or a difference
in mobility techniques when transitioning into a supine
position. As with sitting, error correction over a longer
duration would eliminate incorrect stair classification
during the stand-to-lie transition. Stroke participants
tended to rely more on the railing while climbing stairs.
Multiple threshold settings for differing the stair ascent
methods, or user-specific thresholds for stair identifica-
tion, could be explored as a means of improving classi-
fication results. For example, one stroke participant
ascended and descended the stairs in a step-by-step
fashion that placed both feet on a single stair, thereby
changing the sensor signals and hence affecting stair rec-
ognition. This is a common stair climbing strategy for
the stroke population and persons with other mobility
and walking limitations.
Small movements were not well classified for either

population, resulting in a sensitivity of 0.09 for able-
bodied participants and 0.15 for stroke participants. The
small movements included in the trial (making toast,
washing dishes, eating a meal etc.) did not always cause
pelvis accelerations. Thus, accelerometer and gyroscope
sensors located on the hip were not appropriate for de-
tecting all activities. Other small movements, such as

Table 2 Class distributions at each level

Activity Able bodied Stroke Both

Stand 114 (27.1) 131 (37.0) 122 (32.9)

Sit 45 (6.6) 93 (26.9) 68.9 (30.8)

Lie 32 (7.0) 36 (4.3) 34 (6.0)

Walk 361 (32.9) 768 (239.4) 565 (266.5)

Upstairs 17 (2.5) 49 (25.9) 33 (24.4)

Small moves 95 (14.1) 135 (31.8) 115 (31.8)

Table 3 Average, standard deviation (in brackets), and differences
between able-bodied and stroke groups for sensitivity, specificity,
and F-score at stage 1

Activity Sensitivity Specificity F-score

Stand Stroke 0.920 (0.076) 0.997 (0.006) 0.944 (0.053)

Able-bodied 0.963 (0.048) 0.997 (0.005) 0.975 (0.028)

p-value 0.08 0.95 0.06

Large Moves Stroke 0.997 (0.005) 0.920 (0.076) 0.994 (0.006)

Able-bodied 0.997 (0.006) 0.963 (0.048) 0.993 (0.008)

p-value 0.95 0.08 0.68

Table 4 Average, standard deviation (in brackets), and
differences between able-bodied and stroke groups for sensitiv-
ity, specificity, and F-score at stage 2

Activity Sensitivity Specificity F-score

Stand Stroke 0.826 (0.133) 0.940 (0.053) 0.701 (0.176)

Able-bodied 0.903 (0.168) 0.987 (0.024) 0.917 (0.137)

p-value 0.17 0.01 0.00

Sit Stroke 0.533 (0.361) 0.987 (0.021) 0.568 (0.265)

Able-bodied 0.646 (0.408) 0.983 (0.036) 0.673 (0.405)

p-value 0.43 0.71 0.41

Lie Stroke 0.794 (0.347) 1.000 (0.000) 0.824 (0.337)

Able-bodied 0.943 (0.086) 0.979 (0.038) 0.871 (0.165)

p-value 0.13 0.05 0.64

Walk Stroke 0.997 (0.006) 0.961 (0.035) 0.993 (0.006)

Able-bodied 0.997 (0.005) 0.966 (0.041) 0.989 (0.011)

p-value 0.95 0.70 0.27
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washing dishes or brushing teeth, caused the person to
move their hips enough for the WMMS to classify a
mobile state. The poor performance related to the diffi-
culty in categorizing daily living human movements
and difficulty setting small movement onsets when
labeling gold-standard video. In future work, better
methods are needed for gold file annotation, taking into
account individual differences in how small movements
are performed.
These results show that, while mobile and immobile

classifications can be achieved with a relatively similar
degree of accuracy for able-bodied and stroke partici-
pants, the WMMS had more difficulty with classification
as the activity detail level increased, especially for the
mobility affected stroke population. More research with
pathological movement populations are required to
understand how HAR algorithms need to be modified to
accommodate for group and individual differences when
performing activities of daily living.
Limitations in the current work include a moderate

sample size from each population (15 people). The
stroke group was not age matched to the able bodied
group; therefore, age-related differences may have
accounted for some differences in WMMS performance.
However, the average ages for both groups were less
than 60 years, which is not considered a senior popula-
tion, thereby minimizing potential age effects. Stroke
participants were in the sub-chronic phase and were
capable of completing 30 min of walking. In the

community, post-stroke populations may have lower
mobility levels that could introduce greater movement
variability, thereby decreasing WMMS performance.
Since this study only used one smartphone model for
testing. future work could evaluate algorithm perform-
ance with other smartphone based systems.

Conclusions
In this paper, it was demonstrated that human activity
recognition using a smartphone based system can be ac-
complished for both able-bodied and stroke populations.
However, an increase in activity classification complexity
leads to a decrease in WMMS performance with a stroke
population. This validates the hypothesis that a HAR
system developed using only able-bodied sensor data
would perform worse when used to classify activities in
a stroke population.
Sensor data and features produced by the different

populations affected WMMS performance. The algo-
rithm performed reasonably well for both stroke and
able-bodied participants when differentiating between
sit, stand, lie, and walk and between mobile and immo-
bile states. When stair climbing and small movements
were added to the classification, algorithm performance
decreased. Additional features are recommended to
more accurately identify sitting, standing, and lying, as
well as stair identification, since stair signals are similar
to level walking for many individuals. These features
should be selected using data from people with

Table 5 Average, standard deviation (in brackets), and differences between able-bodied and stroke groups for sensitivity, specificity,
and F-score at stage 3

Activity Sensitivity Specificity F-score

Stand Stroke 0.759 (0.163) 0.883 (0.051) 0.512 (0.145)

Able-bodied 0.878 (0.169) 0.886 (0.044) 0.728 (0.128)

p-value 0.06 0.89 0.00

Sit Stroke 0.533 (0.360) 0.978 (0.037) 0.529 (0.262)

Able-bodied 0.646 (0.408) 0.975 (0.049) 0.660 (0.400)

p-value 0.43 0.88 0.30

Lie Stroke 0.794 (0.347) 1.000 (0.000) 0.824 (0.337)

Able-bodied 0.943 (0.086) 0.982 (0.033) 0.871 (0.165)

p-value 0.13 0.05 0.10

Walk Stroke 0.514 (0.161) 0.903 (0.074) 0.646 (0.123)

Able-bodied 0.643 (0.226) 0.932 (0.052) 0.734 (0.162)

p-value 0.08 0.22 0.10

Stairs Stroke 0.622 (0.260) 0.672 (0.107) 0.101 (0.085)

Able-bodied 0.711 (0.384) 0.805 (0.123) 0.168 (0.142)

p-value 0.46 0.00 0.13

Small Movements Stroke 0.154 (0.156) 0.987 (0.016) 0.209 (0.179)

Able-bodied 0.091 (0.102) 0.994 (0.01) 0.149 (0.163)

p-value 0.20 0.23 0.35
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differing mobility levels, so as not to over-fit the classi-
fier to a young population with potentially more intense
movements. The study results can be used to guide
HAR system development for populations with differ-
ing movement characteristics.

Appendix A: Activity Circuit
The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario
Follow the participant and video their actions, on a
second smartphone, while they perform the following
actions, spoken by the investigator.

� From a standing position, shake the smartphone to
indicate the start of the trial.

� Continue standing for at least 10 s. This standing
phase can be used for phone orientation calibration.

� Walk to a nearby chair and sit down.
� Stand up and walk 60 m to an elevator.
� Stand and wait for the elevator and then walk into

the elevator.
� Take the elevator to the second floor.
� Turn and walk into the home environment
� Walk into the bathroom and simulate brushing teeth.
� Simulate combing hair.
� Simulate washing hands.
� Dry hands using a towel.
� Walk to the kitchen.
� Take dishes from a rack and place them on the

counter.
� Fill a kettle with water from the kitchen sink.
� Place the kettle on the stove element.
� Simulate placing bread in a toaster.
� Walk to the dining room.
� Sit at a dining room table.
� Simulate eating a meal at the table.
� Stand and walk back to the kitchen sink.
� Rinse off the dishes and place them in a rack.
� Walk from the kitchen back to the elevator.
� Stand and wait for the elevator and then walk into

the elevator.
� Take the elevator to the first floor.
� Walk 50 m to a stairwell.
� Open the door and enter the stairwell.
� Walk up stairs (13 steps, around landing, 13 steps).
� Open the stairwell door into the hallway.
� Turn right and walk down the hall for 15 m.
� Turn around and walk 15 m back to the stairwell.
� Open the door and enter the stairwell.
� Walk down stairs (13 steps, around landing, 13 steps).
� Exit the stairwell and walk into a room.
� Lie on a bed.
� Get up and walk 10 m to a ramp.
� Walk up the ramp, turn around, then down the

ramp (20 m).

� Continue walking into the hall and open the door
to outside.

� Walk 100 m on the paved pathway.
� Turn around and walk back to the room.
� Walk into the room and stand at the starting point.
� Continue standing, and then shake the smartphone

to indicate the end of trial.

University Rehabilitation Institute, Ljubljana Slovenia
Follow the participant and video their actions, on a
second smartphone, while they perform the following
actions, spoken by the investigator.

� From a standing position, shake the smartphone to
indicate the start of the trial.

� Walk down the hall to a chair in another room and
sit down.

� Stand up and walk into the hall.
� Walk around the lobby and into the home

environment
� Walk up to the sink and simulate brushing teeth.
� Simulate combing hair.
� Simulate washing hands.
� Dry hands using a towel.
� Walk to the kitchen.
� Take dishes from a table and place them on the

counter.
� Fill a kettle with water from the kitchen sink.
� Place the kettle on the stove element.
� Simulate placing bread in a toaster.
� Walk to the dining room.
� Sit at a dining room table.
� Simulate eating a meal at the table.
� Stand and walk back to the kitchen sink.
� Rinse off the dishes and place them in a rack.
� Walk from the kitchen to the elevator.
� Stand and wait for the elevator and then walk into

the elevator.
� Take the elevator to the third floor.
� Walk down the hall to a stairwell.
� Open the door and enter the stairwell.
� Walk up stairs (11 steps, around landing, 11 steps).
� Open the stairwell door into the hallway.
� Walk down the hall.
� Open the door and enter a room.
� Lie on a bed.
� Get up and walk to the door.
� Open the door and walk back down the hallway.
� Open the door and enter the stairwell.
� Walk down stairs (11 steps, around landing, 11 steps).
� Exit the stairwell and walk down the hallway back

to the elevator.
� Stand and wait for the elevator and then walk into

the elevator.
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� Take the elevator to the first floor.
� Walk to the exit and walk outside.
� Walk through the parking lot to the underground

parking entrance.
� Stand at the top of the ramp.
� Walk down the ramp, turn around, then walk up

the ramp.
� Walk through the parking lot back to the entrance.
� Walk inside and back to the elevator.
� Stand and wait for the elevator and then walk into

the elevator.
� Take the elevator to the second floor.
� Walk down the hall and stand at the starting point.
� Continue standing, and then shake the smartphone

to indicate the end of trial.
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