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Fractional calculus represents a natural instrument to model nonlocal (or long-range dependence)
phenomena either in space or time. The processes that involve different space and time scales
appear in a wide range of contexts, from physics and chemistry to biology and engineering. In
many of these problems, the dynamics of the system can be formulated in terms of fractional
differential equations which include the nonlocal effects either in space or time. We give a brief,
nonexhaustive, panoramic view of the mathematical tools associated with fractional calculus as
well as a description of some fields where either it is applied or could be potentially applied.

1. Introduction

Fractional calculus (see [1]) offers a very suggestive and stimulating scenario where we
have the convergence of deep and fundamental mathematical questions, development of
appropriate numerical algorithms, as well as the applications to modelizations in different
frameworks. An illustration of the physical applications of fractional calculus is the recent
following books and special issues on applications on nanotechnology and other important
topics [2–6], among many others.

From a mathematical point of view, the modelization of the long-range dependence
is associated with integrodifferential equations in a broad sense. On the other hand, in
many cases such integrodifferential equations can be understood as fractional differential
equations, and they can be studied in the fractional calculus framework.

Up to 1994, a very extensive review about the nonlinear nonlocal wave equations with
applications in hydrodynamics, magnetohydrodynamics, and plasma can be found in the
book of Naumkin and Shishmarëv [7]. The nonlocality in space is associated with the long-
range interactions (many space scales) while the nonlocality in time is related to the effects
with memory/delay (many time scales). The corresponding nonlocal systems are described
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by general integral equations. We have a large spectrum of scenarios where the integral
equations occur [8–15]: potential theory, signal processing, problems in geophysics, problems
in electricity and magnetism, hereditary phenomena in physics and biology, problems
in population growth and industrial replacement, radiation problems, optimization, and
automatic control systems, communication theory, stochastic problems, and mathematical
economics and financial phenomena.

Professor Magin in his recent book, Fractional Calculus in Bioengineering [16] estab-
lished clearly the underlying mathematical context of fractional calculus.

The purpose of this book is to explore the behavior of biological systems from the perspective
of fractional calculus. Fractional calculus, integration and differentiation of an arbitrary or fractional
order, provides new tools that expand the descriptive power of calculus beyond the familiar integer-
order concepts of rates of change and area under a curve. . . Fractional calculus adds new functional
relationships and new functions to the familiar family of exponentials and sinusoids that arise in the
realm of ordinary linear differential equations. Among such functions that play an important role,
we have the Euler Gamma function, the Euler Beta function, the Mittag-Leffler functions, the
Wright and Fox functions, and so forth.

From a historical point of view, the origin of fractional calculus coincides with that of
differential calculus. In a letter [17] dated September 9, 1695, and addressed to G. Leibniz,
M. de L’Hopital raises the question of the possible meaning of dnf(x)/dxn if n = 1/2. The
answer of Leibniz was: “. . . d1/2x will be equal to x

√
dx : x. This is an apparent paradox from

which, one day, useful consequences will be drawn”. Fractional calculus arises to give a meaning
to the noninteger derivatives. This concept was also analyzed by E. Euler, J. Liouville,
P. S. Laplace, or Fourier. The generalization of this framework indicates that it is more
appropriate to talk of integration and differentiation of arbitrary order. The book by Samko et al.
[1] reflects the situation of fractional calculus up to 1990 with a wide bibliography and many
applications. Therefore we can think in the field of Fractional Calculus as an old topic, but,
from 20 years ago, the real applications of the so-called fractional models in so many branches
of applied sciences and engineering have increased in a dramatic way, so we can consider the
topic of fractional differential equations and their applications as a emergent field.

A nonexhaustive list of works that support the mentioned modern development
of fractional calculus and its applications are in [18–25]. From our point of view, the
monographic work by Metzler and Klafter in 2000 [26] could be considered as the last
breakpoint in developing the field of the study of fractional differential equations and their
applications. Some of the more important publications on the mentioned topic during last
five years, among so many references, could be the following books in [27–34].

There are different definitions of fractional derivatives and, as a consequence, of
fractional integrals, since the fractional derivation is the inverse operation of the fractional
integration. This a generalization of what happens in ordinary calculus with the standard
integer derivatives and integrals according to the fundamental theorem of calculus. The
different fractional derivatives coincide in the integer case, up to a constant in some cases.
We have the fractional derivatives and integrals of Riemann-Liouville, Liouville, Caputo, and
so forth, and their general feature is the nonlocal character since they depend on the values of
the function in an interval. As an illustration, we have a derivative of order β of the function
f(t):

dβf(t)

dtβ
=

1
Γ
(
m − β

)
∫ t

0

f (m)(τ)

(t − τ)β+m−1
dτ, (1.1)
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where m = 1, 2, . . . and 0 ≤ m − 1 < β ≤ m. This definition requires the absolute integrability
of the derivative of order m.

The nonlocal character makes the fractional derivatives suitable for the modellization
of systems with long-range interactions. On the other hand, the freedom in the definition
of fractional derivatives allows us to incorporate different types of information. At the
same time, the fractional derivatives with noninteger exponents stress which algebraic scale
properties are relevant to the data analysis.

In this contribution, we present a standard approach to construct fractional differential
equations from the basic equations of classical and quantum mechanics (Section 2). In
Section 3, we analyze the possible bridges between fractional calculus and fractals while in
Section 4, we consider the relation of fractional calculus with the modellization of relaxation
processes.

2. Fractional Differential Equations

Following the models of classical mechanics ([35]) and quantum mechanics ([36]), let us
consider a possible standard path among the basic equations of physics that would allow
us to interpret, in a more wide context, the level of fractionalization of the basic differential
equations by analyzing the associated dynamics and solutions in the framework of the
corresponding modellization [26, 27, 37–39].

For the sake of simplicity, let us consider systems in one space dimension. Newton’s
equation for a particle of mass m moving in a one-dimensional force field F, u being the
displacement, is

m
d2u

dt2
= F. (2.1)

Let us consider now a discrete system, formed by infinite point-like masses, m, spaced a
distance L, and connected by strings of the same constant k. If we name ui the displacement
of the particle i from the equilibrium, the equation of motion is given by

m

L

d2ui

dt2
= kL

ui+1 − 2ui + ui−1

L2 . (2.2)

This equation is written in such a way as to interpret appropriately the continuous limit of
the system when L → 0:

ui −→ u(x),
m

L
−→ ρ

(
linear mass density

)

kL −→ Y
(
Young’s modulus

)

ui+1 − 2ui + ui−1

L2 −→ ∂2u

∂x2 .

(2.3)
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Thus, we have the equation

1
c2

∂2u

∂t2
− ∂2u

∂x2 = 0, (2.4)

where c2 = Y/ρ. With this mechanical approach, we get the wave equation which appears
in many contexts according to the different meanings of u and c. If we assume a damping
mechanism either in the discrete system or in the continuous limit, we have the equation

1
c2

∂2u

∂t2
+

1
D

∂u

∂t
− ∂2u

∂x2 = 0. (2.5)

When the damping term, (1/D)(∂u/∂t), dominates over the inertial one,
(1/c2)(∂2u/∂t2), we have the standard diffusion equation

∂u

∂t
−D

∂2u

∂x2 = 0. (2.6)

Other basic equations are obtained by considering extra linear terms. This is the case of the
Klein-Gordon equation:

1
c2

∂2u

∂t2
− ∂2u

∂x2 + μ2u = 0 (2.7)

and the Telegraph equation:

1
c2

∂2u

∂t2
+

1
D

∂u

∂t
− ∂2u

∂x2 + μ2u = 0. (2.8)

All this can be summarized in the following equation, where we also include Dirac’s equation
to be discussed in the following paragraphs.

Newton’s equation for one particle

−→ Newton’s equation for one-dimensional system of particles linearly coupled

System of particles linearly coupled Continuous limit−−−−−−−−−−−−−−→ One-dimensional wave

Wave equation with damping −→ Diffusion equation −→ Fractional Dirac equation

Klein-Gordon equation −→ Dirac equation, Telegraph equation.
(2.9)

According to the previous statements, we have a set of very important features.
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(i) Fractional calculus provides a natural interpolation between different equations.
For instance, we have the fractional interpolation between the wave equation
(hyperbolic) and the diffusion equation (parabolic). Thus, we have the family of
fractional equations

∂βu

∂tβ
−D

∂2u

∂x2 = 0. (2.10)

When β = 2 we have the wave equation, while we have the diffusion equation for
β = 1. The study of such possible interpolations has not been fully exploited yet.

(ii) The different equations above can be fractionalized by replacing the integer
derivatives either in space or time by fractional derivatives. The range of fractional
equations is very wide at the same time that the exploration of the associated
dynamics and solutions is a task to be fulfilled. On the other hand, it is an open
issue to analyze the relation of the different fractionalizations at the discrete and
the continuous levels.

(iii) The standard diffusion equation. The diffusion equation (2.6) appears in very different
physical contexts which leads to a better understanding and interpretation of
the generalized diffusion equations. Such different applications allow a richer
phenomenology to understand the possible meaning of the different possible
fractionalizations. As an example, the equation is obtained by combining the
following laws with the associated continuity equation.

(iv) Darcy’s law

−→
q = −K∇h, (2.11)

where q is the flux of groundwater, K is the medium property: hydraulic
conductivity, and h is the potential related to the head.

(v) Fourier’s law

−→
Q= −κ∇T, (2.12)

where Q is the flux of heat, κ is the medium property: thermal conductivity and T
is the potential related to the temperature.

(vi) Fick’s law

−→
f = −D∇C, (2.13)

where f is the flux of solute, D is the medium property: diffusion coefficient and C
is the potential related to the concentration.

(vii) Ohm’s law

−→
j = −σ∇V, (2.14)
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A
∂Ψ
∂t

+ B
∂Ψ
∂x

= 0

A
∂αΨ
∂tα

+B
∂Ψ
∂x

= 0

∂2u

∂t2
+
∂2u

∂x2
= 0

A
∂1/2Ψ
∂t1/2

+ B
∂Ψ
∂x

= 0

∂u

∂t
− ∂2u

∂x2
= 0

∂γu

∂tγ
− ∂2u

∂x2
= 0

A2 = I

γ = 2α

Ψ =
(
ϕ
χ

)

B2 = −I
{A,B} = 0

Figure 1: Fractional diffusion equation and fractional Dirac-type equation.

where j is the flux of charge (electrical current), σ is the medium property: electrical
conductivity, and V is the potential related to the voltage.

(viii) The fractional Dirac equation (see [11, 40–43]). The free Dirac equation ([36]) can be
considered as the square root of the Klein-Gordon equation. This is also true for the
case of μ = 0 in (2.7) which corresponds to the wave equation. More precisely in
this last case, we have Figure 1: where A and B are matrices satisfying the indicated
algebra. The function u(x, t) is scalar while Ψ(x, t) is a multicomponent function
with, at least, two scalar space-time components.

Ψ =

(
ϕ(x, t)

χ(x, t)

)

(2.15)

In the context of Figure 1, we can understand the following equation:

A
∂1/2Ψ
∂t1/2

+ B
∂Ψ
∂x

= 0 (2.16)

as the square root of the standard diffusion equation (2.6). It is another way to view
the possible interpolations between the hyperbolic operator of the wave equation
and the parabolic one of the classical diffusion equation. Every scalar component of
Ψ(x, t) also satisfies the diffusion equation above. Such solutions can be interpreted
as probability distributions with internal structure associated to internal degrees of
freedom of the system. We could name them diffunors in analogy with the spinors
of quantum mechanics.

According to the possible representations of the Pauli algebra for A and B, we have
either an uncoupled system or a coupled system of equations. An example of the first case is
the representation

A =

(
0 1

1 0

)

, B =

(
0 1

−1 0

)

. (2.17)
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The transition between the two limit behaviours indicated in the diagram is not well
understood and it deserves a deep analysis. As an illustration of the possible rich
phenomenology associated to the interpolating fractional wave and Dirac equations is their
behaviour with respect the discrete symmetries: time T and space inversion P ([43]).

This analysis of the fractional wave, diffusion, and Dirac equations, fits in the general
context of establish bridges between fractional calculus and the classical and quantum
mechanics [44, 45]. This is also the approach of the works of Rabei and coworkers ([46]).

3. Fractional Calculus and Fractals

Fractals and fractional calculus generate parameters of intermediate order: arbitrary
dimensions as well as arbitrary order of integration and differentiation [47, 48]. Let us
consider the basic aspects associated with both conceptual blocks, and we will remark on
possible bridges between them to be explored.

(1) Fractals show self-similar structures, being the same structure at all scale levels.
Such structures are introduced by using the concept of a reference structure and
repeating itself over many scales, telescoping both downward and upward in
scale. In general, the fractals structures are defined by an iterative process instead
of an explicit mathematical formula. A simple case is the Cantor set which is
a limiting set of points which results from discarding the middle third of each
line segment in going from generation to generation, and starting from a line
segment of unit length. The fractal dimension D is a measure of the irregularity of
the fractal structure, and, in the case of the Cantor set, the fractal dimension is
D = ln 2/ ln 3 ≈ 0.6309.
The fractal property can be either in space or in time. In the first case we have the
fractal geometric structures as the Cantor set while in the temporal context we have
the structures of sequence of data generated for a system over an interval of time. A
special case is the Weierstrass function which is an example of a function continuous
everywhere but differentiable nowhere:

W(z) =
∞∑

n=−∞

(
1 − eiγ

nz
)
eiφn

γ (2−D)n
, (3.1)

where γ > 1, φn is an arbitrary phase and 1 < D < 2, D being the fractal dimension
of the self-similar structure defined by W(z). The function can be interpreted as
a superposition of harmonic terms: the first one with unit amplitude and unit
frequency and the n-order term with amplitude γ (2−D)(n−1) and frequency γn−1.
The lack of differentiability of W(z) is related to the integer derivatives. On
the other hand, it has been established that the fractional derivative (fractional
integral) of the Weierstrass function is another fractal function with a greater
(lesser) fractal dimension [49]. At the same time, it has been proved that the
Weierstrass function is a solution of a fractional differential stochastic equation
of motion. In particular, we have the following relations for the Weierstrass
function.
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(i) The fractional Riemann-Liouville integral of order β, with 0 < β < 1:

D
−β
RLW(z) =

1
Γ
(
β
)
∫z

−∞

W(u)du

(z − u)1−β . (3.2)

(ii) The fractional Riemann-Liouville derivative of order β, with 0 < β < 1:

D
β

RLW(z) =
1

Γ
(
1 − β

)
∫z

−∞

W(u)du

(z − u)β
. (3.3)

(iii) The relation between the fractal dimensions of the fractional derivative and
integral of the Weierstrass function

Dim
[
D

−β
RLW

]
= Dim[W] − β,Dim

[
D

β

RLW
]
= Dim[W] + β. (3.4)

(2) One of the possible experimental contexts to apply together with the concepts of
fractals and fractional calculus is related to the propagation of waves [50–52]. In
the 19th Century, James Clerk Maxwell and Lord Rayleigh studied the interaction of
electromagnetic waves with Euclidean regular structures (cylinders, spheres). On
the other hand, there are either nonregular artificial structures or from nature that
show many length scales and they are not suitable to be studied in the Euclidean
context. This is the case of nonregular surfaces, disordered media, structures with
specific properties of scattering, and so forth. In this context, the fundamental
issue of special technological impact is the relation between the geometrical parameters
(structure descriptors) and the physical quantities that characterize electromagnetically
the system. For instance, a relevant information is the relation between the fractal
dimension of the scattering surface and the scattered wave. Related to that, we
have that a recent field of research has been to explore the possible links between
the fractional calculus and the electromagnetic theory ([53]). The fractionalization
of certain linear operators in electromagnetic theory has led to relevant solutions in
radiation and scattering problems.

As a simple illustration, let us consider the propagation of a wave in fractal media.
The geometrical optics cannot be applied and the eikonal equation is no longer valid since it
applies for wave lengths λ � dimension of any change in the media. This condition cannot be
satisfied for fractal media because, in this case, there is no characteristic length of the system.
We can consider the associated stationary eigenvalue problem that appears in two contexts:
the wave equation in a fractal potential and the wave equation with fractal boundary
conditions. In the last case, we have the general equation

Lu = μu, (3.5)

where L is a linear differential operator on �
n with boundary conditions u0(x) on a

nondifferentiable surface but which admits the fractional derivative Dβ with β < 1. If we
define Φ = Dβ−1u, we have the problem LΦ = μΦ with the boundary condition Φ0(x), Φ being
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differentiable. Thus, with the help of the fractional derivative, we transformed the original
boundary problem into another one more suitable to be studied.

4. Fractional Calculus and Relaxation Processes

In the study of the behavior of the materials under applied forces, we have two ideal relations
between such forces and the resultant displacements in the material which are represented
by linear differential equations.

(i) Linear elastic behavior which is described by the Hooke’s law (ideal solid):

σ(t) = Eε(t), (4.1)

where E is Young’s modulus, σ = force/area is the stress and ε = elongation/
original length is the strain of the corresponding mechanical model, that, in this
case, is represented by a spring characterized by the constant E.

(ii) Ideal viscous fluid behavior which is described by Newton’s fluid law (ideal fluid):

σ(t) = η
dε(t)
dt

, (4.2)

where η is the viscosity coefficient, and, in this case, the phenomenological model
is represented by a dashpot.

In general, the real materials exhibit characteristics which combine the behaviors of
the ideal solids and liquids and are named viscoelastic materials. The basic models of such
materials are based on combinations of springs and dashpots [2, 16, 54]. As an illustration,
let us consider the combination of a spring and a dashpot in series. In this case, the stresses are
equal for both structural parts while the strains add. This leads to the classical Maxwell model
which is described by the following linear differential equation obtained from the above two
equations:

E
dε(t)
dt

=
dσ(t)
dt

+
1
τ
σ(t), (4.3)

where τ = η/E. If we consider the Laplace transform of the above equation, we obtain the
relaxation modulus g(s) = σ(s)/ε(s) = E/((s+ 1)/τ). Finally, the stress relaxation modulus for
the Maxwell model is

G(t) = E exp− t

τ
, (4.4)

which indicates that the Maxwell model shows an exponential stress decay, while different
behaviors are observed in real materials. Fractional calculus allow us to introduce
generalizations of the Maxwell model and the basic constitutive equation that leads to more
general behaviors of the stress relaxation modulus.
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(i) The fractional constitutive equation

σ(t) = E(τ)α
dαε(t)
dtα

, (4.5)

which is an interpolation between Hooke’s law (α = 0) and Newton’s law
(α = 1). This fractional relation can be realized physically through hierarchical
arrangements and in the limit of an infinite number of springs and dashpots [2].

(ii) The general fractional Maxwell equation offers a wide range of possible behaviors

Eτδ d
δε(t)
dtδ

= τρ d
ρσ(t)
dtρ

+ σ(t), (4.6)

the solutions are well analyzed in [2, 16] as well as in the references therein.

(iii) In order to consider other generalizations and approaches for possible different
applications, we can interpret the relaxation process either as an initial value problem
or a memory problem.

(a) Initial Value Problem. The relaxation (4.4) can be interpreted as the solution of
the initial value problem

τ
dG(t)
dt

= −G(t), G(0) = G0, (4.7)

with solution G(t) = G0e−t/τ . From (4.7), we can write as starting point for the
fractional generalization:

G(t) −G0 = −τ−1
∫ t

0
du G(u) = −τ−1 d

−1G(t)
dt−1

(4.8)

from which, we formally get the fractional generalization

G(t) −G0 = −τ−α d
−αG(t)
dt−α

. (4.9)

(b) Memory Problem. Another natural generalization of (4.7) is

dG(t)
dt

=
∫ t

0
K(t − u)G(u)du. (4.10)

If K(t) = K0δ(t), we recover the exponential behavior of the Maxwell model (4.4). If we have
constant memory, K = K0, we have the periodic behavior: K(t) = G0 cos

√
K0t. Finally, if

K(t) = K0tq−2 with 0 < q ≤ 2, the equation (4.10) can be written as a fractional derivative and
the solution can be expressed in terms of the Fox functions.
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One possible application field for fractional calculus would be the modellization of
the shape memory alloys (SMA). These are basically materials that change shape when energy
is applied or extracted from them. They exhibit hardness and elasticity properties that change
radically at distinct temperatures [55]. There is a high complexity in the relation between the
microscopic and macroscopic behaviors. There are no reliable constitutive models, although
some have been studied by Tanaka [56], Liang and Rogers [57], and Brinson [58]. The
key feature of these materials, as the name indicates, is that their dynamics is memory
dependent. Thus, the possible realistic models should include the nonlocal effects in time
through integrodifferential equations and, possibly, fractional differential equations.
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