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1. Introduction

Compactness and nuclearity conditions, which characterize phase space properties,
proved useful in the study of many aspects of Quantum Field Theory [4,5,7,10,14,
17,19]. Verification of phase space conditions in models [4,8,9,11,14,15] is an inte-
gral part of these investigations, since it demonstrates consistency of these criteria
with the basic postulates of local, relativistic quantum physics [16]. In [15] a sharp-
ened nuclearity condition has been proposed. It restricts correlations between dif-
ferent phase space regions and implies several physically desirable features. Among
them are a certain form of additivity of energy over isolated subsystems and the
uniqueness of vacuum states which can be prepared with a finite amount of energy.
These vacuum states appear, in particular, as limits of physical states under large
timelike translations in Lorentz covariant theories and are approximated by states
of increasingly sharp energy–momentum values, in accordance with the uncertainty
principle. This novel nuclearity condition seems also relevant to the study of par-
ticle aspects of a theory [12]. It is the aim of the present Letter to verify this cri-
terion in massless free field theory. In comparison with the massive case studied
in [15], the present investigation requires substantial technical improvements which
we discuss below. As will be shown in a future publication, these advances enable
a detailed harmonic analysis of translation automorphisms in massless theories.

Before we formulate the sharpened nuclearity condition, we recall briefly the
mathematical framework: Let V , W be Banach spaces and ||| · ||| be a norm on the
space L(V, W ) of linear maps from V to W . We say that a map � : V → W is
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p-nuclear w.r.t. the norm ||| · ||| if there exists a decomposition �(v) = ∑
n �n(v)

into rank-one maps, convergent for any v ∈ V in the norm topology in W , s.t.

ν := (
∑

n |||�n|||p)
1
p <∞. The p-norm |||�|||p of this map is the smallest such ν over

the set of all admissible decompositions. To construct the norms which are suitable
for our purposes, suppose that there acts a group of automorphisms R

s+1 � x →βx

on V . Then, for any N ∈N and x1 . . . xN ∈R
s+1, we set

‖�‖x1...xN = sup
v∈V1

(
N∑

k=1

‖�(βxk v)‖2

) 1
2

, �∈L(V, W ), (1)

where V1 is the unit ball in V , and denote the corresponding p-norm by
‖ · ‖p,x1...xN .

Next, we identify the spaces V , W , automorphisms βx and maps � in the frame-
work of Quantum Field Theory. Let H be the Hilbert space, ω0 the normal vac-
uum state, R

s+1 � x → αx ∈ Aut(B(H)) the translation automorphisms and H the
Hamiltonian. We set TE = PE B(H)∗ PE , where PE is the spectral projection of H
on the subspace spanned by vectors of energy lower than E and choose V = T̊E :=
{ϕ−ϕ(I )ω0 | ϕ∈TE }. This space is clearly invariant under the dual action of trans-
lations βx =α∗

x . Finally, we set W =A(O)∗, where A(O)⊂ B(H) is the local algebra
of observables attached to a double cone O⊂R

s+1, and define the family of maps
�E : T̊E →A(O)∗ given by

�E (ϕ)=ϕ|A(O), ϕ ∈ T̊E . (2)

The strengthened nuclearity condition, proposed in [15], has the following form.

Condition N� . The maps �E are p-nuclear w.r.t. the norms ‖ ·‖x1...xN for any N ∈
N, x1 . . . xN ∈R

s+1, 0< p ≤1, E ≥0, and double cone O⊂R
s+1. Moreover, there

holds for their nuclear p-norms

lim sup‖�E‖p,x1...xN ≤ cp, (3)

where cp is independent of N and the limit is taken for configurations x1 . . . xN ,
where all xi − x j , i 
= j , tend to spacelike infinity.

We note that the first, qualitative part of this criterion is equivalent to Condi-
tion N� formulated in [11] and the essential additional information is contained in
the bound (3). This refinement is motivated by the observation that a measurement
is always accompanied by an energy transfer from the physical state to the observ-
able. Additivity of energy over isolated subregions should then imply that for any
ϕ ∈ T̊E the restricted functionals α∗

�xϕ|A(O) are arbitrarily close to zero apart from
translations varying in some compact subset of R

s , depending on ϕ. This picture
is particularly plausible in a massive theory, where a state of bounded energy con-
tains only a finite number of particles which are well localized in space. Making
use of this simplification, Condition N� was verified in [15] in a theory of non-
interacting massive particles.
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In the present Letter we demonstrate that this criterion is valid also in the
massless case for s ≥3. There the status of Condition N� is less obvious, since one
has to handle the “infrared cloud” – states of bounded energy containing arbi-
trarily large numbers of massless particles whose localization properties are poor.
The proof is accomplished by combining the underlying physical idea of additiv-
ity of energy over isolated subregions (Lemma 3.1) with the quadratic decay of
vacuum correlations between spatially separated observables in a massless theory
(Lemma 3.5). As an interesting application of our methods, we briefly discuss in
the Conclusions the momentum transfer of local operators in the model under
study.

2. Massless Scalar Free Field Theory

In the model at hand the Hilbert space H is the symmetric Fock space over
L2(Rs,ds p). On this latter space there acts the unitary representation of transla-
tions

(U1(x) f )( �p)= ei(ω( �p)x0− �p�x) f ( �p), f ∈ L2(Rs,ds p), (4)

where ω( �p)=| �p|. We denote by U (x) its second quantization acting on H, intro-
duce the corresponding family of automorphisms of B(H)

αx (·)=U (x) ·U (x)∗ (5)

and adopt the notation A(x) :=αx (A) for translated operators A ∈ B(H). Next, we
construct the local algebra A(O) attached to the double cone O, whose base is the
s-dimensional ball Or of radius r centered at the origin in configuration space: We
introduce the closed subspaces L± :=[ω∓ 1

2 D̃(Or )], where tilde denotes the Fourier
transform, represent the respective projections by the same symbol and consider
the real linear subspace of L2(Rs,ds p)

L= (1+ J )L+ + (1− J )L−, (6)

where J is the complex conjugation in configuration space. Then the local algebra
is given by

A(O)={W ( f ) | f ∈L}′′, (7)

where W ( f )=ei(a∗( f )+a( f )) and a∗( f ), a( f ) are the creation and annihilation oper-
ators.

The rest of this section, which serves mostly to establish our notation, is devoted
to the proof of the well-known fact [3,11] that the maps �E in this model are
p-nuclear w.r.t. the standard norm on L(T̊E ,A(O)∗). In the massive case the argu-
ment was outlined in [15], Appendix B, so it suffices here to give a brief sketch
which stresses the modifications: First, our present construction of the trace-class
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operator T differs from the choices made in the existing literature [3,11,15]: Let
QE be the projection on states of energy lower than E in the single-particle space,
let h ∈ D(Or ) be real and s.t. h̃ > 0. We choose 1

2 ≤ γ < s−1
2 and define operators

TE,± =ω− 1
2 QEL±, Th,± =ω−γ h̃1/2L±, where h̃ is the corresponding multiplication

operator in momentum space. By a slight modification of Lemma 3.5 from [11]
one obtains that for s ≥ 3 these operators satisfy ‖|TE,±|p‖1 < ∞, ‖|Th,±|p‖1 < ∞
for any p > 0, where ‖ · ‖1 denotes the trace norm. We define the operator T as
follows

T =
(
|TE,+|2 +|TE,−|2 +|Th,+|2 +|Th,−|2

) 1
2
. (8)

Making use of the fact [18] that for any 0 < p ≤ 1 and any pair of positive oper-
ators A, B, s.t. Ap, B p are trace-class, there holds ‖(A + B)p‖1 ≤‖Ap‖1 +‖B p‖1,
we get

‖T p‖1 ≤‖|TE,+|p‖1 +‖|TE,−|p‖1 +‖|Th,+|p‖1 +‖|Th,−|p‖1 for 0< p ≤1. (9)

Since T commutes with J , it has a J -invariant orthonormal basis of eigenvectors
{e j }∞1 and we denote the corresponding eigenvalues by {t j }∞1 .

In order to construct an expansion of the map �E into rank-one mappings, we
evaluate a Weyl operator on some functional ϕ ∈ T̊E , rewrite it in a normal ordered
form and expand it into a power series

ϕ(W ( f ))=e− 1
2 ‖ f ‖2 ∑

m±,n±∈N0

im++n++2m−

m+!m−!n+!n−!×

× ϕ(a∗( f +)m+
a∗( f −)m−

a( f +)n+
a( f −)n−

), (10)

where f = f + + i f − and f ± ∈L± are real in configuration space. Subsequently, we
expand each function f ± in the orthonormal basis {e j }∞1 of J -invariant eigenvec-
tors of the operator T : f ± =∑∞

j=1 e j 〈e j | f ±〉. Then, making use of the multinomial
formula, we obtain

a(∗)( f ±)m± =
∑

µ±,|µ±|=m±

m±!
µ±! 〈e| f ±〉µ±

a(∗)(L±e)µ
±
, (11)

where µ+, µ− are multiindices, and substitute these expansions to (10). In order to
simplify the resulting expression, we define for any two pairs of multiindices µ=
(µ+,µ−), ν = (ν+, ν−) functionals Sµ,ν ∈ T̊ ∗

E given by

Sµ,ν(ϕ)=ϕ(a∗(Le)µa(Le)ν), (12)

where a(∗)(Le)µ =a(∗)(L+e)µ
+

a(∗)(L−e)µ
−

. Moreover, with the help of the formula

(�|[a(e1), [. . . , [a(ek), [a∗(ek+1), [. . . , [a∗(el), W ( f )], . . .]�)=

= e− 1
2 ‖ f ‖2

k∏

n1=1

〈en1 |i f 〉
l∏

n2=k+1

〈i f |en2〉, (13)
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one can express the factors 〈e| f ±〉µ±
, appearing in (11), in terms of normal

functionals τµ,ν ∈A(O)∗ defined as in [15], Appendix B, (using methods from [3]).
Then expression (10) takes the form

ϕ(W ( f ))=
∑

µ,ν

τµ,ν(W ( f ))Sµ,ν(ϕ). (14)

In order to extend this formula to all A ∈ A(O), we study its convergence prop-
erties: In the present case the norms of the functionals τµ,ν are not uniformly
bounded in µ, ν. Instead, one obtains as in formula (B.7) of [15]

‖τµ,ν‖≤ 4|µ|+|ν|

(µ!ν!) 1
2

(
(µ+ν)!

µ!ν!
) 1

2 ≤ 2
5
2 (|µ|+|ν|)

(µ!ν!) 1
2

, (15)

where |µ| = |µ+| + |µ−| and µ! = µ+!µ−!. Making use of the fact that for any
f1, . . . , fn ∈ L2(Rs,ds p) in the domain of ω

1
2 there hold the so called energy

bounds [11]

‖a(ω
1
2 f1) . . .a(ω

1
2 fn)PE‖≤ (E)

n
2 ‖ f1‖ . . .‖ fn‖, (16)

we obtain the estimate

‖Sµ,ν‖≤ E
|µ|+|ν|

2 ‖ω− 1
2 QELe‖µ ‖ω− 1

2 QELe‖ν ≤ E
|µ|+|ν|

2 tµtν . (17)

With the help of the bounds (15) and (17) one verifies that for any 0< p ≤1

∑

µ,ν

‖τµ,ν‖p ‖Sµ,ν‖p ≤
∑

µ,ν

(25 E)
1
2 p(|µ|+|ν|)

(µ!) 1
2 p(ν!) 1

2 p
t pµt pν =

⎛

⎝
∑

µ+

(25 E)
1
2 p|µ+|

(µ+!) 1
2 p

t pµ+
⎞

⎠

4

≤

≤
( ∞∑

k=0

(25 E)
1
2 pk‖T p‖k

1

(k!) 1
2 p

)4

,

(18)

where in the last step we set k = |µ+| and made use of the multinomial formula.
This bound allows us to restate expression (14) as follows

�E (ϕ)=
∑

µ,ν

τµ,ν Sµ,ν(ϕ), for ϕ ∈ T̊E , (19)

where the sum converges in the norm topology in A(O)∗ and there holds, in addi-
tion, ‖�E‖p ≤ (

∑
µ,ν ‖τµ,ν‖p ‖Sµ,ν‖p)1/p < ∞ for 0 < p ≤ 1. This concludes the

proof of the known fact that Condition N� holds in massless free field theory
[3,11]. In the next section we will use the same expansion (19) to verify Condi-
tion N� .
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3. Verification of Condition N�

By definition of the nuclear p-norms and formula (19) there holds the bound

‖�E‖p,x1...xN ≤
⎛

⎝
∑

µ,ν

‖τµ,ν‖p‖Sµ,ν‖p
x1...xN

⎞

⎠

1
p

. (20)

To verify Condition N� we have to find estimates on the norms ‖Sµ,ν‖x1...xN whose
growth with N can be controlled at large spacelike distances xi − x j for i 
= j . The
first step in this direction is taken in the following lemma which is inspired by
Lemma 2.2 from [6]. In contrast to the bound from [15], Lemma 4.1, the present
estimate is uniform in the particle number and depends only on the energy of the
state in question. This result substantiates the underlying physical idea of additiv-
ity of energy over isolated subregions.

LEMMA 3.1. Suppose that g ∈ L2(Rs,ds p) and h̃g is in the domain of ω− 1
2 ,

where h̃ ∈ D̃(Or ) appeared in the definition of the operator T above. Then, for any
x1 . . . xN ∈R

s+1, there holds the bound
∥
∥
∥
∥
∥

PE

N∑

k=1

(a∗(g)a(g))(xk)PE

∥
∥
∥
∥
∥

≤E sup
| �p|≤E

|̃h( �p)|−2

{

‖ω− 1
2 h̃g‖2 +

+ (N −1) sup
i 
= j

|〈ω− 1
2 h̃g|U (xi − x j )ω

− 1
2 h̃g〉|

}

. (21)

Proof. We pick single-particle vectors 
1, g1 ∈ L2(Rs,ds p) and define Q =
∑N

k=1(a
∗(g1)a(g1))(xk). Then there holds

(
1|Q Q
1)≤
N∑

l=1

(
1|(a∗(g1)a(g1))(xl)
1)

N∑

k=1

|〈U (xk)g1|U (xl)g1〉|≤

≤ (
1|Q
1)

{

‖g1‖2 + (N −1) sup
i 
= j

|〈U (x j )g1|U (xi )g1〉|
}

, (22)

where we made use of the fact that a(U (xk)g1)a(U (xl)g1)
1 = 0 and of the
Cauchy–Schwarz inequality. Since (
1|Q
1)

2 ≤ (
1|Q Q
1)‖
1‖2, we obtain

N∑

k=1

(
1|(a∗(g1)a(g1))(xk)
1)≤

≤‖
1‖2

{

‖g1‖2 + (N −1) sup
i 
= j

|〈U (x j )g1|U (xi )g1〉|
}

. (23)

Next, let n ≥ 1 and 
n ∈ PEH be an n-particle vector s.t. the correspond-
ing symmetric wave-function 
n( �p1 . . . �pn) belongs to S(Rs×n). We also intro-
duce a single-particle wave-function associated with 
n given by 
1( �p1) �p2,..., �pn =



A SHARPENED NUCLEARITY CONDITION 223

| �p1| 1
2 h̃( �p1)

−1
n( �p1, . . . �pn), where we treat �p2, . . . , �pn as parameters. With the help
of (23) we get

N∑

k=1

(
n|(a∗(g)a(g))(xk)
n)=

=n
∫

ds p2 . . .ds pn

N∑

k=1

(
1, �p2,..., �pn |(a∗(ω− 1
2 h̃g)a(ω− 1

2 h̃g))(xk)
1, �p2,..., �pn )≤

≤n
∫

ds p1 . . .ds pn |̃h( �p1)|−2| �p1||
n(p1, . . . pn)|2×

×
{

‖ω− 1
2 h̃g‖2 + (N −1) sup

i 
= j
|〈ω− 1

2 h̃g|U (xi − x j )ω
− 1

2 h̃g〉|
}

. (24)

Finally, we note that

n
∫

ds p1 . . .ds pn |̃h( �p1)|−2| �p1||
n( �p1, . . . �pn)|2 ≤

≤ sup
| �p|≤E

|̃h( �p)|−2
∫

ds p1 . . .ds pn(| �p1|+ · · ·+ | �pn|)|
n( �p1, . . . �pn)|2 ≤

≤ sup
| �p|≤E

|̃h( �p)|−2 E‖
n‖2, (25)

where we made use of the fact that the wave-function is symmetric. Since the oper-
ators (a∗(g)a(g))(xk) conserve the particle number and vectors of the form 
 =
c�+∑∞

n=1 
n , where ‖
‖2 =|c|2 +∑∞
n=1 ‖
n‖2 <∞, are dense in PEH, we easily

obtain the bound in the statement of the lemma.

Our next task is to control the expressions appearing on the right-hand side of
estimate (21). Lemma 3.2 below, which holds in particular for F̃( �p) = | �p|−2, will
be crucial in this respect. We start with some definitions: for any ρ > 0 and some
fixed ε >0 we choose a function χ(Oρ)∈C∞

0 (Rs) s.t. χ(Oρ)(�x)=1 for �x ∈Oρ and
χ(Oρ)(�x)= 0 for �x /∈Oρ+ε . We denote the operator of multiplication by χ(Oρ) in
configuration space by the same symbol.

LEMMA 3.2. Suppose that F ∈ S′(Rs) coincides with a bounded, measurable func-
tion in the region { �y ∈R

s | |�y|≥ρ } and its Fourier transform F̃ is a positive, measur-
able function s.t. F̃1/2 ∈ L2(Rs,ds p) + L∞(Rs,ds p). Then F̃1/2χ(Oρ) is a bounded
operator and there holds

‖χ(Oρ)F̃χ�x (Oρ)‖≤ cs,ρ,ε sup
|�z|≤2ρ+3ε

|F(�z − �x)| for |�x |≥3(ρ + ε), (26)

where χ�x (Oρ)(�y) = χ(Oρ)(�y − �x), the constant cs,ρ,ε is independent of �x and we
denote the operator of multiplication by F̃ in momentum space by the same symbol.
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Proof. In order to prove the first statement we make a decomposition F̃1/2 =
F̃1/2

2 + F̃1/2∞ , where F̃1/2
2 ∈ L2(Rs,ds p), F̃1/2∞ ∈ L∞(Rs,ds p). Since F̃1/2∞ is a bounded

operator, it suffices to consider F̃1/2
2 χ(Oρ). We pick f1, f2 ∈ S(Rs) and estimate

|〈 f1|F̃1/2
2 χ(Oρ) f2〉|=(2π)−

s
2

∣
∣
∣
∣

∫

ds pdsq f̄1( �p)F̃1/2
2 ( �p)χ̃(Oρ)( �p − �q) f2(�q)

∣
∣
∣
∣≤

≤c‖ f̄1 F̃1/2
2 ‖1‖χ̃ (Oρ)‖2‖ f2‖2 ≤ c‖ f1‖2‖F̃1/2

2 ‖2‖χ̃ (Oρ)‖2‖ f2‖2,

(27)

where in the second step we made use of the Young inequality1 [22] and in the last
estimate we applied Hölder’s inequality.

Next, we verify relation (26). If |�x |≥3(ρ +ε), then |�y + �x |≤2ρ +3ε implies |�y|≥
ρ and the expression

F̃�x ( �p) := (2π)−
s
2

∫

ds y e−i �p�y F(�y)χ−�x (O2(ρ+ε))(�y) (28)

defines a bounded, continuous function. The operator of multiplication by F̃�x in
momentum space, denoted by the same symbol, satisfies the equality

χ(Oρ)F̃�xχ�x (Oρ)=χ(Oρ)F̃χ�x (Oρ) (29)

which can be verified by computing the matrix elements of both bounded oper-
ators between vectors from S(Rs), proceeding to configuration space and noting
that the distributions F and χ−�x (O2(ρ+ε))F coincide on the resulting set of smear-
ing functions. Moreover, we obtain from (28)

|F̃�x ( �p)|≤(2π)−
s
2

∫

ds y |χ(O2(ρ+ε))(�y)| sup
|�z|≤2ρ+3ε

|F(�z − �x)|=

=cs,ρ,ε sup
|�z|≤2ρ+3ε

|F(�z − �x)|, (30)

what concludes the proof of the lemma.

After this preparation we set g =L±e in Lemma 3.1 and undertake the study of
the functions

R
s+1 � x →〈ω− 1

2 h̃L±e|U (x)ω− 1
2 h̃L±e〉 (31)

appearing on the right-hand side of estimate (21). We recall from our discussion
in Section 2 that ω− 1

2 h̃1/2L± are trace-class operators, so h̃g are in the domain

1The Young inequality states that for any positive functions f ∈ Lr1 (Rs ,ds p), g ∈ Lr2 (Rs ,ds p),
h ∈ Lr3 (Rs ,ds p), where 1≤ r1, r2, r3 ≤∞ s.t. 1

r1
+ 1

r2
+ 1

r3
=2, there holds the bound

∫

ds pdsq f ( �p)g( �p − �q)h(�q)≤ cr1,r2,r3‖ f ‖r1‖g‖r2‖h‖r3 .
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of ω− 1
2 as required in Lemma 3.1. A link with Lemma 3.2 is provided by the

following identities

L± =ω∓ 1
2 χ(Or )ω

± 1
2 L±, (32)

where r is the radius of the ball entering into the definition of the subspaces L±.
The following result covers the case of translations in space.

LEMMA 3.3. Assume that s ≥3 and let e be a normalized eigenvector of the oper-
ator T corresponding to the eigenvalue t . Then there holds

(a) 〈ω− 1
2 h̃L−e|U (�x)ω− 1

2 h̃L−e〉=0 for |�x |>4r ,

(b) |〈ω− 1
2 h̃L±e|U (�x)ω− 1

2 h̃L±e〉|≤ cs,r t2

(|�x |+1)s−2 ,

where the constant cs,r is independent of �x and e.

Proof. To prove part (a) we set again χ�x (Or )(�y)=χ(Or )(�y − �x) and note that

〈ω− 1
2 h̃L−e|U (�x)ω− 1

2 h̃L−e〉=
=〈ω− 1

2 h̃L−e|χ(O2r )χ�x (O2r )U (�x)ω− 1
2 h̃L−e〉=0, (33)

for |�x |> 4r , since h ∈ D(Or ) and hence ω− 1
2 h̃L−e ∈ [D̃(O2r )]. Due to the uniform

bound

|〈ω− 1
2 h̃L±e|U (�x)ω− 1

2 h̃L±e〉|≤‖ωγ− 1
2 h̃1/2‖2∞〈e|T 2

h,±e〉≤‖ω2γ−1h̃‖∞t2, (34)

which involves the parameter γ ∈ [ 1
2 , s−1

2 [ from the definition of the operator T ,
there also follows the (−) part of (b). To prove the (+) part we estimate

|〈ω− 1
2 h̃L+e|U (�x)ω− 1

2 h̃L+e〉|= |〈̃hω
1
2 L+e|χ(O2r )ω

−2χ�x (O2r )̃hω
1
2 U (�x)L+e〉|≤

≤ t2‖ω2γ+1h̃‖∞ ‖χ(O2r )ω
−2χ�x (O2r )‖. (35)

Now we are in position to apply Lemma 3.2: We set F̃( �p)=| �p|−2. Then

F̃( �p)1/2 =| �p|−1θ(−| �p|+1)+| �p|−1θ(| �p|−1)∈ L2(Rs,ds p)+ L∞(Rs,ds p) (36)

and F(�x)= cs |�x |−(s−2), where cs =2
s
2 −2�( s

2 −1). We obtain for |�x |≥6r +3ε

‖χ(O2r )ω
−2χ�x (O2r )‖≤ cs,r

(|�x |−4r −3ε)s−2
. (37)

Making use of the uniform bound (34), we get the estimate from the statement
of the lemma for a suitable constant cs,r .

In order to obtain estimates on functions (31) valid for arbitrary spacelike trans-
lations x we recall, in a slightly generalized form, the following result from [8].
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LEMMA 3.4. Let δ > 0. Then there exists some continuous function f (ω) which
decreases almost exponentially, i.e. supω | f (ω)|e|ω|κ <∞ for any 0<κ <1, and which
has the property that for any pair of operators A, B such that � belongs to their
domains and to the domains of their adjoints, satisfying

(�| [A, eit H Be−i t H ]�)=0 for |t |<δ, (38)

there holds the identity (�|AB�)= (�|A f (δH)B�)+ (�|B f (δH)A�).

With the help of the above lemma we prove the desired bounds.

LEMMA 3.5. Assume that s ≥ 3. Let e ∈ L2(Rs,ds p)1 satisfy T e = te and Je = e.
Then, for any ε >0 and x ∈R

s+1 s.t. |�x |≥ |x0|, there hold the estimates

|〈̃hω− 1
2 L±e|U (x )̃hω− 1

2 L±e〉|≤ cs,r,εt2

(|�x |− |x0|+1)s−2−ε
, (39)

where the constant cs,r,ε is independent of x and e.

Proof. First, we define the operators φ+(e) = a∗(̃hL+e) + a(̃hL+e), φ−(e) =
a∗(i h̃L−e)+a(i h̃L−e) and their translates φ±(e)(x)=U (x)φ±(e)U (x)−1. Since the
projections L± and the multiplication operators h̃ commute with J and Je = e,
the operators φ±(e) are just canonical fields and momenta of the free field theory
localized in the double cone of radius 2r centered at zero. We assume without loss
of generality that x0 > 0, introduce functions F±(τ )= 〈̃hL±e|ω−1U (�x + τ ê0)̃hL±e〉
for 0 ≤ τ ≤ x0, where ê0 is the unit vector in the time direction, and consider the
derivative

∣
∣
∣
∣
dF±(τ )

dτ

∣
∣
∣
∣=|(�|φ±(e)φ±(e)(�x + τ ê0)�)|. (40)

We define δτ =|�x |− τ − 4r and assume that δτ > 0 for 0 ≤ τ ≤ x0, i.e. |�x |− x0 > 4r .
Then, by locality, φ±(e) and φ±(e)(�x + τ ê0) satisfy the assumptions of Lemma 3.4
with δ = δτ . Making use of this result, we obtain

∣
∣
∣
∣
dF±(τ )

dτ

∣
∣
∣
∣=|〈ω−γ h̃L±e|ω2γ f (δτω)U (�x + τ ê0)ω

−γ h̃L±e〉+
+ 〈ω−γ h̃L±e|ω2γ f (δτω)U (−�x − τ ê0)ω

−γ h̃L±e〉|≤
≤ 2

δ
2γ
τ

t2‖h̃‖∞ sup
ω≥0

|ω2γ f (ω)|. (41)
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Next, we set γ = s−1−ε
2 for 0<ε <1 and arrive at the following estimate

|〈ω− 1
2 h̃L±e|U (x)ω− 1

2 h̃L±e〉|= |F±(x0)|≤|F±(0)|+
x0∫

0

dτ

∣
∣
∣
∣
d F±(τ )

dτ

∣
∣
∣
∣

≤ cs,r,εt2

(|�x |− x0 −4r)s−2−ε
, (42)

where in the last step we applied Lemma 3.3 and estimate (41). Since the left-hand
side of relation (42) satisfies a uniform bound analogous to (34), we obtain the
estimate in the statement of the lemma.

Now we are ready to prove the required bounds on the norms of the function-
als Sµ,ν .

PROPOSITION 3.6. Given a family of points x1 . . . xN ∈ R
s+1 we define δ(x) =

inf i 
= j (|�xi − �x j | − |x0
i − x0

j |). For s ≥ 3, δ(x) ≥ 0 and any ε > 0 the functionals Sµ,ν

satisfy the bound

‖Sµ,ν‖2
x1...xN

≤16cs,r,ε sup
| �p|≤E

|̃h( �p)|−2 E |µ|+|ν|t2(µ+ν)

{

1+ N −1
(δ(x)+1)s−2−ε

}

, (43)

where the constant cs,r,ε appeared in Lemma 3.5.

Proof. Making use of the fact that S0,0 =0, we can assume without loss of gener-
ality that ν 
=0 and decompose it into two pairs of multiindices ν =νa +νb in such
a way that |νb|=1. Proceeding as in the proof of Proposition 4.4 in [15] (formulas
(4.12) and (4.13)) we obtain the bound

‖Sµ,ν‖2
x1...xN

≤16E |µ|+|νa |t2(µ+νa)‖PE

N∑

k=1

(
a∗(Le)νb a(Le)νb

)
(xk)PE‖. (44)

From Lemmas 3.1 and 3.5 we get

‖PE

N∑

k=1

(
a∗(Le)νb a(Le)νb

)
(xk)PE‖≤ E sup

| �p|≤E
|̃h( �p)|−2

{

‖h̃ω− 1
2 (Le)νb‖2+

+ (N −1) sup
i 
= j

|〈̃hω− 1
2 (Le)νb |U (xi − x j )̃hω− 1

2 (Le)νb 〉|
}

≤ cs,r,ε sup
| �p|≤E

|̃h( �p)|−2 Et2νb

{

1+ N −1
(δ(x)+1)s−2−ε

}

. (45)

Substituting inequality (45) into formula (44), we obtain the estimate in the state-
ment of the proposition.
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We note that the bound from Proposition 3.6 has a similar structure to esti-
mate (17) for the ordinary norms of Sµ,ν . Therefore, making use of formulas (20)
and (18), we obtain

‖�E‖p,x1...xN ≤

≤4c1/2
s,r,ε sup

| �p|≤E
|̃h( �p)|−1

( ∞∑

k=0

(25 E)
1
2 pk‖T p‖k

1

(k!) 1
2 p

) 4
p {

1+ N −1
(δ(x)+1)s−2−ε

} 1
2

. (46)

It follows that lim supδ(x)→∞ ‖�E‖p,x1...xN satisfies a bound which is independent
of N . Consequently, we get

THEOREM 3.7. Condition N� holds in massless scalar free field theory in s ≥ 3
dimensional space.

4. Conclusions

In this work we verified the sharpened nuclearity condition N� in massless free
field theory in spacetime of physical or higher dimension. This criterion guaran-
tees the uniqueness of the vacuum state in the energy-connected component of the
state space, in agreement with physical observations [15]. Nevertheless, it turns out
to be consistent with a degenerate vacuum structure: Recall that massless free field
theory has a spontaneously broken gauge symmetry R�λ→βλ, corresponding to
a shift of the pointlike localized field by a constant, which is defined on Weyl
operators by

βλ(W ( f ))= eiλ( ˜ω1/2 f )(0)W ( f ). (47)

This group of transformations gives rise to a family of pure, regular vacuum
states

ω
(λ)

0 (W ( f ))= eiλ( ˜ω1/2 f )(0)ω0(W ( f )) (48)

whose energy-connected components are, in fact, disjoint subsets of the state space
for s ≥ 3 [13]. This is no longer true for s = 2 in which case Condition N�,
as well as the weaker Condition N� , does not hold due to singular infrared prop-
erties of this theory [11].

The methods developed in the present Letter are relevant to harmonic analysis
of local operators A ∈A(O). We recall that in any relativistic quantum field theory
there holds the bound [6]

sup
ϕ∈TE,1

∫

ds p| �p|s+1+ε|ϕ( Ã( �p))|2 <∞, (49)

for any ε > 0, where Ã( �p) is the Fourier transform of A(�x). Since the mollifier
| �p|s+1+ε suppresses the contributions to ϕ( Ã( �p)) with small momentum trans-
fer, which become relevant at asymptotic times [1,20,21], we are interested in the
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minimal power of | �p| for which the bound (49) is still valid. Making use of an
improved variant of Lemma 3.1, one can show that for s ≥3 there holds in mass-
less free field theory

sup
ϕ∈TE,1

∫

ds p| �p|2|ϕ( Ã( �p))|2 <∞. (50)

With the help of a suitable sequence of functionals ϕn ∈TE,1, involving arbitrarily
large number of particles, it can be verified that the power of the mollifier | �p|2 can-
not be further reduced on the whole local algebra A(O) in this model. However,
making use of the more refined expansion of the map �E into rank-one mappings,
developed in [3], one can construct a subspace of finite co-dimension in A(O) on
which there holds the bound

sup
ϕ∈TE,1

∫

ds p|ϕ( Ã( �p))|2 <∞, (51)

familiar from massive free field theory [15]. This subspace contains, in particu-
lar, the elements of the fixed-point subalgebra of λ → βλ whose vacuum expecta-
tion values vanish. These results, whose detailed proofs will be presented elsewhere,
demonstrate the utility of the phase space methods in the development of a more
detailed harmonic analysis of automorphism groups [2].
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