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Abstract—Automated drug-delivery systems that can tolerate
various responses to therapeutic agents have been required to
control hemodynamic variables with heart failure. This study
is intended to evaluate the control performance of a multiple
adaptive predictive control based on neural networks
(MAPCNN) to regulate the unexpected responses to thera-
peutic agents of cardiac output (CO) and mean arterial
pressure (MAP) in cases of heart failure. The NN compo-
nents in the MAPCNN learned nonlinear responses of CO
and MAP determined by hemodynamics of dogs with heart
failure. The MAPCNN performed ideal control against
unexpected (1) drug interactions, (2) acute disturbances,
and (3) time-variant responses of hemodynamics [average
errors between setpoints (+35 ml kg)1 min)1 in CO and
±0 mmHg in MAP) and observed responses; 6.4, 3.7, and
4.2 ml kg)1 min)1 in CO and 1.6, 1.4, and 2.7 mmHg (10.5,
20.8, and 15.3 mmHg without a vasodilator) in MAP] during
120-min closed-loop control. The MAPCNN could also
regulate the hemodynamics in actual heart failure of a dog.
Robust regulation of hemodynamics by the MAPCNN was
attributable to the ability of on-line adaptation to adopt
various responses and predictive control using the NN.
Results demonstrate the feasibility of applying the MAPCNN

using a simple NN to clinical situations.

Keywords—Cardiac output, Mean arterial pressure, Thera-

peutic agents, An automated drug infusion system.

INTRODUCTION

Hemodynamic variables in a critical care patient
with heart failure must be monitored during and after
cardiac surgery. The hemodynamic conditions must
then be regulated using infusion of several drugs. In
particular, cardiac output (CO) and mean arterial
pressure (MAP) are primary target variables because
increased CO is required with suppressing myocardial
oxygen consumption and MAP must be kept at the
lowest level that can adequately maintain coronary
circulation with decreasing systemic vascular resistance

(SVR).14 Combined infusion of an inotropic agent
such as dobutamine (DBT) or dopamine and a vaso-
dilator such as sodium nitroprusside (SNP) or nitro-
glycerin has proven effective for patients with heart
failure to regulate hemodynamics.12,13,25 Inotropic
agents increase the force and velocity of cardiac muscle
contraction and result in enhancing CO. Vasodilators
reduce SVR and result in the decrease of the afterload
of the heart, which thereby decreases MAP and in-
creases stroke volume secondarily.3,14

Multivariable automated drug-delivery systems
have been developed to help busy physicians or anes-
thesiologists use several drugs in many critical tasks to
regulate the various hemodynamics that occur during
heart failure.11,21,22,24,28,32,33 In simulation and animal
studies undertaken during early system development,
adaptive controllers demonstrated the feasibility of
application of a multivariable drug-delivery system to
simultaneously control CO and MAP using a combi-
nation of an inotropic agent and a vasodilator.11,24,28

In subsequent stages, multiple models and adaptive
predictive controllers have been developed to ade-
quately adjust the hemodynamic parameters in the
presence of nonlinear physiological responses5,32 and
drug interactions.21,22,33 Fuzzy controls have also
shown optimal performance in regulation of multi-
variable hemodynamics with heart failure.6,7,31 How-
ever, patients with heart failure may have nonlinear
and time-variant responses under unexpected
variability to drugs and drug interactions with distur-
bances. Under such unknown conditions, the model-
based controllers might require the preparation of
numerous linear models to describe the various heart-
failure patient responses to drugs,21,22,33 and the fuzzy
controllers might require many rules based on the
expert knowledge and heuristics of physicians or
anesthesiologists for drug therapy of heart failure.6

The controllers that can adjust adaptively to unex-
pected responses with heart failure are required in
actual clinical situations. Because neural networks
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(NN) might be one of the simple tools used for
nonlinear and time-variant system responses in the
presence of the unknown response variability and
interactions with exogenous perturbation,15,27 the
application of the NN to drug-delivery systems has
been desired.8,17 To our knowledge, the multivariable
controller using the NN for hemodynamic variables
with heart failure has not been tested whereas the NN
controllers have engendered the MAP controls such as
post-operative hypertension1 and during acute hypo-
tension9. Therefore, this study is intended to develop a
multiple adaptive predictive control based on NN
(MAPCNN) for hemodynamic variables and to evaluate
its control performance under unexpected responses to
drugs during CO and MAP regulation using SNP and
DBT in heart failure. To be assured of a control algo-
rithm before animal experiments, the MAPCNN was
tested under largely unexpected (1) drug interactions, (2)
acute disturbances, and (3) time-variant hemodynamic
responses which can be freely operated. Finally, the
performance of the MAPCNN was tested by actual
hemodynamics of a canine left heart failure.

MATERIALS AND METHODS

This section fundamentally includes three parts:
(i) ‘Modeling of Pharmacological Response’, which
explains the method for the development of a com-
puter response model that allows testing of the
MAPCNN, (ii) ‘Development of Controller’, and
(iii) ‘Evaluation of Controller’, which is the actual test
of the MAPCNN. In addition, the animal study was
divided into two parts. First, to model the pharmaco-
logical response in (i), animal experiments were per-
formed using dogs with heart failure. Five of eleven
dogs were used for every drug infusion. Then, for
additional validation of the developed controller after
computer simulations, an animal experiment was per-
formed using one dog with heart failure.

Modeling of Pharmacological Response

To produce the response models to therapeutic
agents in acute heart failure, the following animal
study, which conformed to the Guide for the Care and
Use of Laboratory Animals published by the US
National Institutes of Health, was performed. Micro-
sphere embolization of the left main coronary artery
induced acute ischemic heart failure in dogs (n = 5,
26–32 kg) that were anesthetized with pentobarbital
sodium and ventilated artificially. A double-lumen
catheter was introduced into the right femoral vein for
administration of pharmaceutical agents using a com-
puter-controllable infusion pump (CFV-3200; Nihon
Kohden, Tokyo, Japan). An in-line electromagnetic

flow probe (MFV-2100; Nihon Kohden) was used to
measure CO; MAP was measured through a fluid-filled
catheter and a pressure transducer (DX-200; Nihon
Kohden). The CO and MAP were digitized at a 10-Hz
sampling rate through a 12-bit digital-to-analog con-
verter connected to a laboratory computer.

The total number of all animals used for modeling
was 11. The orders of drug infusions were the
following four: (i) 3, 6, and 9 lg kg)1 min)1 in DBT
and 1, 2, and 4 lg kg)1 min)1 in SNP (n = 2 of 11
animals); (ii) 3 and 6 lg kg)1 min)1 in DBT (n = 3);
(iii) 9 lg kg)1 min)1 in DBT (n = 3); and (iv) 1, 2, and
4 lg kg)1 min)1 in SNP (n = 3). Specifically, five of
all animals were used for each drug infusion rate. The
hemodynamic variables [n = 9 except for the two
animals in the above case (iii), the 9 lg kg)1 min)1 in
DBT (n = 3), because of no measurements] were chan-
ged to )60.2 ml kg)1 min)1 in CO (p<0.01, paired
t-test) and +4.9 mmHg in MAP (not significant) before
(CO, mean±S.E.M = 132.0±11.2 ml kg)1 min)1;
and MAP, 92.8±3.2 mmHg) and immediately after
(CO, mean±S.E.M = 71.8±6.2 ml kg)1 min)1; and
MAP, 97.7±4.3 mmHg) the heart failure; for hemody-
namics immediately before each drug infusion, see
Fig. 1A.). Theperiodbetween two trials of drug infusions
was 10 min in each animal. To prevent the washout
process of a catheter in the above case (i), both the drug
infusions of DBT and SNP (n = 2), a double-lumen
catheter was used.

In this study, component models comprising a first
order dynamic system cascaded with a nonlinear sig-
moidal function were used to model the responses of
CO and MAP with heart failure. After pharmacody-
namics for the evaluation of controllers was repre-
sented by a linear first-order transfer function,18 a
sigmoidal function was applied to the linear model to
express the nonlinear characteristic with a component
model approximating the positive step response.4,30

The procedure to produce the model responses can be
described as follows.

First, simple models for responses to therapeutic
agents were produced from experimental data in canine
left-heart failure. Figure 1A shows the step responses of
CO andMAP changed (DCOandDMAP) frombaseline
values immediately before each drug infusion after
inducing the acute heart failure during 10-min (a) DBT
and (b) SNP infusions. The step responses of DCO
and DMAP during infusion of DBT at 3, 6, and
9 lg kg)1 min)1 or SNP at 1, 2, and 4 lg kg)1 min)1

were averaged every 30 s. Then, each single-input single-
output response [Dŷ(t)] of the four step responses (DBT-
CO, DBT-MAP, SNP-CO, and SNP-MAP loops as
input–output relationships) was approximated to the
linear first-order delay system with a pure time delay in
the continuous-time domain, as

Hemodynamic Regulation using Neural Networks 1847



0 120 240 360 480 600

80

Time (s)

∆
l

m( 
O

C
·

ni
m

1-
k·
g

1-
)

(a) Step responses to DBT infusion in dogs with acute heart failure

120

40

0

∆
A

M
P

)g
H

m
m( 

(b) Step responses to SNP infusion in dogs with acute heart failure
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FIGURE 1. Single-drug dose responses in canine left heart failure (n = 5). A. Step responses of the change of cardiac output
(DCO, left) and mean arterial blood pressure (DMAP, right) from the baseline after induced acute heart failure during 10-min
infusion of (a) dobutamine (DBT) at 3, 6, and 9 lg kg)1 min)1 and (b) sodium nitroprusside (SNP) at 1, 2, and 4 lg kg)1 min)1. Data
digitized at 10 Hz were averaged every 30 s. Data are mean ± S.E.M. B. Unit impulse responses of DCO (left) and DMAP (right)
calculated from data of (a) DBT infusion at 3, 6, and 9 lg kg)1 min)1 and (b) SNP infusion at 1, 2, and 4 lg kg)1 min)1 in dogs. CO
response of SNP at 1 lg kg)1 min)1 was eliminated because of impossible fit to step response.
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D y
^
ðtÞ ¼ K 1� exp � t� L

Tc

� �� �
ð1Þ

where K is a proportional gain, L is a pure time delay,
and Tc is a time constant. If t<L then Dŷ(t) = 0. The
fitted parameters to the averaged step responses
(n = 5) in the single infusion of DBT or SNP were
acquired by least squares method and used for calcu-
lation of the following unit impulse response (i.e., the
response to the infusion of 1 lg kg)1 min)1 of a given
drug).

Second, the linear-model response [Dy*(t)] was cal-
culated by the convolution integral in the discrete-time
domain:

Dy�ðtÞ ¼
XNm

s¼0
gðsÞDTuðt� sÞ ð2Þ

where

gðsÞ ¼ Ku

Tc
exp � s� L

Tc

� �

In those equations, u(t) is the drug infusion rate,
DT is the sampling interval, and Nm is the finite
number of terms in the model for the unit impulse
response. The unit impulse response is g(t), as calcu-
lated from the derived values of the step response of
Eq. (1). The proportional gain of a unit impulse re-
sponse is Ku; Tc and L are the same values as Eq. (1).
For the simulation study, DT and Nm were set,
respectively, to 30 s and 20. According to this meth-
od, the unit impulse responses of DCO and DMAP
during infusions of DBT at 3, 6, and 9 lg kg)1 min)1

and SNP at 1, 2, and 4 lg kg)1 min)1 were calculated
from the fitting parameters to the average step re-
sponses (Fig. 1B, the CO response to SNP at
1 lg kg)1 min)1 was excepted because of the impos-
sible fit to the step response). Although some differ-
ences existed among unit impulse responses at those
infusion rates, as shown in Fig. 1B, in the present

study, median values (i.e. 6 lg kg)1 min)1 in DBT and
2 lg kg)1 min)1 in SNP) were used for the following
simulations because they characterized the effects of
drugs on hemodynamics well. Numerical data in Ku,
Tc, L, and g(t) used for the simulation study are shown
in Table 1 (left).

Third, to express the nonlinear response to a single
drug infusion, the Dy*(t) in Eq. (2) as the linear model
response was modified through a sigmoidal function:30

Dy0ðtÞ ¼ p1 tanh
p2Dy�ðtÞ

2

� �
ð3Þ

in which p1 is the parameter of the response range,
which shows the difference between the maximum and
minimum values of Dy¢(t) as the nonlinear model
response, and p2 is the parameter of the coefficient of
gain. Parameters p1 and p2 were determined by non-
linear least-squares method for the simulation study
[Table 1 (right) and Fig. 2A]. Figure 2A contains the
average values in DCO and DMAP responses of the
final 30 s during 10-min infusions of DBT at 3, 6, and
9 lg kg)1 min)1 and SNP at 1, 2, and 4 lg kg)1 min)1

(Fig. 1A). The DCO and DMAP responses tested in
simulations were over the ranges of the averaged
responses in actual hemodynamics of dogs with heart
failure.

Finally, the model responses containing patient
sensitivities to therapeutic agents and drug interactions
are expressed as

DCOmodðtÞ¼a1DCO01ðtÞþa2DCO02ðtÞ
DMAPmodðtÞ¼b1DMAP01ðtÞþb2DMAP02ðtÞ

(
ð4Þ

where DCOmod(t) is the model response containing
sensitivities to drugs and drug interactions of DBT and
SNP; DCO1¢(t) and DCO2¢(t), respectively, indicate the
nonlinear responses to single infusions of DBT and
SNP; and a1 and a2, respectively, represent the propor-
tional gain of patient sensitivity to DBT and SNP. The
model response containing sensitivities to drugs and
drug interactions of SNP and DBT is DMAPmod(t). The

TABLE 1. Model parameters in linear-fitting and nonlinear-fitting functions.

Drug-response

Linear Nonlinefsar

Proportional gain (Ku) Time constant (Tc) Pure time delay (L) R 2 Response range (p1) Coefficient of gain (p2) R 2

DBT-CO 15.8 164.3 30 0.98 105.3 0.028 0.99

DBT-MAP 4.4 65.2 30 0.75 22.8 0.145 0.98

SNP-CO 3.0 40.6 60 0.28 37.7 0.051 0.80

SNP-MAP )12.5 209.4 60 0.96 -26.2 )0.085 0.99

Fitting parameters (Ku, Tc, L, p1, and p2) in a single-input single-output relationship. The Ku [ml lg)1 in DBT-CO and SNP-CO loops or mmHg

(lg kg)1 min)1))1 in DBT-MAP and SNP-MAP loops], Tc (s), and L (s) are the parameters of Eq. (2). The p1 and p2 are the parameters of Eq.

(3). R 2 shows a multiple coefficient of determination.
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FIGURE 2. A. Nonlinear responses of DCO and DMAP in infusion of DBT or SNP. Circles (�) show experimental data for dogs with
heart failure; solid lines are curves fitted to the averaged data. Dashed lines show the limits of the tested range [one-third
(a1 = a2 = b1 = b2 = 1/3) to three-times (a1 = a2 = b1 = b2 = 3) responses compared with the averaged data (a1 = a2 = b1 = b2 = 1) in
Eq. (4)] in simulations. B. Multi-input multi-output model responses for DCO and DMAP. System inputs are the infusion rates of
DBT and SNP; outputs are the DCO and DMAP. The outputs were determined by the first-order dynamic systems cascaded with
nonlinear sigmoidal functions. The proportional gains of patient sensitivities to drugs and drug interactions are shown as a1, a2, b1,
and b2.
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respective nonlinear responses to single infusions of
SNP and DBT are DMAP1¢(t) and DMAP2¢(t). The
respective proportional gains of patient sensitivity to
SNP and DBT are denoted as b1 and b2 (see Fig. 2B). In
particular, a2 and b2 can be defined as the strength of the
drug interaction when the two treatments for DBT-CO
and SNP-MAP loops are performed.

Development of Controller

Control Design

Figure 3 portrays a block diagram of a MAPCNN

system for adaptation to various patient responses
with heart failure. Treating the multiple loops in the
therapy for heart failure separately allows setting of a
clear goal of NN learning for the various patient
responses during closed-loop control. On the other
hand, in the completely separated controllers, the total
control performance will be late because one controller
performs the drug therapy after detection of the drug
interaction disturbance induced by performing an
action taken by the other controller. Therefore, the
MAPCNN in this study includes two module control-
lers for the DBT-CO loop considering the effects of

SNP on CO and the SNP-MAP loop considering the
effects of DBT on MAP.

Figure 4A depicts one of the two NN structures
in MAPCNN tested for the simulation study. The
MAPCNN is a control system inwhich theNNrecursively
learns patient characteristics using their observed
responses to drug infusions only once every 30 s during
closed-loop control (Learning Loop). It subsequently
determines the future outputs using the learned NN
(Prediction Loop). A multilayer feed-forward NN with
two hidden layers (DyNN) emulated the nonlinear re-
sponses in DCOmod and DMAPmod. The DyNN is pre-
dicted through NN as

DyNNðtÞ ¼ f
�
Dymodðt� 1Þ; Dymodðt� 2Þ;

u1ðt� 1Þ; . . . ; u1ðt� 6Þ; u2ðt� 1Þ; . . . ; u2ðt� 6Þ
�
ð5Þ

where Dymod(t)1) and Dymod(t)2) are model responses
of past DCO or DMAP; u1(t)1),..., and u1(t)6) or
u2(t)1),... and u2(t)6) represent the past 3-min infusion
rates of DBT or SNP. Here, to determine the length of
the history of model response and infusion rates as
inputs to the NN, the accuracy of NN learning was

Neural
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FIGURE 3. A block diagram showing multiple adaptive predictive control using neural networks (MAPCNN) to regulate CO and
MAP. The r is a target value, and e(t) is the error between the target value and observed value. The value e(t + i) represents the error
between the target value and output predicted by the NN. Thick lines show the learning loop in the NN; dotted lines show the
prediction loop using the NN.
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tested under various lengths of components (for a
detailed protocol, refer to the following paragraph
‘‘Learning of Initial Weights in NN’’). Figure 4B shows

the average values (final 500 points) in the absolute
error between the DCOmod and DCONN responses (left)
or DMAPmod and DMAPNN responses (right) from the
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hyperbolic tangent function was used as the output of each unit. B. Average values (final 500 points) in the absolute error between
the DCOmod and DCONN responses (left) or DMAPmod and DMAPNN responses (right) from the trained NN [100,000 times,
a1 = a2 = b1 = b2 = 1 in Eq. (4)] under various lengths of input–output components to NN input. C. The absolute error between the
model response and the predicted response by NN in (a) DCO (left) or (b) DMAP (right).
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trained NN [100,000 times, a1 = a2 = b1 = b2 = 1
in Eq. (4)] under various input–output components to
the NN input. The numbers of the input units (m) to a
single NN component and of the units in the first (n1)
and second (n2) hidden layers of the NN were set to the
same as that of components to the NN input. For
example, if the inputs to the NN were 14 (the past
3 min in both the two drug inputs and the past 1 min
in the model response), then m = n1 = n2 = 14.
Learning rates of the two NN in both the CO and
MAP controls were set to Kn1 = Kn2 = 0.2. The
starting weights of NN were given at random every
trial. In the past history of infusion rates, the error
between the NN and model responses in the past 2-min
infusion rates (eight components in Fig. 4B: four in
DBT and four in SNP) showed adequate accuracy,
although that in the past 1-min infusion rates (four
components) was not demonstrably accurate in both
the CO and MAP responses. Here, it was predicted
that the pure time delays to drug inputs were different
among patients and that the NN was required to
express the characteristics of the transient response to a
drug input adequately considering the effect of the
other drug input. Therefore, to adjust the NN response
to the changes of hemodynamics with noise and dis-
turbances during the real-time control, the infusion
rates of the past 3 min in both drugs (total 12 com-
ponents: 6 components in each drug) were, on the safe
side, selected for both the CO and MAP controls in the
present study. In the past history of model response,
the accuracy of NN learning was the almost equal
among the cases of the past 1, 1.5, and 2 min (2, 3, and
4 components in Fig. 4B) in both the CO and MAP
responses, whereas that in the past 30 s (1 component)
showed inadequate accuracy. Accordingly, the length
of the past history of model response was determined
as 1 min (2 components) in both the CO and MAP
controls.

In the simulation study, the number of input units
to a single NN component was m = 14; the numbers
of units in the first and second hidden layers of the NN
were n1 = n2 = 14, being equal to the input units. The
weights in the single NN were 435: 196 in the input to
first hidden layer, 196 in the first to second hidden
layer, 14 in the second hidden layer to output layer,
and 29 for biases (Fig. 4A). The two NN for the
controls of DBT-CO and SNP-MAP loops had iden-
tical structures.

In the learning loop, a single NN was trained by the
output of DCOmod or DMAPmod to the random inputs
of DBT and SNP using the backpropagation algorithm
in an on-line mode, showing that the error function is
calculated after presentation of an input. The predic-
tion loop in the MAPCNN determines the optimal
DBT or SNP infusion rate that minimizes the cost

function using the updated NN through the learning
loop every 30 s.

J1ðtÞ ¼q1 u1ðtÞ � u1ðt� 1Þ½ �2

þ
XNp1

i¼1
r1ðtþ iÞ � DCONNðtþ iÞ½ �2

J2ðtÞ ¼q2 u2ðtÞ � u2ðt� 1Þ½ �2

þ
XNp2

i¼1
r2ðtþ iÞ � DMAPNNðtþ iÞ½ �2

8>>>>>>>>>><
>>>>>>>>>>:

ð6Þ

Therein, the cost function [J1(t), J2(t)] comprises the
weight of input change (q1, q2), the prediction range
(Np1, Np2), and the setpoint (r1, r2) in the controllers
for the DBT-CO loop or the SNP-MAP loop. The
physiological responses predicted by the NN are indi-
cated as DCONN and DMAPNN. The controller based
on the NN for each loop predicts future outputs using
past inputs of infusion rates of DBT and SNP. The
optimization of the infusion rates [u1(t), u2(t)] was
performed using a Nelder–Mead Simplex algo-
rithm.16,27

Determination of Control Parameters

Learning of Initial Weights in NN
The two NN, respectively, learned DCOmod response
in the DBT-CO loop and DMAPmod response in the
SNP-MAP loop to determine the initial weights in
the NN for the MAPCNN. The starting weights in the
NN before learning the model response were given at
random between )1 and 1. Subsequently, the infusion
rates of DBT and SNP were given at random between
)4 and 6 lg kg)1 min)1. Here, both the plus and
minus signs as drug inputs (artificial infusions) to
the NN were used because the learning of NN was
inferred to be more effective than that under a plus
sign alone as the drug input to the NN in the trial
and error and previous studies.9,27 Learning of the
NN for DCOmod or DMAPmod responses was repeated
100,000 times. The DCOmod was divided by 200, and
DMAPmod was divided by 100 for normalization
during NN learning.

Figure 4C shows the absolute error between the
DCOmod and DCONN responses (left) or DMAPmod and
DMAPNN responses (right) from the trained NN in the
average patient sensitivity [a1 = a2 = b1 = b2 = 1 in
Eq. (4)]. Learning rates of the two NN for the following
simulation study were set to Kn1 = Kn2 = 0.2 showing
a suitable number by trial and error in both the
DCOmod and DMAPmod. Learning results of the NN,
respectively, showed errors of 2.5 ml kg)1 min)1 in the
DBT-CO loop and 1.5 mmHg in the SNP-MAP loop.
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Controller Tuning
Optimal values of the range of prediction (Np1, Np2) and
the weight of input (q1, q2) in the cost function (6) of the
controller were explored using the model patient
responses, DCOmod and DMAPmod, to determine the
initial controllerparameters.Theprediction rangewas set
toNp1 = Np2 = 4, 8, or 12, and the weight of input was
set to q1 = q2 = 0.01, 0.1, or 1. The learning rates of
DCOmod and DMAPmod were fixed atKn1 = Kn2 = 0.2.
To regulate the control speed and stability simulta-
neously, the setpoint of DCO was guided by the linear
function r1 = 35t/600 ml kg)1 min)1 during the 10 min
following the start of the closed-loop control. Thereafter,
it was maintained at r1 = 35 ml kg)1 min)1. The set-
point of DMAP was set to r2 = ±0 mmHg. The dura-
tion of the closed-loop control was set to 40 min.

Figure 5 shows simulation results of the MAPCNN

using average responses of DCOmod and DMAPmod [a1,
a2, b1, and b2 in Eq. (4) were set to unity]. The controller
suppressed a control speed instead of facilitating stable
control with the increase of the weight of input
(q1 = q2 = 0.01 fi 1) at each range of prediction
(Np1 = Np2 = 4, 8, or 12). On the other hand, when the
weight of the input is small (q1 = q2 = 0.01), the con-
troller performed a slightly aggressive control with the
decreased range of prediction (Np1 = Np2 = 12 fi 4).
The relationship at the large weight of input
(q1 = q2 = 1) was opposite because of the strong ef-
fects of the input weight at the small range of prediction
(Np1 = Np2 = 4). For subsequent simulations, the
parameters (Np1,Np2, q1, q2) in theMAPCNNwere set to
Np1 = Np2 = 12 and q1 = q2 = 0.01 considering the
settling timewhich reflects control speed and stability. In
this case, the settling time within ±3 ml kg)1 min)1 in
DCOmod was 660 s; its time within ±2 mmHg in
DMAPmod was 990 s. The average absolute value of
error between a setpoint andmodel response inDCOmod

or DMAPmod over the entire control period (average
error) for 40 min was 2.8 ml kg)1 min)1 in DCO or
0.5 mmHg in DMAP.

Evaluation of Controller

Simulations

To evaluate the control performance, a simulation
study in MAPCNN, which expressed the repeatability
and freely operated physiological parameters such as
nonlinearity and interaction,22,30 was performed under
unexpected changes of patient responses to therapeutic
agents with acute disturbances using themodel response
based on experimental data of canine heart failure. In-
creased CO to more than 95 ml kg)1 min)1, while
keepingMAP within the normal range (80–100 mmHg)
is desirable to treat acute heart failure.6,7 Therefore, the

control objectives in this study were to increase the
low CO (mean±S.E.M. = 67.5±3.4 ml kg)1 min)1,
Fig. 1A) at the setpoint of +35 ml kg)1 min)1

(DCO = +35t/600 within 10 min after the start of
closed-loop control) using DBT infusion and to simul-
taneously maintain the normal MAP (mean± -
S.E.M. = 96.7±2.0 mmHg, Fig. 1A) at the setpoint
(DMAP = ±0 mmHg) using SNP infusion when
hypertension is induced by treatment for DBT-CO
loop in acute heart failure. The infusion rates were
basically bounded as 0 £ u1(t) £ 10 in DBT and
0 £ u2(t) £ 6 in SNP to avoid an overdose or drug tox-
icity.5,22 Hemodynamic control was simulated under
the following cases: drug interactions between DBT
and SNP, acute disturbances, and time-variant chan-
ges of physiological parameters.

Drug Interactions
Grasping and estimating the acts of drug interactions
are difficult for hemodynamic control using multiple
drugs.6,30 To examine the controller’s robustness for
wide ranges of patients’ sensitivity to drugs and drug
interactions, parameters (a1, a2, b1, b2) in Eq. (4) were
changed to 2, 1/3, or 3 every 40 min for 120-min
control (Fig. 6A). Hemodynamic responses were un-
known to the NN because the NN learned only the
average model responses (a1 = a2 = b1 = b2 = 1).
The controller was also tested under various combi-
nations for sensitivities to drugs and drug interactions.
The model parameters, a1, a2, b1, and b2 in Eq. (4),
were set to one of 1/3 (Low), 1 (Mid.), and 3 (High),
and all combinations were tested with or without the
limitations of drug infusion rates. The control duration
was 40 min.

To know the limitation of the control performance,
the MAPCNN was tested under very low (a1 =
a2 = b1 = b2 = 1/5 or 1/10) and high (a1 = a2 =
b1 = b2 = 5 or 10) sensitivities to drugs and drug
interactions. The limitations of infusion rates of drugs
were eliminated to emphasize the control performance.
The control duration was 40 min.

Acute Disturbances
Bolus infusion of drugs during and after cardiac surgery
often introduces severe disturbances to a controller.
Hemorrhage, patient-position changes, and changes in
anesthesia levels will modulate patient response charac-
teristics.10,20 To examine the controller’s performance
during acute disturbances, the MAPCNN against
acute hypertension was simulated using the DCOmod

and DMAPmod responses for 120 min. Exogenous
perturbations were added to the patient responses
ranging within ±10 ml kg)1 min)1 in DCOmod and
+20 mmHg in DMAPmod. To mimic physiological
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variation, random noises within ±3 ml kg)1 min)1 in
DCOmod and ±2 mmHg in DMAPmod were also added
[Fig. 9A(a) and B(a)].

To implicate the limitation of the control performance,
theMAPCNNwas tested under very severe situations with
random noise and exogenous perturbations over
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physiological responses: (i) very huge amplitudes of ran-
domnoise, (ii) very large and (iii) acute disturbances. First,
(i) three levels of huge amplitudes of randomnoise (level 1:
±5 ml kg)1 min)1 in DCOmod and ±5 mmHg in
DMAPmod, level 2:±25 ml kg)1 min)1 and±25 mmHg,
and level 3: ±50 ml kg)1 min)1 and ±50 mmHg) were
added to model responses (a1 = a2 = b1 = b2 = 1)
during drug treatment for 40 min [Figs. 10A(a) and B(a)].
The random noises among the three levels had the same
pattern except for the amplitude. Next, (ii) the MAPCNN

was evaluated under very huge disturbances (level 1:
)20 ml kg)1 min)1 in DCOmod and +20 mmHg in
DMAPmod, level 2: )50 ml kg)1 min)1 and +50 mmHg,
and level 3: )100 ml kg)1 min)1 and +100 mmHg;
a1 = a2 = b1 = b2 = 1; Fig. 11A). Finally, (iii) the
MAPCNN was tested under very acute disturbances with
model responses in high sensitivities to drugs and drug
interactions (a1 = a2 = b1 = b2 = 3). At 20 min after
the start of control for 80 min, the acute disturbances of
three levels [10 (level 1), 5 (level 2), and 0 (level 3) min to
reaching the offset values of )50 ml kg)1 min)1 in
DCOmod and +50 mmHg in DMAPmod after the start of
the disturbances] were added (Fig. 11B). In those simula-
tions, the limitations of infusion rates of drugs were elim-
inated to elucidate the limitations of the control
performance.

Time-variant Changes
Patient responses to therapeutic agents have a non-
linear and time-variant nature. If the delay of a plant,
which reflects the infusion rate of drugs through the
catheter, internal patient circulation and perfusion
delay, and the drug-recirculation characteristics of a
patient,2,26,30 is not known accurately or changes
during drug infusions, infusion delays will engender an
unstable condition. Therefore, the controller robust-
ness was tested under the change of the infusion delay
in this study. The pure time delays [L in the unit im-
pulse response of Eq. (2)] of patient responses to
therapeutic agents were varied from 30 to 90 s in CO
responses and 60 to 120 s in MAP responses to DBT
and SNP infusions during the closed loop control
[Fig. 12A(a)]. The parameters (a1, a2, b1, b2) in Eq. (4)
were varied from 1/3 to 3 to examine the controller
performance under time-variant and wide ranges of
patient sensitivities to drugs and drug interactions
[Fig. 12A(b)]. The exogenous perturbations were ad-
ded to the time-variant patient responses ranging
within ±10 ml kg)1 min)1 in DCOmod and
+20 mmHg in DMAPmod. Random noises within
±3 ml kg)1 min)1 and ±2 mmHg were added to
DCOmod and DMAPmod responses [Fig. 12B(a) and
C(a)]. The control duration was 120 min.

Animal Study

To evaluate the control performance in MAPCNN

under the unknown physiological responses such as
nonlinearity and drug interaction, the simultaneous
control of CO and MAP was performed using a dog
with acute heart failure. Acute ischemic heart failure in
an anesthetized and ventilated dog (23 kg) was induced
by microsphere embolization of the left main coronary
artery. A double-lumen catheter was introduced into
the right femoral vein for administration of drugs
using an infusion pump (CFV-3200; Nihon Kohden,
Tokyo, Japan). CO was measured by an electromag-
netic flow probe (MFV-2100; Nihon Kohden), and
MAP was measured through a pressure transducer
(DX-200; Nihon Kohden) at a 10-Hz sampling rate
through a 12-bit digital-to-analog converter.

The control objective was to increase the low CO
(62.4 ml kg)1 min)1) at the setpoint (+40%) using
DBT infusion and to maintain the MAP (73.9 mmHg)
at the setpoint (DMAP = ±0 mmHg) using SNP
infusion in acute heart failure. The closed-loop control
duration was 60 min. The infusion rates were bounded
as 0 £ u1(t) £ 10 in DBT and 0 £ u2(t) £ 6 in SNP.

RESULTS

Simulations

Drug Interactions

Figure 6 shows simulation results of closed-loop con-
trol by MAPCNN (Np1 = Np2 = 12, q1 = q2 = 0.01,
and Kn1 = Kn2 = 0.2) under unknown patient sensitivi-
ties to drugs and drug interactions. The DCO in the DBT-
CO loop converged on the setpoint (+35 ml kg)1 min)1)
within approximately 15 min, according to the guided
setpoint during the first 40-min control period, regardless
of unanticipated patient sensitivities and drug interactions
(a1 = a2 = b1 = b2 = 2). The control for the DMAP in
the SNP-MAP loop minimally suppressed the hyperten-
sion (+4.2 vs. +15.0 mmHg with or without SNP infu-
sion) induced by the DBT infusion. At 40 and 80 min of
the closed-loop control, patient sensitivities and drug
interactions were widely changed (a1 = a2 = b1 =
b2 = 2 to 1/3 and 1/3 to 3). The DCO converged on the
setpoint robustly, whereas the DCO showed transient and
large changes (+35.0 showing the setpoint to+14.9 and to
+99.3 ml kg)1 min)1 at approximately 50 and 85 min).
Although DMAP was decreased acutely by the change of
patient sensitivity and drug interaction (±0 to
)20.7 mmHg at approximately 85 min), it returned
robustly to a normal level. The average errors between
setpoints and observed responses were 6.4 ml kg)1 min)1

inCOand1.6 mmHg (10.5 mmHgwithout SNP infusion)
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inMAP during 120-min closed-loop control.Weights and
biases of two NN were adjusted to optimal values
[Fig. 6B(b) and C(b)] when the unexpected changes
occurred. The infusion rates of DBT and SNP were
adjusted smoothly to optimal levels corresponding to the
unknown patient responses to drugs.

Table 2 shows average errors between setpoints and
model responses in DCO and DMAP during closed-
loop control by MAPCNN (Np1 = Np2 = 12, q1 =
q2 = 0.01, and Kn1 = Kn2 = 0.2) under the various
sensitivities to drugs and drug interactions. The control
performance was overall accurate and a tendency ex-
cited for dependence on the sensitivity of CO to DBT
(i.e., parameter a1); the control performancewas increased
as the sensitivity ofCO toDBT increased (a1 = 1/3 fi 3).
However, in some cases, great hypertension was observed
during control, as displayed in Fig. 7A; although the CO
control was smoothly completed under such cases, the
great hypertension was induced because of the high
interaction of DBT infusion used for CO treatment (i.e.
b2 = 3). The maximum values of the hypertension
in cases 1 (a1 = ‘Low’, a2 = ‘Low’, b1 = ‘Low’, and
b2 = ‘High’), 2 (a1 = ‘Low’, a2 = ‘Low’, b1 = ‘Mid.’,
and b2 = ‘High’), and 3 (a1 = ‘Low’, a2 = ‘Mid.’,
b1 = ‘Low’, and b2 = ‘High’) were 60.3, 39.4, and
33.8 mmHg, respectively.Here, ‘Low’ = 1/3, ‘Mid.’ =1,
and ‘High’ = 3. In case 2, the infusion rates ofDBTwere
slightly disturbed and the estimation error between the
NNandDCO responses oscillated. However, theDCO in
case 2 was unaffected by the oscillation of DBT infusion
because of the low sensitivity of CO to DBT
(a1 = ‘Low’). Infusion rates of SNP in all cases were
saturated at around 8 min because of the limitation of
drug infusion. After the saturation, the infusion rate of
SNP in case 1 was decreased at around 12 min.

To elucidate the control performance without the
limitation of infusion rates of drug inputs, the

MAPCNN was also tested under the same cases 1, 2,
and 3 (Fig. 7B). However, great hypertension was not
improved by SNP infusion without the drug input
limitation (63.8, 39.8, and 38.4 mmHg in cases 1, 2,
and 3) compared with those with the limitation of the
drug input. In cases 2 and 3, the drug infusion rates
in DBT were disturbed and the estimation errors
between the NN and DCO responses had some
oscillations. In addition, in all cases, the infusion rates
of SNP were decreased after increasing to around
10 lg kg)1 min)1, irrespective of the remaining the
hypertension.

Figure 8 shows the closed-loop control by
MAPCNN (Np1 = Np2 = 12, q1 = q2 = 0.01, and
Kn1 = Kn2 = 0.2) under (A) very low
(a1 = a2 = b1 = b2 = 1/5 or 1/10) and (B) high
(a1 = a2 = b1 = b2 = 5 or 10) sensitivities to drugs
and drug interactions. Under very low sensitivities to
drugs and drug interactions, the DCO response was not
able to reach the setpoint (±35 ml kg)1 min)1) be-
cause of the slight sensitivity of CO to DBT (a1 = 1/5
or 1/10), but it finally converged on a stable value
(Fig. 8A, left). Estimation errors between the NN and
model responses in DCO had oscillations under such
conditions. On the other hand, under very high sensi-
tivities to drugs and drug interactions, both the DCO
and DMAP responses oscillated depending on the de-
gree of sensitivities to drugs [maximum amplitudes
between observed values and setpoints:
(+)9.2 ml kg)1 min)1 and ())18.8 mmHg in
a1 = a2 = b1 = b2 = 5 or (+)35.9 ml kg)1 min)1

and ())54.1 mmHg in a1 = a2 = b1 = b2 = 10,
Fig. 8B]. However, the MAPCNN had a tendency to
suppress oscillations in the DCO and DMAP responses
gradually. The estimation error between the NN and
model responses and the infusion rates of drugs were
also disturbed.

TABLE 2. Average errors between setpoints and model responses in CO and MAP under various sensitvities to drugs and drug
interactions.

CO (a1): Low Mid. High

CO (a2):

MAP (b1) MAP (b2) Low Mid. High Low Mid. High Low Mid. High

Low Low 5.5 (0.5) 4.8 (0.4) 3.4 (0.3) 2.9 (0.3) 2.7 (0.3) 2.2 (0.2) 1.3 (0.1) 1.2 (0.1) 1.2 (0.1)

Mid. 5.3 (10.3) 4.1 (4.8) 3.0 (1.0) 3.3 (1.9) 2.6 (1.0) 2.0 (0.7) 1.3 (0.5) 1.2 (0.5) 1.2 (0.4)

High 5.7 (45.0*) 3.8 (25.1*) 4.2 (3.0) 3.5 (17.3) 2.9 (6.1) 2.2 (1.6) 4.2 (3.4) 3.9 (3.5) 1.5 (1.2)

Mid. Low 6.0 (1.2) 5.7 (1.2) 5.8 (1.1) 3.2 (0.6) 2.9 (0.6) 2.4 (0.5) 1.5 (0.4) 1.4 (0.4) 1.3 (0.3)

Mid. 5.5 (0.6) 4.7 (0.5) 3.5 (0.4) 3.2 (0.5) 2.8 (0.5) 2.1 (0.4) 1.6 (0.4) 1.4 (0.4) 1.3 (0.3)

High 5.3 (29.6*) 3.8 (12.2) 3.4 (1.9) 3.3 (3.9) 2.7 (1.4) 2.0 (1.0) 1.9 (1.1) 1.7 (0.9) 1.3 (0.7)

High Low 6.0 (2.5) 5.9 (2.5) 6.2 (2.3) 2.8 (0.7) 2.8 (0.6) 2.7 (0.7) 1.3 (0.6) 1.3 (0.5) 1.3 (0.4)

Mid. 6.0 (4.1) 6.2 (3.9) 7.0 (3.4) 2.9 (0.6) 2.8 (0.6) 2.5 (0.6) 1.4 (0.6) 1.3 (0.5) 1.3 (0.4)

High 5.6 (1.0) 4.8 (0.7) 6.4 (4.3) 3.2 (0.8) 2.9 (0.8) 2.3 (1.3) 2.0 (1.6) 1.8 (1.6) 1.5 (1.5)

The numbers show the average errors in CO (left) and MAP (right). ‘Low’ = 1/3, ‘Mid.’ = 1, and ‘High’ = 3 in the parameters in Eq. (4). The

sign of * shows the cases of large hypertension (for detailed results, see Fig. 7).
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Acute Disturbances

Figure 9 shows closed-loop control by MAPCNN

(Np1 = Np2 = 12, q1 = q2 = 0.01, and Kn1 =
Kn2 = 0.2) under unexpected acute disturbances with
background noise. The DCO converged on the setpoint
(+35 ml kg)1 min)1) within approximately 12 min
according to the guided setpoint during the first 40-min
control period, regardless of the added random noise
(±3 ml kg)1 min)1) with expected patient responses
(a1 = a2 = b1 = b2 = 1). The appropriate infusion
of SNP for control of DMAPmod with random
noise (±2 mmHg) suppressed hypertension (+3.5 vs.
+15.4 mmHg with or without SNP treatment) induced
by DBT infusion. At 40 and 80 min of the closed-loop
control, acute disturbances were added to the DCOmod

(+10 and )10 ml kg)1 min)1) and DMAPmod (+20 and
+10 mmHg) responses. The MAPCNN suppressed the
transient change of COminimally and the CO converged
on the setpoint as quickly as possible. The induced
transient hypertension was suppressed robustly by
optimal infusion of SNP (+6.7 vs.+31.0 mmHgwith or
without SNP treatment in the added disturbance at
40 min). Average errors between setpoints and observed
responses were 3.7 ml kg)1 min)1 in CO and 1.4 mmHg
(20.8 mmHg without SNP) in MAP during 120-min
closed-loop control. Weights and biases of two NNwere
adjusted to the optimal values when the unexpected
changes occurred [Fig. 9A(c) and B(c)]. Changes of
biases were linked to those of the acute disturbances and
physiological variation. The infusion rates of DBT and
SNP were adjusted smoothly to optimal levels corre-
sponding to the unknown disturbances.

Figure 10 shows the closed-loop control by
MAPCNN (Np1 = Np2 = 12, q1 = q2 = 0.01, and
Kn1 = Kn2 = 0.2) under very large amplitudes of
random noise [levels 1 (±5 in both DCOmod and
DMAPmod), 2 (±25), and 3 (±50), Fig. 10A(a) and
B(a); a1 = a2 = b1 = b2 = 1]. Although the DCO
and DMAP responses [Figs. 10A(b) and B(b)]
approached the setpoints, they depended directly on the
appearance patterns and the amplitudes in large ran-
dom noise. The infusion rates in DBT and SNP and the
estimation errors between the NN and model responses
were also reflected by changes of random noise.

Figure 11A shows the closed-loop control by
MAPCNN (Np1 = Np2 = 12, q1 = q2 = 0.01, and
Kn1 = Kn2 = 0.2) under huge disturbances [levels 1
()20 ml kg)1 min)1 in DCOmod and +20 mmHg in
DMAPmod), 2 ()50 ml kg)1 min)1 and +50 mmHg),
and 3 ()100 ml kg)1 min)1 and +100 mmHg);
a1 = a2 = b1 = b2 = 1]. In the disturbance of level
1, the DCO and DMAP responses converged on the
setpoints, whereas the estimation error between the
NN and model responses in DCO exhibited some

oscillations around 60–65 min. At level 2, the CO
control was completed well. However, the MAP did
not reach the setpoint because of the large disturbance
and the interaction from DBT used for the CO control.
In addition, the infusion rate of SNP was decreased at
around 30 min irrespective of the hypertension of
approximately 40 mmHg. The MAP response did not
oscillate and converged on a steady state being far
from the setpoint. At level 3, neither the DCO nor
DMAP responses reached the setpoints. The infusion
rate of SNP was increased instantaneously by receiving
a great disturbance at 20 min, and it was decreased at
around 25 min regardless of remaining the large
hypertension of approximately 120 mmHg. The esti-
mation error between the NN and model responses in
DCO showed oscillation at approximately 40 min.

Figure 11Bshows the closed-loopcontrolbyMAPCNN

(Np1 = Np2 = 12, q1 = q2 = 0.01, and Kn1 = Kn2 =
0.2) under very acute disturbanceswith high sensitivities to
drugs and drug interactions [levels 1 (10 min to the added
disturbances of )50 ml kg)1 min)1 in DCO and
+50 mmHg in DMAP), 2 (5 min), and 3 (0 min);
a1 = a2 = b1 = b2 = 3]. At levels 1 and 2, although the
DCO and DMAP responses showed small oscillations
because of the acute disturbances, they converged on the
setpoints by 80 min. In level 3 (step input of disturbance),
the DCO and DMAP received the effects of the step input
of the very acute disturbances at 20 mindirectly.Although
DCO and DMAP responses were disturbed until 70 min,
those values tended to converge on the setpoints eventu-
ally. In particular, the infusion rate of SNP at level 3 was
increased acutely to 20 lg kg)1 min)1 against the large
hypertension of 50–60 mmHg induced by the very acute
disturbance with high amplitude of 50 mmHg at 20 min;
in turn, the excessive hypotension after the acute hyper-
tension was induced by the high sensitivity ofMAP to the
SNP used for the MAP control (b1 = 3). However, the
infusion rate of SNP was adjusted to the optimal value at
approximately 70 min.

Time-variant Changes

Figure 12 shows the closed-loop control by
MAPCNN (Np1 = Np2 = 12, q1 = q2 = 0.01, and
Kn1 = Kn2 = 0.2) under the unknown time-variant
responses containing time delays to therapeutic agents
with acute disturbances. The DCO converged on the
setpoint (+35 ml kg)1 min)1) within approximately
10 min according to the guided setpoint during the first
40-min control, irrespective of time-variant patient
sensitivities and drug interactions with added noise; it
showed only slight oscillation (±5 ml kg)1 min)1). The
SNP infusion for the control of DMAP suppressed the
hypertension (+6.1 and+22.8 mmHgwith andwithout
SNP treatment) induced by DBT infusion beforehand.
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At 40 min of the closed-loop control, acute disturbances
()10 ml kg)1 min)1 in CO and +20 mmHg in MAP)
were added to the patient responses. The DCO and
DMAP quickly converged on the setpoint within
approximately 10 min, whereas the transient hyperten-
sion was induced (+9.4 vs. +38.9 mmHg with or
without SNP). The average errors between setpoints and
observed responses were 4.2 ml kg)1 min)1 in CO and
2.7 mmHg (15.3 mmHg without a vasodilator) inMAP
during 120-min closed-loop control. The weights and
biases of two NN were adjusted to optimal values when
the unexpected changes occurred [Fig. 12B(c) andC(c)].
Changes of biases were linked to those of the time-var-
iant responses and acute disturbances. The infusion
rates of DBT and SNP were adjusted to optimal levels
corresponding to the unknown time-variant responses.

Animal Study

Figure 13 shows results of closed-loop control by
MAPCNN (Np1 = Np2 = 8, q1 = q2 = 0.3, and
Kn1 = Kn2 = 0.2) under the actual response of canine
left heart failure. The CO in the DBT-CO loop con-
verged on the setpoint within approximately 10 min
regardless of the unknown response containing nonlin-
ear, drug interaction, and the effects of arterial barore-
flex with physiological variation in actual heart failure.
The control for the DMAP in the SNP-MAP loop sup-
pressed the acute hypertension (+20 mmHg) inducedby
the DBT infusion. Whereas the large disturbance like
arrhythmia was induced at around 38 min during the
control, theCOandMAPwere appropriately controlled
by the MAPCNN adjusting the infusion rates of DBT
and SNP to the optimal levels. The average errors be-
tween setpoints and observed responses were
7.3 ml kg)1 min)1 inCOand6.4 mmHg inMAPduring
60-min closed-loop control.

DISCUSSION

The development of automatic drug-delivery sys-
tems requires a controller that can adapt to the various
patient responses in clinical situations. The MAPCNN

was confirmed to be robust with respect to uncertainty
in drug interactions, acute disturbances, time-variant
responses containing time delays to therapeutic agents
(Figs. 6, 9, and 12), and the actual response of a dog
with heart failure (Fig. 13) because of its ability to
learn nonlinear and time-variant changes of the system
during the on-line control.

The infusion of DBT increased MAP as well as CO
in acute left heart failure of dogs [Fig. 1A(a)]. The
DBT infusion does not generally act on the SVR
whereas both the CO and SVR affect MAP.14 There-

fore, the increase of MAP during DBT infusion in this
study would have resulted mainly from increasing the
CO induced by the actions of the beta receptors (b1, b2)
of cardiac smooth muscle30 rather than the SVR. On
the other hand, the SNP infusion resulted in the
decrease of MAP and the increase of CO between
middle and high doses [Fig. 1A(b)] because of the de-
crease of SVR (afterload of a heart) by SNP and sec-
ondarily increased CO.6 In addition, the SNP
treatment might have suppressed the increase in pre-
load through the decrease of SVR because of increas-
ing venous compliance for retaining the blood in the
veins and lowering the venous return to the heart in
case of congestive heart failure. In the simultaneous
regulation of CO and MAP, the control for CO in-
duced hypertension (Figs. 6, 9, 12, and 13) because the
primary control target in this study was the increase of
low CO in acute heart failure. The MAPCNN was able
to suppress the hypertension using optimal infusion of
SNP as well as increasing CO using DBT to an optimal
target value because the combined infusion of an ino-
tropic agent and a vasodilator would have acted
effectively.12,13,25

Application of MAPCNN to a multiple hemody-
namic control accomplished the regulation of CO and
MAP under various changes of the patient’s responses
to drugs and disturbances (Figs. 6, 9, 12, and 13). In
particular, regardless of the large change of patient
sensitivities as shown in Fig. 6, the MAPCNN robustly
adjusted the acute and large changes to generate a
stable condition. Similarly to the previous control-
lers,7,10 the MAPCNN suppressed those disturbances
performed stabilized control under unexpected acute
disturbances (Figs. 9 and 12). Under time-variant
patient responses with pure time delays, which are a
crucial obstacle to stable control,2,26 the MAPCNN

provided sufficient control performance (Fig. 12).
Regardless of actual nonlinear response, drug inter-
action, and partial disturbances with arrhythmia, the
MAPCNN could regulate the CO and MAP simulta-
neously (Fig. 13). The superior control performance
resulted from the function to adjust the weights and
biases of the NN to optimal points during the on-line
control (Figs. 6, 9, and 12).

Only the two-NN models of average responses with
heart failure were considered in the calculation of the
appropriate multiple drug infusion rates of DBT and
SNP (Fig. 3) to mitigate the enormous number of trials
associated with the control design. Model predictive
controllers or fuzzy controllers might require an
extremely lengthy set-up stage to prepare the model
banks as linear models of patients’ responses to drugs
or to provide the experienced rules describing various
cases in clinical settings whereas the controllers are
an effective means of adjusting to various patients’
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sensitivities to drugs21 and describing nonlinear re-
sponses to drugs5. A controller based on NN solves
those problems because it decreases the number of
models required for the control design of the various
changes of hemodynamics clearly.

Irrespective of the wide range over physiological
responses (Fig. 2) in simulations and actual response
of a dog with heart failure containing the effects
of baroreflex and the full renin–angiotensin system
induced by long-term control,14 CO and MAP in the
MAPCNN promptly approached the setpoints because
of the optimization of both the stability and speed for
the MAPCNN (Figs. 6, 9, 12, and 13). Therefore, the
designed MAPCNN will be feasible for application to
automatic drug therapy in heart failures. However,
when rapid treatment using drugs against more acute
and large disturbances is required during hemody-
namic controls, another supplemental system might be
required.9 Diagnoses of characteristics of patients’ re-
sponses to drugs or tuning weights of NNs during
closed-loop controls1 may also be effective for hemo-
dynamic controls to accelerate the NN learning speed.
In addition, because the fluid infusion, blood transfu-
sion, anesthesia, and muscular blockade as well as the
therapeutic agents controlled in this study are common
in clinical practice,22,29 the controllers that can adjust
physiological responses to further multiple drugs
will be desired. The MAPCNN tested herein can be
extended simply to multivariate control systems under

such clinical conditions for drug therapy with heart
failure.

The MAPCNN was tested under various conditions
over physiological responses to elucidate the limitations
of the control performance (Figs. 7, 8, 10, and 11).
Regardless of such severe conditions, the hemody-
namics during MAPCNN learning very large changes of
the sensitivities to drugs and drug interactions and the
disturbances using NN tended to converge on the set-
points with some oscillations observed, insofar as those
responses were within the possible range of the control
using DBT and SNP (e.g., Figures 8B and 11B). On the
other hand, there existed cases for which it was obvi-
ously impossible for MAPCNN to control the hemo-
dynamics (Figs. 7, 8A, and 11A). For example, when
the interaction from DBT for the CO control to MAP
was very large (b2 = 3) and the sensitivity of MAP to
SNP was small (b1 = 1/3 or 1, Fig. 7), the MAPCNN

was actually incapable of attenuating the induced
hypertension. Those cases resulted from nonlinear
model responses to drugs in the present study; the he-
modynamic responses, therefore, would have saturated
because of the range of nonlinear model responses,
regardless of the increase of drug infusion rates.

The NN in the MAPCNN under the severe condi-
tions seems to have tried to learn and adapt to the
situations during real-time control. In cases of large
error between actual responses and predicted responses
where the NN in the MAPCNN learned the average
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responses before the control (e.g. the CO responses of
case 2 in Fig. 7A, cases 2 and 3 in Fig. 7B, and cases 1
and 3 in Fig. 11A), the hemodynamics during the
control exhibited oscillation and the NN in the
MAPCNN would have tried to learn the severely
changed situation again. In addition, when the hemo-
dynamic response showed incorrect or opposite re-
sponse to the drug input compared with the learned
average response by the NN before the control [e.g.
cases of not reaching the setpoint and converging on a
stable state regardless of the DBT infusion for CO
control because of very low sensitivity to the drug
(a1 = 1/5 or 1/10, Fig. 8A) and of the opposite effect
of SNP on MAP, speciously, because of the very large
disturbances (levels 2 and 3 in Fig. 11A) compared
with the learning response], the drug infusion rate of
the MAPCNN was decreased despite the remainder of
the low CO or hypertension during the closed-loop
control with real-time NN learning. Therefore, these
simulation results suggest the following two points.
First, in those cases such as the high interaction over
the drug effect on the target physiological parameter
and the incorrect or opposite responses to drugs
compared with those of previously learned NN,
improvement of the strategy in drug treatment would
be required; alternatively, the MAPCNN would fall
into a situation of control impossibility. Second, the
physiological variations related with responses to
anesthesia, antiarrhythmic drug, and muscle relaxant,
the external disturbances, and the artificial background
noise must be set to the smallest possible values to
bring out the best performance of the controller.

Several limitations are apparent in present study.
First, the modeling for the CO and MAP responses to
drugs might depend on the protocols of animal exper-
iments such as the order and washout period of drug
infusions. The protocol in the present animal study
was, therefore, described in detail (reference ‘Modeling
of Pharmacological Response’ in the ‘MATERIALS
AND METHODS’ section). Second, one (low CO and
normal MAP) of the heart-failure conditions was tested
using the present animal study. The kinds of heart
failures are various in actual patients. Therefore, fur-
ther animal studies will be required. Finally, an elec-
tromagnetic flow probe was used for CO measurement
in the present study. However, in an actual clinical
setting, the common technique for CO measurement
(e.g., the thermodilution technique using a pulmonary
artery catheter19) has a slower response than that of an
electromagnetic probe. The high accuracy of a flow
probe, such as the time resolution (at least 30 s as used
for this experiment), and the pure time delay from an
actual response (as few response delays as possible)
would be required to acquire the results that were
obtained in the present study.

CONCLUSIONS

The MAPCNN was designed and evaluated in sim-
ulation and animal studies to regulate the nonlinear
responses of CO and MAP in acute heart failure using
DBT and SNP under unexpected changes of patient
sensitivities to drugs, drug interactions, acute distur-
bances, and time-variant responses to therapeutic
agents. The MAPCNN showed robust control perfor-
mance irrespective of various unexpected responses to
drugs over actual physiological responses (Fig. 2) and
actual response of a dog in heart failure. Flexibility of
a NN coupled with an adaptive control mechanism
will enable the regulation of various physiological
responses to drugs with heart failures.
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APPENDIX

The error signal is propagated back through the
network, thereby modifying the weights before the next
input presentation. The backpropagation algorithm is
performed in the following order: output layer, second
hidden layer, and first hidden layer. All connection
weights are adjusted to decrease the error function by
the backpropagation learning rule based on the
gradient decent method.23 The error function, E is

E ¼ 1

2
e2 ¼ 1

2
Dymod � DyNNð Þ2

where Dymod is the model response as a supervised
signal, DyNN is the Dymod predicted by the NN before
update of the connection weights, and � is the error
between Dymod and DyNN. The error is back-propa-
gated through the network. The connection weight is
generally updated by gradient descent of E as a func-
tion of weights:9,27

w� ¼ wþ KnDw;

where

Dw ¼ @E
@w
¼ @E
@e

@e
@yNN

@yNN

@w
¼ �e

@yNN

@w

andin which w* is the single weight of each connection
after updating, w is the single weight of each connec-
tion before updating, Dw is the modified weight, and
Kn (Kn1 and Kn2 in the DBT-CO and SNP-MAP loops)
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is the learning rate. For detailed equations, refer to the
previous article.9
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