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High STAT1T mRNA levels but not its tyrosine
phosphorylation are associated with macrophage
infiltration and bad prognosis in breast cancer
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Abstract

Background: STAT1 has been attributed a function as tumor suppressor. However, in breast cancer data from
microarray analysis indicated a predictive value of high mRNA expression levels of STATT and STAT1 target genes
belonging to the interferon-related signature for a poor response to therapy. To clarify this issue we have
determined STAT1 expression levels and activation by different methods, and investigated their association with
tumor infiltration by immune cells. Additionally, we evaluated the interrelationship of these parameters and their
significance for predicting disease outcome.

Methods: Expression of STATI, its target genes SOCST, IRF1, CXCL9, CXCL10, CXCL11, IFIT1, IFITM1, MXT and genes
characteristic for immune cell infiltration (CD68, CD163, PD-L1, PD-L2, PD-1, CD45, IFN-y, FOXP3) was determined by
RT-PCR in two independent cohorts comprising 132 breast cancer patients. For a subset of patients, protein levels
of total as well as serine and tyrosine-phosphorylated STAT1 were ascertained by immunohistochemistry or
immunoblotting and protein levels of CXCL10 by ELISA.

Results: mRNA expression levels of STATT and STAT1 target genes, as well as protein levels of total and serine-
phosphorylated STAT1 correlated with each other in neoplastic tissue. However, there was no association between
tumor levels of STATT mRNA and tyrosine-phosphorylated STAT1 and between CXCL10 serum levels and CXCL10
expression in the tumor. Tumors with increased STATT mRNA amounts exhibited elevated expression of genes
characteristic for tumor-associated macrophages and immunosuppressive T lymphocytes. Survival analysis revealed
an association of high STATT mRNA levels and bad prognosis in both cohorts. A similar prognostically relevant
correlation with unfavorable outcome was evident for CXCL10, MX1, CD68, CD163, IFN-y, and PD-L2 expression in
at least one collective. By contrast, activation of STATT as assessed by the level of STAT1-Y701 phosphorylation was
linked to positive outcome. In multivariate Cox regression, the predictive power of STATT mRNA expression was lost
when including expression of CXCL10, MX1 and CD68 as confounders.

Conclusions: Our study confirms distinct prognostic relevance of STATT expression levels and STAT1 tyrosine
phosphorylation in breast cancer patients and identifies an association of high STAT1 levels with elevated
expression of STAT1 target genes and markers for infiltrating immune cells.
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Background

STAT1 has been described as a tumor suppressor because
of its function as a mediator of IFN-y — dependent immu-
nosurveillance [1]. This anti-tumor activity of STAT1 ap-
pears to be particularly important at the onset of tumor
formation and is supposed to lead to the elimination of
transformed cells by the innate and adaptive immune sys-
tem. At a cellular level, STAT1 can exert this function via
shaping the immune effector phenotype [2,3]: In dendritic
cells, genes required for antigen processing and presenta-
tion are up-regulated, and in macrophages cytotoxic activ-
ity is increased, e.g. by induction of iINOS expression.
STAT1 also participates in the differentiation of B cells
[4,5] and T cells [6,7]. In addition to its function in im-
mune cells, expression of STAT! in the tumor epithelium
has been shown to exert an inhibitory effect on the devel-
opment of the tumor [8,9]. This has been attributed to its
cell-autonomous role in mediating apoptosis and prolifer-
ation arrest in response to cellular stress such as onco-
genic transformation [10], as well as to the transcriptional
induction of chemokine and MHC class I genes, which
promote recruitment of immune effector cells and recog-
nition of tumor antigens [2].

The proof of principle for the importance of STAT1 in
impeding the development of tumors came from experi-
ments with MMTV-neu tumor STAT1 null mice, which
develop mammary tumors with shorter latency as com-
pared to STAT1-proficient controls [8,9,11]. Furthermore,
STAT1 deficiency predisposed multiparous wild-type mice
to intraepithelial neoplasias [12]. Expression of STAT1 in
the tumor epithelium as well as in the stroma cells was
shown to contribute to these anti-tumor effects of STAT1
[8,9,12,13]. It has been postulated from these observations
that tumors may adapt to the anti-tumor action of STAT1
by down-regulating its expression and/or by impairing its
activation [1]. This notion is supported by immunohisto-
chemical (IHC) analysis of STAT1 expression in estrogen
receptor (ER) - positive primary mammary carcinomas,
which revealed lower STAT1 expression levels in the
tumor epithelium as compared to the adjacent normal epi-
thelium in a considerable number of cases [14].

In addition to these effects of STAT1 in preventing
development and progression of early lesions an influ-
ence of STAT1 on the progression of established tumors
and their response to therapy has been described.
Forced over-expression of STATI in tumor cells was
found to confer resistance to radiotherapy [15] and
tumor cells with an increased propensity to metastasize
to the lung after serial transplantations were shown to
acquire a phenotype characterized by high expression
levels of STATI [16]. Furthermore, increased expression
of genes belonging to the so-called interferon-related
gene signature including STATI was shown to correlate
with elevated frequency of relapse in human breast
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cancer [17]. Moreover, the presence of tumor STAT1
activity correlated with disease progression from ductal
carcinoma in situ to invasive carcinoma [18]. It has
been proposed that high expression of STATI in estab-
lished tumors could be the result of a selection process
and promote the escape of tumor cells from IFN-y-
mediated tumor surveillance [19]. On the other hand,
activation of STAT1 in established mammary tumors as
determined by specific DNA binding activity and tyro-
sine phosphorylation was linked to good prognosis and
decreased frequency of disease recurrence [20], indicat-
ing that high expression levels and activation of STAT1
might represent distinct prognostic and /or predictive
parameters.

Alternatively to its potential direct impact on tumor pro-
gression, STAT1 expression and activation might serve as
markers for chronic or acute inflammatory processes in
the tumor, which are known to potentially influence the
progress of disease depending on the type of infiltrating
cells and tumor subtypes [21,22]: this is because IFNs, the
major triggers of STAT1 expression and activation in the
tumor epithelium and stroma, are secreted during acute as
well as chronic inflammatory responses [23]. In order to
better understand the interrelationship between STAT1
expression and activation, progression of disease and im-
mune infiltration, the expression of STAT1 and STAT1 tar-
get genes as well as marker genes for infiltrating immune
cells was analyzed in primary mammary carcinoma tissue
derived from two independent patient cohorts. The data
were evaluated by correlation analysis for a link between
STAT1 and immune infiltrates as well as for their signifi-
cance in predicting progression of disease and patient’s
survival. The study revealed a link of potential mechanistic
significance between elevated expression of STATI and its
target genes with markers of infiltrating immune cells, in
particular with tumor-associated macrophages.

Methods

Patients

Two patient cohorts are included in this retrospective
study: Cohort A represents 96 breast cancer patients who
underwent surgery at the Department of Gynecology and
Obstetrics, Innsbruck Medical University between 1989
and 2003; cohort B comprises 36 patients treated at the
Oscar Lambret Anticancer Center of the North of France,
Lille. Clinical and pathological characteristics of the two
populations are summarized in Table 1. The distribution
of clinical features in these cohorts was representative for
patients treated at the respective clinical centers. 54% of
the patients in cohort A and 44% of the patients in cohort
B were diagnosed with ER-positive infiltrating ductal can-
cer. For both cohorts mRNA prepared from the primary
tumor was available. From cohort A, paraffin blocks for
IHC analysis and additional material for immunoblotting
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Table 1 Characteristics of breast cancer patients and
tumors

Cohort A

% of patients

Cohort B

% of patients

Characteristic
Total patients, n 96 36

Age at diagnosis, years

Mean 58 59

Range 30-90 35-80
Menopause, n 68 71 -
Histotype, n

Infiltrating ductal cancer 73 76 21 58
Infiltrating lobular cancer 10 10 1 3
Others 137 14 14 39
Stage, n

| 34 35 1 3
I 55 57 20 56
1I\% 7 7 1 31
Unknown 0 4 10

Lymph node status, n

Positive 54 56 19 53
Negative 38 40 17 47
Unknown 4 4 0

ER status, n

Positive 67 70 23 64
Negative 26 27 13 36
Unknown 3 3 0

Tumor recurrence, n 31 32 19 53
Patient death, n 52 53 14 39
Follow-up, years

Median 9.1 6.8

Range 0.1-22 0.6-10

“three mucinous, four medullary, one comedo, five unknown.

as well as serum for ELISA analysis were provided for the
study. The number of patient samples available for each
type of analysis performed in this study is specified in
Additional file 1. Breast cancer samples from patients
undergoing surgery for locoregional disease were obtained
in accordance with Austrian law and principles of De-
claration of Helsinki with the agreement of the Ethics
Committee of the Innsbruck Medical University (reference
number: UN4051) and the investigator’s Institutional Re-
view Board in the Centre Oscar Lambret, Lille. Due to the
retrospective nature of our study it was not possible to ob-
tain written consent from every patient. The need for pa-
tient consent was therefore waived for these cases by the
institutional review board. All samples were anonymized
to guarantee the protection of privacy before performing
the analysis.
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Immunohistochemical detection of STAT1

After deparaffinization and rehydration, 3 to 5 pm thick
tissue sections were placed for 10 min in 10 mM citrate
buffer (pH 6.0) at 95°C for antigen unmasking, followed by
treatment with 3% H,O, for 10 min at room temperature
to block endogenous peroxidase. Staining for STAT1 was
performed with the Vectastain ABC Kit (Vector Labora-
tories, Burlingame, CA) using a 1:250 dilution of primary
STAT1 rabbit monoclonal antibody (42H3, Cell Signaling)
in SignalStain® Antibody Diluent (Cell Signaling) and over-
night incubation at 4°C. Slides were treated with the
chromogen diaminobenzidine and counterstained with
Mayer’s Hemalum (Merck).

Evaluation of slides

Antigen expression was defined as the presence of specific
staining in the cytoplasm or nucleus of cells. The propor-
tion of stained tumor or stroma cells (0, none; 1, <10%;
2, 10-50%; 3, >50%) as well as the intensity of staining (0,
none; 1, weak; 2, moderate; 3, strong) was independently
evaluated by two examiners and slides revisited in the case
of differences in scoring. The total immunostaining score
was calculated individually for tumor and stroma cells and
was defined as the product of proportion and intensity
score (range 0 to 9). Histograms with the number of cases
for each score are shown in Additional file 2.

Protein extracts and immunoblotting

Whole cell extracts were prepared from tumor material
and normal adjacent tissue pulverized under liquid nitro-
gen as described previously [20]. Samples were run on
SDS-PAGE gels, proteins transferred to poly(vinylidene)
difluoride membranes and probed with primary antibodies
for STAT1 (#9176, 1:1000, Cell Signaling), pS727-STAT1
(#07-307, 1:1000, Millipore) and pY701-STAT1 (#9171,
1:500, Cell Signaling). For immunodetection, the enhanced
chemiluminescence protocol of Amersham (GE Health-
care) was used. Quantification of the abundance of the im-
munoreactive STAT1 specific band and normalization of
different experiments was performed as described [20].

CXCL10 ELISA

The protein concentration of CXCL10 in serum samples
or whole cell extracts from pulverized tumor tissue were
determined with a commercial ELISA set (Human IP-10
ELISA development Kit, PeproTech). Whole cell extracts
were prepared as described [20].

RNA preparation and RT-PCR

RNA from pulverized tumor and adjacent tissue was
prepared as described [24], reverse transcribed and ana-
lyzed by quantitative RT-PCR as reported previously
[25] using the expression of TATA-box binding protein
(TBP) as a reference for normalization. In all cases, the
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efficiency of amplification by the designed primers was
more than 80% as determined by serial dilutions of the
standard. Amplification of the gene products was per-
formed essentially as described with either the TagMan
[26] or EvaGreen methodology [11]. Reactions included
two standard control tumor cDNA samples and a non-
template control. Expression levels are represented as
relative amount of specific cDNA versus TBP using the
Delta Ct method and the formula 2C*TBP-Cteene)  Deltg
Ct values were used for the correlation studies. For pri-
mer and probe sequences, see Additional file 3. For ana-
lysis of CD45 expression the primers were obtained
from Applied Biosystems.

Statistical analysis

For the association of STATI expression with other gene
expression data, Spearman’s and Pearson’s correlation co-
efficients and their two-tailed significances were deter-
mined as appropriate. For survival analysis, patients were
categorized into two groups using the median of the delta
Ct expression value. Overall survival (OS) was taken as
time from the initial tumor resection to death, and relapse
free survival (RFS) as the time from tumor resection to
date of recurrence. Survival curves were generated using
the Kaplan—Meier method and compared using the log-
rank (Mantel-Cox) test. Hazard ratios (HR) with their cor-
responding 95% confidence intervals (CI) were estimated
using Cox proportional hazards models. Levels of signifi-
cance are indicated by stars: *, p value < 0.05; **, p value <
0.01; ***, p value < 0.001. Analyses were performed using
SPSS and R platform software. Heatmaps were generated
using Genesis [27].

Results

STAT1 protein levels in the tumor correlate with STAT1
mRNA levels

STAT1 protein levels in tumor epithelium and stroma
were separately assessed by immunohistochemical stain-
ing of primary breast cancer tissue derived from 83 pa-
tients. Typical staining patterns are shown in Figure 1A.
Expression was found to be highly variable: Some tu-
mors exhibited strong staining both in the stroma and
tumor epithelium, whereas in others either the epithe-
lium or stroma was predominantly stained. 42% and 30%
of the tumors exhibited no or weak staining for STAT1
in the epithelium or stroma, respectively (Figure 1B).
Pulverized tumor tissue obtained from the same patients
was analyzed for STAT1 mRNA and protein by RT-PCR
and western blotting. Expression levels determined by
immunohistochemistry (IHC) in the tumor epithelium
correlated significantly with the values obtained by RT-
PCR and western blotting (Figure 2), thus validating the
specificity of the different detection methods. STAT1
protein in the stroma correlated with mRNA expression
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levels only, pointing to a predominant influence of
tumor epithelium-expressed STATI on the total mea-
sured protein levels in extracts of pulverized tissue.
Interestingly, the activation of STAT1 as assessed by im-
munoblotting with the pS727-specific antibody but not
with the Y701-specific antibody was correlated with
total STAT1 protein or mRNA levels as determined by
IHC or RT-PCR (Figure 2). Thus activation hallmarked
by phospho-serine 727 does not appear to be coupled to
tyrosine 701 phosphorylation in the set of 27 investi-
gated tumors.

No evidence for downregulation/mutation of STAT1
expression as driving force for the expansion of human
mammary tumors

The entire coding region of STAT1 ¢cDNA derived from
tumor mRNA of seven ER-positive and two ER-negative
mammary tumors exhibiting lowered levels of STAT1
protein was sequenced. Tumor epithelium content in
these samples was more than 90% as checked by histo-
logical analysis of frozen sections from this area. No mu-
tations were detectable, indicating that at least in these
cases, mammary tumors did not expand because of a
mutation in STAT1. We have further analyzed mRNA
expression of STATI and its target gene IRFI in paired
samples of tumor and adjacent tumor-free tissue and
found a significant increase in expression of both genes
in neoplasm rather than a decrease (Figure 3A). Notably,
expression of IFN-y was similar in the tumor and adja-
cent tissue (Figure 3A), indicating that a higher produc-
tion of IFN-y by immune cells in the tumor did not
contribute to the increased mRNA levels of STAT1 and
IRF-1.We cannot rule out that the increased levels of
STAT1 mRNA STAT1 and IRF-1 in the tumor are the
result of higher abundance of immune cells expressing
these genes in the tumor.

Another argument against the downregulation of STATI
as a driving force for tumor development comes from the
observation that some of the tumors contained areas with
high STATI expression adjacent to areas with no detect-
able STAT1 expression, without an apparent difference in
the histological grading between these areas. An example
for a such tumor is shown in Figure 3B. If STAT1-
deficiency conferred a competitive advantage to the tumor
cells in the developing tumor, a selective expansion of
STAT1-negative areas would be expected. This was how-
ever not the case in any of the evaluated samples.

Coordinate regulation of STAT1, STAT1 target genes and
markers for tumor infiltration with leukocytes

mRNA expression analysis of STATI, STAT1 target genes
and markers for infiltrating lymphocytes and macrophages
was performed by RT-PCR. The obtained values were
positively associated with each other (Figure 4A), with the
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STAT1 total immunostaining score in tumor epithelium or stroma.

Figure 1 STAT1 specific IHC staining of human primary mammary tumors. Sections of paraffin embedded material from 83 primary
mammary tumors were investigated. (A) Examples for tumors with strong staining of tumor epithelium and stroma (upper left), predominant
staining of tumor epithelium (upper right), weak staining (lower left), and strong staining specific for stoma (lower right). (B) Histograms for

[ Stat1 Tumor
EA Stat1 Stroma

exception of PD-1. Among the investigated genes, an es-
pecially high inter-correlation of expression values was ob-
served within subgroups encoding proteins with similar
function or those serving as markers for tumor-infiltrating
immune cells: subgroup a, antiviral proteins IFIT1,
[FITM1, MX1; subgroup b, chemokines CXCL9, CXCL10,
CXCL10; subgroup ¢, immune cell markers IFN-y, CD45,
FOXP3, subgroup d, macrophage marker proteins CD68,
CD163; and subgroup e, immunosuppression-related pro-
teins FOXP3, PD-L1, PD-L2. Of note, in addition to the
well characterized role in a subset of regulatory T-cells,
FOXP3 was reported to be functional also in mammary

epithelial cells as a breast cancer suppressor gene [28].
However, in human breast cancer, nuclear expression
levels of FOXP3 were found to be negligible in compari-
son to FOXP3-positive T-cells [29]. PD-L2, originally
detected in macrophages and dendritic cells [30,31],
was later also described to be induced in other types of
immune and non — immune cells [32]. The expression
of antiviral genes IFIT1 and IFITM and macrophage-
marker CD68 was found to correlate exclusively with
the epithelial STAT1, whereas for the pan-leucocyte
marker CD45 significant correlations were restricted to
the stroma. (Figure 4B). The other genes exhibited no
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Figure 2 Comparison of STAT1 expression levels as determined
by IHC, RT-PCR and immunoblotting. Total STAT1
immunostaining scores for either stroma or tumor epithelium
obtained with paraffin-embedded material were correlated with
mRNA expression and protein expression levels in tumor extracts. Both
total STAT1 as well serine (5727) or tyrosine (Y701) phosphorylated
STAT1 was determined by Western blotting. Correlation coefficients
(R) and significance levels (p) were calculated by Spearman’s rank
correlation and are represented by color coding.

selective association with expression of STAT1 in one
of the tumor compartments. In a hierarchical cluster-
ing analysis, the panel of genes investigated in Figure 4
formed two major clusters (Figure 5). Cluster 1 com-
prised CD45, IFN-y and SOCSI. Cluster 2 contained
STAT], its target genes IRF1, CXCL9, CXCL10 and CXCL11
as well as macrophage marker and immunosuppression-
related genes. In conclusion, correlation and clustering
analysis revealed an interrelationship between markers
for macrophages, immunosuppression and STAT1
transcriptional activity. Interestingly, expression of the
macrophage marker CD68 was specifically associated
with tumor epithelium-specific STAT1 expression.

Independent regulation of serum and tumor levels of the

STAT1 target gene CXCL10

The coordinate upregulation of STAT1 target genes and
markers for immune infiltration indicates a close inter-
play between activity of the immune system and induc-
tion of STAT1 target genes in mammary tumors. The
question arises whether this interaction is restricted to
the tumor or may also reflect a systemic response which
can be monitored by analysis of serum samples of pa-
tients for elevated levels of proteins induced by STAT1.
CXCLIO represents a suitable STAT1 target gene for
such analysis [2]. It is secreted by cells of inflamed tis-
sues in response to IFN-y. Due to its relatively long half
live in the serum it can serve as a sensitive readout of acti-
vation of the innate immune system in course of/during
various diseases [33-37]. We analyzed the concentration
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of CXCL10 in preoperative sera and tumor samples of 10
patients and compared these values with the expression
levels of CXCL10 and STAT1 mRNA in the tumor
(Table 2). The experiments revealed a stringent association
of protein and mRNA expression levels of CXCLI0 and
STAT1 in the tumor. However, there was no association
between CXCLI10 protein levels in serum and tumor tis-
sue, indicating that STAT1 activity in the tumor compart-
ment cannot be simply predicted by monitoring serum
levels of CXCL10.

mRNA levels of STAT1 and markers for macrophage
infiltration are predictive for bad prognosis in breast
cancer, whereas STAT1 tyrosine phosphorylation is
associated with favorable outcome

The impact of STATI, its target genes and markers for
leukocyte infiltration on patient’s prognosis was exam-
ined. Hazard ratios for overall survival (OS) and relapse-
free survival (RFS) were calculated for patients with high
vs. low mRNA expression of these genes in two inde-
pendent cohorts (cohort A and B) comprising a total of
132 individuals (Figure 6A and B). In cohort A the ana-
lysis revealed a significantly increased risk of death and
recurrence for patients with high STAT1 and CD68.
This was also evident from the corresponding Kaplan-
Meier plots shown in Figure 7. mRNA levels of MXI1,
CXCL10, CD163, and PD-L2 were significantly associ-
ated with either high hazard ratio in at least one of the
four evaluations shown in Figure 6A (OS or RFS, all pa-
tients or ER-positive patients of cohort A). In cohort B
the link of high STAT1 and CXCL10 expression with
bad prognosis was also apparent (Figure 6B). Among
macrophage markers, only PD-L2 tended to associate
with heightened mortality and recurrence rate in this
collective.

The prognostic value of epithelial and stromal STAT1
protein levels as well as S727 and Y701 STAT1 protein
phosphorylation was assessed in a subset of cohort A
(Figure 6A). STAT1 protein levels determined by IHC
were less effective at predicting disease outcome than
STAT1 mRNA. A significantly increased mortality risk
was observed only for the stroma IHC score in the ER-
positive subset of patients. As reported previously [20],
the elevated levels of STAT1 pY701 were predictive of
favorable disease outcome. STAT1 tyrosine phosphoryl-
ation therefore appears to reflect a different state of
STAT1 activation as also indicated by the lack of its cor-
relation with STAT1 mRNA levels (Figure 2). Similarly,
high STAT1 pS727 levels could be linked to the lowered
risk. This association was however not significant, pos-
sibly due to the small number of analyzed individuals
(Figure 6A and B).

In a multivariate Cox regression analysis performed
with all patients of cohort A, the predictive power of
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Figure 3 STAT1 expression in tumor vs. tumor free adjacent tissue and in different areas of the same tumor. (A) mRNA expression levels
of STATT and the STAT1 target gene IRFT in tumor areas and matched tumor-free adjacent tissue were determined in 15 pairs of tissue. Statistical
significance was determined with paired Student's T-test. (B) Example for a tumor with strong and weak staining for STATT in neighboring
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STAT1 was lost or reduced when including the expres-
sion of either MX1, CXCL10, CD68, CD163 or PD-L2
as confounders (Figure 6C). This indicates that these
genes are not only linked to STAT1 by concomitant
regulation of their expression as shown in Figure 4, but
may also contribute to the prognostic significance of
STATI.

Discussion

The most striking result of our study is the opposing
impact of STAT1 pY701 levels versus STAT1 expression
and transcription of STAT1 target genes on prognosis
in mammary cancer. A similar distinct association of
STAT1 and pY-STAT1 levels with patient’s survival has
been recently reported for soft tissue sarcomas [38].
Mechanistically, our findings can be potentially attrib-
uted to different outcomes of short-term and prolonged
STAT1 signaling in the tumor. STAT1 Y701 phosphor-
ylation is typically maximal within the first hour of
extracellular stimulation of JAK/STAT signaling, e.g. by
IEN-y, and then decreases as a result of the action of
counter-regulatory phosphatases [39,40] and the nega-
tive feedback elicited by SOCS1 [41,42]. On the other

hand, STAT1 transcriptional activity usually remains el-
evated even after cessation of triggering signals and
leads to a sustained upregulation of STAT1 target genes.
Long-term effects of STAT1 activation are further en-
hanced by upregulation of STAT1, which stays under its
own transcriptional control, and is described to act as
a transcription factor even in unphosphorylated form
[43,44]. Thus, the increased levels of pY-STAT1 and its
association with good prognosis in breast cancer tissue
may reflect the short-term mode of STAT1 signaling
(Figure 6A), whereas elevated STAT1 and STAT1 target
gene mRNA and its link with bad prognosis may be in-
dicative of persistent stimulation of Jak/STAT1 signal-
ing in malignant cells (Figure 6A and B). Furthermore,
the postulated disparity in kinetics of STAT1 signaling
in breast cancer tumors may underlie the lack of linkage
between pY-STAT1 levels and STAT1 mRNA expression
(Figure 2).

Another important posttranslational modification of
STAT1 is the phosphorylation at S727 [45]. pS727-
STAT1 was reported to stimulate or inhibit the IFN-y
transcriptional response depending on the target gene
[46]. S727 phosphorylation usually follows after Y701
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Figure 4 Correlation of mRNA levels of STAT1, STAT1 target genes and lymphocytes and macrophage-specific genes. mRNA expression
levels determined by quantitative RT-PCR in primary tumors of cohort A were compared in the correlation. IRF1, a transcription factor proposed
as a mediator of the anti-tumor action of STAT1; SOCST, a feed back inhibitor of STAT1 signaling; the antiviral proteins IFIT1, IFITM1 and MX1; and
the chemokines CXCL9, CXCL10 and CXCL11 involved in the recruitment of immune cells, in particular T cells, are encoded by STAT1 target genes.
CD45 is a pan-leukocyte marker highly expressed in lymphocytes. FOXP3, PD-1 are predominantly expressed in T cells. IFN-y is expressed by
activated T cells, by NK cells, NK T cells and professional antigen presenting cells. PD-L1 is induced by IFN-y in different cell types including
macrophages. PD-L2 is specifically expressed in macrophages and dendritic cells. CD68 and CD163 represent markers for macrophages.
(A) Correlation matrix. (B) Correlation with STAT1 IHC staining scores in tumor epithelium and stroma. Correlation coefficients (R) and significance
levels (p) were determined by Pearson’s correlation and are represented by color coding.
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Figure 5 Clustering of patients according to gene expression patterns of STAT1, STAT1 target genes and genes expressed in
lymphocytes and macrophages. Mammary tumor expression data from 74 patients of cohort A were normalized and hierarchically clustered
(Pearson uncentered, distance measure, average linkage algorithm). Grayed squares indicate not available data.




Tymoszuk et al. BMIC Cancer 2014, 14:257
http://www.biomedcentral.com/1471-2407/14/257

Page 9 of 13

Table 2 Correlation of CXCL10 levels in serum with CXCL10 and STAT1 expression levels in the tumor of 10 breast

cancer patients

CXCL10 tumor (pg/mg protein)?

CXCL10 tumor (mRNA levels) STAT1 tumor (mRNA levels)©

CXCL10 serum (pg/ml)? rd 0374

p-value® 0287

CXCL10 tumor (pg/mg protein)® rd
p-value®
CXCL10 tumor (MRNA levels)®

p-value®

0497 0.460
0.144 0.181
0915 0.636
0.0002 0.048
0.745
0013

ACXCL10 levels in the serum of breast cancer patients collected at time of diagnosis prior to surgery.

PCXCL10 levels in extracts of the primary tumor.

“relative mRNA expression normalized to the expression of TBP as determined by RT-PCR.

dSpearman‘s rho correlation coefficient.
“two-tailed significance of Spearman’s rho.

phosphorylation [45]. However, there are number of re-
ports describing a separate regulation of these two sites.
For example, in NK cells the phosphorylation of S727
can occur without concomitant tyrosine phosphoryl-
ation [47] and in macrophages adenosine A(3) receptor
signaling selectively modulates S727 phosphorylation
[48]. Our findings on the lack of correlation of pS727-
STAT1 and pY701-STAT1 levels in breast cancer tissue
samples (Figure 2) provide a further example for the
non-coordinate regulation of these two sites. In our
study we could observe an apparent discrepancy,
whereby the total STAT1 protein levels as determined
by IHC or the pS-727 STAT1 levels as quantified by im-
munoblotting were not significantly correlated with
bad prognosis (Figure 6A), despite being linked to
STAT1 mRNA expression levels (Figure 2). The STAT1
protein, however, could be regulated at the levels of
transcription and translation. Since only the STATI
mRNA levels were found to be predictive of unfavor-
able outcome, we postulate that only the transcriptional
but not the posttranscriptional regulation is relevant
for the prognosis. This implicates that the protein may
serve as a rather unspecific readout of STAT1 tran-
scriptional activity.

How STAT1 is activated in mammary tumors remains
unclear. Its activation might be promoted by tumor-
intrinsic mechanisms mediated by receptor tyrosine ki-
nases, such as HER2/erbB2 [9] or induced by its principle
activator IFN-y produced by immune cells. The latter
possibility is supported by the association of IFN-y and
marker genes for infiltrating immune cells in tumors with
high STAT1 levels (Figure 4). Elevated levels of IFN-y in
ER-positive tumors were predictive of bad prognosis, as
were high STAT1 levels (Figure 6A). However in the
multivariate Cox regression, association of STAT1 with
bad prognosis did not depend on IEN-y (Figure 6C). Thus,
despite the significant association between the expression
of IFN-y and STAT1 transcripts in mammary tumors, the

impact on tumor prognosis of these two parameters ap-
pears to be non-redundant.

Another intriguing question is the mechanistic link
between high STATI and STAT1 target gene expression
and bad prognosis. We consider two possibilities, which
are not mutually exclusive: First, the transcriptional ac-
tivation of STATI could lead to expression of one or
more critical STAT1 target genes that directly influence
tumor progression and metastasis; Second, high STAT1
levels might simply serve as a marker for a chronic in-
flammatory process which was described to drive the
progression and dissemination of the tumor [21,49].
Among the STAT1 targets investigated in our study,
MX1 and CXCLI0 can be considered as genes influen-
cing tumor progression, since their expression was
significantly associated with bad patient’s prognosis
(Figure 6). MX1 is described to exert an antiviral activ-
ity by binding to cellular RNA helicases required for
viral replication but was not ascribed any obvious func-
tion in tumor biology [50]. By contrast, two described
properties of CXCL10 may underlie its potential tumor-
promoting effects: One is its direct action on the pro-
liferation of breast cancer cells [51]. The other is its
N-terminal processing by proteases under conditions of
chronic infections to a truncated antagonistic CXCL10
form, which impedes chemoattraction of activated lym-
phocytes and by this means acts as an immunosuppres-
sor [37]. The later mechanism could also be exploited
by cells of established, highly inflammatory neoplasms
to avoid recognition and killing by tumor-specific T
lymphocytes.

In our study, immunohistochemical analysis was able to
distinguish the expression of STAT1 in the tumor epithe-
lium and stroma, yet it was not possible to discern
whether expression in one of these two compartments
was prognostically more relevant (Figure 6A,B). We could
identify a correlation of STAT1 mRNA amounts and epi-
thelial STAT1 with markers of infiltrating leukocytes, in
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Figure 6 Prognostic value of gene expression in primary mammary tumors related to STAT1 and leukocyte infiltration. mRNA
expression levels of STATT, STAT1 target genes, genes expressed in lymphocytes and macrophages, as well as STAT1 Y701 phosphorylation and
STAT1 IHC scores were used to categorize patients into two groups with the median as discriminator. Hazard ratios for overall survival (OS) and
relapse-free survival (RFS) were evaluated by Cox regression for patients with high vs. low expression and are shown as mean together with the
95% confidence interval. (A) Cohort A, all patients (n=96) and the subset of ER-positive patients (n=67) were evaluated; (B) Cohort B (n = 36).
(C) Cohort A, all patients (n = 96), multivariate Cox regression analysis for patients with high vs. low STATT mRNA expression adjusted to
expression of genes found to be significantly linked to bad prognosis in the evaluation of Panel A. Number of tumor samples with available data
for expression analysis for the different genes in the two different cohorts are shown in Additional file 1.

particular macrophages (Figure 4A,B and Figure 5). environment for the recruitment/expansion of macro-
This indicates that either tumor cells with high STAT1  phages in the tumor or that macrophages promote an
expression are more likely to provide a favorable environment leading to high STATI expression in the
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tumor. Whereas the association of STAT1 with infiltrat-
ing leukocytes and its impact on bad prognosis in breast
cancer is a novel finding of this study, several reports
have already documented the impact of infiltrating
immune cells, in particular tumor-associated macro-
phages, on progression of disease and bad outcome
[52,53]. By contrast, increased infiltration of the tumor
with lymphocytes, in particular T cells, has been associ-
ated with better outcome in breast cancer patients sub-
jected to neoadjuvant therapy [54-56]. It remains to be
investigated whether the lymphocyte infiltration in the
tumor correlates with a better survival in our studied
patient collective.

Conclusions

Our study reveals a complex association between
STAT1 activation and progression of breast cancer.
STAT1 tyrosine phosphorylation, typically increased
after short-term activation of STAT], is linked to good
prognosis for the patient, whereas high levels of STAT1
mRNA, characteristic for sustained activation, predict
bad outcome of disease. Furthermore, there was a posi-
tive correlation between mRNA levels of STATI,
STAT1 target genes, and marker genes indicative for
infiltration with macrophages, pointing to an interrela-
tionship between these parameters. The results of the

Cox regression analysis further support a relevant link be-
tween STAT1 and macrophage infiltration for explaining
bad prognosis.
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