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Across population genomic prediction
scenarios in which Bayesian variable
selection outperforms GBLUP
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Abstract

Background: The use of information across populations is an attractive approach to increase the accuracy of
genomic prediction for numerically small populations. However, accuracies of across population genomic
prediction, in which reference and selection individuals are from different populations, are currently disappointing.
It has been shown for within population genomic prediction that Bayesian variable selection models outperform
GBLUP models when the number of QTL underlying the trait is low. Therefore, our objective was to identify across
population genomic prediction scenarios in which Bayesian variable selection models outperform GBLUP in terms
of prediction accuracy. In this study, high density genotype information of 1033 Holstein Friesian, 105 Groningen
White Headed, and 147 Meuse-Rhine-Yssel cows were used. Phenotypes were simulated using two changing
variables: (1) the number of QTL underlying the trait (3000, 300, 30, 3), and (2) the correlation between allele
substitution effects of QTL across populations, i.e. the genetic correlation of the simulated trait between the
populations (1.0, 0.8, 0.4).

Results: The accuracy obtained by the Bayesian variable selection model was depending on the number of QTL
underlying the trait, with a higher accuracy when the number of QTL was lower. This trend was more pronounced
for across population genomic prediction than for within population genomic prediction. It was shown that
Bayesian variable selection models have an advantage over GBLUP when the number of QTL underlying the
simulated trait was small. This advantage disappeared when the number of QTL underlying the simulated trait was
large. The point where the accuracy of Bayesian variable selection and GBLUP became similar was approximately
the point where the number of QTL was equal to the number of independent chromosome segments (Me) across
the populations.

Conclusion: Bayesian variable selection models outperform GBLUP when the number of QTL underlying the trait is
smaller than Me. Across populations, Me is considerably larger than within populations. So, it is more likely to find a
number of QTL underlying a trait smaller than Me across populations than within population. Therefore Bayesian
variable selection models can help to improve the accuracy of across population genomic prediction.
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independent chromosome segments
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Background
In genomic prediction, a reference population consisting
of animals with known phenotypes and marker geno-
types is used to build a prediction equation to predict
genomic estimated breeding values (GEBVs) for selec-
tion candidates with an unknown phenotype and a
known genotype [1, 2]. The prediction equation contains
estimated effects for single nucleotide polymorphism
(SNP) markers that are linked to quantitative trait loci
(QTL) underlying a trait. The accuracy of estimating
GEBVs depends on several factors, such as: the size of
the reference population [3–5], the heritability of the
trait [6, 7], the level of linkage disequilibrium (LD) be-
tween SNPs and QTL [1, 8], and the additive genetic
relationships between reference individuals and selection
candidates [9, 10].
In numerically small populations, e.g. lines or breeds

with a low number of individuals, the size of the refer-
ence population is limited which restricts the potential
accuracy of genomic prediction [5]. An attractive ap-
proach to increase the size of the reference population
for a numerically small population is to add individuals
from other populations, known as multi population gen-
omic prediction. Simulation studies have indeed shown
that the accuracies of genomic prediction can be in-
creased by adding individuals from other populations to
the reference population [6]. However, several empirical
studies showed that adding individuals from other popu-
lations to a reference population from a numerically
small population did not result in a significant increase
in accuracy compared to within population genomic pre-
diction [11–15]. This low increase in accuracy might be
a result of the differences in LD [16–18], allele frequen-
cies and allele substitution effects [19, 20] across popula-
tions. Those differences, as well as the absence of close
family relationships across populations [21], restrict the
accuracy of multi population genomic prediction.
Another factor that is influencing the accuracy of

genomic prediction, is the breeding value estimation
model. The currently used models can roughly be di-
vided in two groups; models based on genomic best
linear unbiased prediction (GBLUP) and nonlinear
Bayesian variable selection models [22, 23]. These
models differ in their assumption about the distribu-
tion of the SNP variances. The original GBLUP model
[1] assumes a homogeneous variance among SNPs,
i.e. each SNP contributes equally to the total SNP
variance. A Bayesian variable selection model assumes
heterogeneous variances among SNPs, i.e. some SNPs
have a large contribution to the variance and some
SNPs have a small or zero contribution. Please note
that it is possible to modify the GBLUP model to ac-
count for heterogeneous variances as well, as shown
by Strandén and Garrick [24]. However, this requires

prior knowledge about the SNP variances which is
not needed in a Bayesian variable selection model.
The difference in accuracy between GBLUP and a

Bayesian variable selection model is dependent on the
genetic architecture underlying the investigated trait and
genomic properties of the investigated populations. A
study that compared the accuracy of within population
genomic prediction obtained by a Bayesian variable
selection model with accuracies obtained by a GBLUP
model, has shown that Bayesian approaches have an
advantage over GBLUP when the number of QTL is
smaller than the number of independent chromosome
segments (Me) in the population [23]. However, when
the number of QTL was equal or larger than Me, the
accuracy of both statistical methods became equal or, in
some cases, GBLUP outperformed the Bayesian variable
selection model [23]. To our knowledge, to date the dif-
ference in accuracy between a Bayesian variable selection
model and a GBLUP model in relation to Me has not
been evaluated for across population genomic predic-
tion, in which reference and selection individuals are
from different populations. Our hypothesis is that also
in across population genomic prediction, a Bayesian
variable selection model will obtain a higher accuracy
than GBLUP when the actual number of QTL is smaller
than Me across populations, and the same accuracy as
GBLUP when the number of QTL is larger than Me.
Wientjes et al. [10] reported that Me is substantially
larger across populations than within a population. There-
fore it is more likely that the actual number of QTL
underlying a trait is smaller than Me across populations
than within populations.
The objective of this study was to identify across

population genomic prediction scenarios in which
Bayesian variable selection models outperform GBLUP
in terms of prediction accuracy. The accuracies of the
Bayesian variable selection model are described in this
study using high density genotype information of three
dairy cattle breeds. The GBLUP accuracies are presented
by Wientjes et al. [25] and are estimated using the same
dataset. The phenotypes were simulated such that the
underlying factors potentially acting on the accuracy of
across population genomic prediction were known.

Methods
Data
The dataset used in this study was retrieved from previ-
ous research of Wientjes et al. [25], containing the geno-
types of 1285 Dutch dairy cows. The cows originated
from three different breeds; 1033 Holstein Friesian (HF),
105 Groningen White Headed (GWH) and 147 Meuse
Rhine Yssel (MRY) cattle. Each of the individuals origi-
nated for at least 87.5 % from one of the three breeds and,
therefore, all individuals were considered to be pure-bred
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animals. For all MRY and GWH animals, nose swabs were
used for DNA collection. Nose swabs were collected in
accordance with the guidelines for the care and use of
animals as approved by the ethical committee on animal
experiments of ID-LELYSTAD (protocol: 2011062), and
the collection was in accordance with the Dutch Law on
Animal Experiments. Before collecting the nose swabs,
consent was obtained from the cattle owners. The geno-
types from HF animals were obtained from an existing
database, and therefore, no approval of an ethical commit-
tee was obtained.
The HF individuals were genotyped with the Illumina

BovineSNP50 Beadchip (50 k, Illumina, San Diego, CA).
The genotypes were imputed to high-density (777 k)
using a reference population of 3150 HF individuals by
Pryce et al. [26]. The GWH and MRY individuals were
genotyped with the Illumina BovineHD Beadchip (777 k,
Illumina, San Diego, CA). To increase the power of the
analyses, only the SNPs on Bos Taurus chromosome
(BTA) 13, 23, and 28 were considered. Those three chro-
mosomes form a good representation of the Bos Taurus
genome, since the LD pattern of BTA 13, 23 and 28
is comparable to the LD pattern of the entire genome
[27, 28]. This selection step reduced the total number
of SNPs, while it was still possible to benefit from the
higher consistency in LD across populations obtained with
the 777 k chip compared to the 50 k chip. Non-
segregating SNPs from the whole dataset were deleted, i.e.
SNPs with a minor allele frequency equal to or lower than
0.5 %. After the quality control and SNP editing, a total of
31,503 SNPs remained. More details on the genotypes,
quality control and editing of the SNP data are described
in Wientjes et al. [25].
Phenotypes were simulated for different scenarios

using two changing variables [25]: (1) the number of
QTL underlying the trait, and (2) the correlation be-
tween allele substitution effects of the QTL across popu-
lations, which represents the genetic correlation between
populations [29]. From all 31,503 SNPs in the dataset,
5000 SNPs were randomly selected as candidate QTL.
From these 5000 candidate QTL, 3000, 300, 30 or 3
QTL were randomly selected, regardless of the chromo-
some and allele frequency, to have an effect on the simu-
lated trait. The allele substitution effects of the QTL were
sampled from a multi-normal distribution, assuming a
genetic correlation of 1.0, 0.8 or 0.4 across all com-
binations of the three breeds. The remaining 26,503
(31,503-5000) SNPs were used as the group of markers for
all analyses.
Simulated phenotypes were calculated as the sum of the

true breeding values (TBV) and an environmental effect.
The TBV for each individual was calculated by multiplying
the QTL genotypes with the corresponding allele substitu-
tion effects assuming an additive model [25]:

TBV ij ¼
Xm

k¼1
Xijkαjk ;

where TBVij is the TBV for individual i from popula-
tion j, m is the number of QTL, Xijk is the genotype
for individual i from population j at QTL k, and αjk
is the true allele substitution effect of QTL k in
population j. The environmental effect was sampled
from a normal distribution with a mean of zero and a

variance equal to 1
h2
−1

� �
* (variance of TBV corrected

for mean TBV within population). The simulations of
the phenotypes were replicated 100 times for each sce-
nario and for each number of QTL underlying the trait,
assuming a heritability of 0.95 resembling the heritability
of deregressed proofs of bulls based on daughter informa-
tion. More details about the simulations of the phenotypes
are described in Wientjes et al. [25]. Datasets containing
the genotype and phenotype information are available on
doi:10.5061/dryad.rq80k.

Scenarios
The accuracy of genomic prediction was evaluated for
five different scenarios. An overview of the scenarios is
given in Table 1. The first scenario represents a within
population scenario, where HF animals were used as ref-
erence population to predict GEBVs for HF selection
candidates. Since the reference population and the selec-
tion candidates were selected from the same population,
a 20-fold cross-validation was used to estimate GEBVs.
The cross-validations were performed by randomly div-
iding the HF population in 20 groups where each group
consisted of 51 or 52 individuals. In each cross-
validation, one group was used as selection candidates
and the other 19 groups were used as reference popula-
tion. In the other four scenarios, GEBVs were estimated
for selection candidates of one population using a refer-
ence population of one or two other populations, i.e. ap-
plying across population genomic prediction, and no
cross-validation was required. In all across population
scenarios the HF population was included in the refer-
ence population.

Genomic prediction
Bayesian variable selection model
The Bayesian variable selection model used in this study
to perform genomic prediction was a Bayesian stochastic
search variable selection model (Bayes SSVS) [8, 30]. For
this model, the following general equation was applied
for n individuals and m markers:

y ¼ 1nμþ
Xm

j¼1
Xjβj þ e;

where y is the vector of phenotypic records for all n
individuals; μ is the mean; 1n is a vector with ones of
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length n; Xj is a vector of indicator variables referring to
the genotypes for SNP j (j = 1..m) for all individuals, βj is
the allele substitution effect associated with SNP j and e
is a vector of residuals. The residuals were assumed to
be normally distributed, e eN 0; Iσ2

e

� �
[1, 2].

A uniform prior distribution was assigned to μ. The
allele substitution effects βj were assumed to be from a
mixture of a normal distributions and an indicator vari-
able γ determined from which distribution the allele
substitution effects were sampled. The indicator variable
reflects whether the SNP can be included in the model
with a large effect, γ = 1, or with a small effect, γ = 0. For

γ = 1, βj was sampled from N 0; σ2β

� �
. For γ = 0, βj was

sampled from N 0;
σ2β
100

� �
, so that it had a very small ef-

fect. As such, the prior distribution for each SNP effect

was βjjγ j; σ2βe 1−γ j
� �

N 0;
σ2β
100

� �
þ γ jN 0; σ2β

� �
, with σ2β

sampled from an inverse chi-square distribution.
The prior distribution of the indicator variable γ was a

Bernoulli distribution for prior probability 1 − π: γi ~ ber-
noulli(1 − π). Variable 1 − π reflects on the proportion of
SNPs that have a large effect compared to the total num-
ber of SNPs. In this study 1-π was set to 0.01 for all sce-
narios. The posterior probability of the indicator variable
can be sampled directly from its posterior distribution [30]:

p γ ¼ 1jβj; σ2j ; γ−j; u; y
� �eBernoulli pd βjjγ−j;γ j¼1ð Þ 1−πð Þ

pd βjjγ−j; γ j¼1ð Þ 1−πð Þþpd βjjγ−j; γ j¼0ð Þπ
� �

;

where pd denotes probability densities, γj is the indi-
cator variable and γ–j refers to all indicator variables
except γj.
A Monte Carlo Markov Chain (MCMC) algorithm imple-

mented using right-hand-side updating [31] was used to per-
form the analyses. For each analysis, a Gibbs sampling chain
with 5000 iterations was run. The first 1000 iterations were
discarded as burn-in. For the first replicate of each scenario
initially a Gibbs sampling chain of 100,000 iterations with
20,000 iterations as burn-in was run. The GEBVs obtained
with 100,000 iterations had a correlation larger than 0.99
with the GEBVs obtained with 5000 iterations. Therefore, a

Gibbs sampling chain with 5000 iterations was considered
sufficient.

GBLUP
The GBLUP type of model used to perform genomic pre-
diction was a genomic-relatedness-matrix residual max-
imum likelihood (GREML) model, run in ASReml [32]. In
this model, variances and breeding values are estimated
simultaneously using REML, instead of assuming that vari-
ances are known, as is the case in a GBLUP model. The
GREML analyses were described by Wientjes et al. [25],
using the following model equation:

y ¼ Xbþ Zgþ e;

where b is a vector with a fixed breed effect, X is an
incidence matrix that allocates the fixed breed effect to
the individuals, g is a vector with genomic breeding
values geN 0;Gσ2a

� �� �
, Z is an incidence matrix that

allocates genomic breeding values to the individuals, G
is a genomic relationship matrix, and σ2a is the additive
genetic variance.

Accuracy of genomic prediction
For both models, the accuracy of genomic prediction
was calculated as the Pearson correlation coefficient be-
tween the GEBV and TBV across all selection candidates
per replicate, since the TBV was known for all selection
candidates. Average accuracies and corresponding stand-
ard errors were calculated across all replicates of the
same scenario. The average accuracies were used for fur-
ther analyses and comparisons.

Model comparison
For each of the scenarios, the average accuracy of
genomic prediction obtained by the Bayesian variable
selection model was compared with the average accuracy
obtained by the GBLUP model. It was investigated
whether also for across population genomic prediction
the accuracies of both models were equivalent when the
number of QTL is equal to or higher than Me, as was

Table 1 Overview of the different scenarios

Reference population Selection candidates

Scenario Breed(s) Number of individuals Breed Number of candidates

Base HF 981–982a HF 51–52a

1 HF 1033 GWH 105

2 HF & MRY 1180 GWH 105

3 HF 1033 MRY 147

4 HF & GWH 1138 MRY 147

HF = Holstein Friesian; GWH = Groningen White Headed; MRY =Meuse-Rhine-Yssel; aGenomic prediction is based on a 20-fold cross validation using 20 groups of
51 or 52 selection candidates
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described for within population genomic prediction [23].
Me is a statistical concept and represents the number of
independent chromosome segments segregating in a
population. Due to LD between markers, markers are
not segregating independently. The stronger the LD be-
tween the markers, the lower the value for Me. Across
populations, differences in LD pattern exist, therefore,
the number of independent chromosome segment is
likely to be higher across populations that within a
population. Within a population, Me can be calculated
as [33]:

Me ¼ 1

Var Gij−Aij
� � ;

where Gij and Aij are respectively the genomic and pedi-
gree relationships between individual i and j, and the
variance is taken across all pairs ij. In analogy to this
equation, Me across populations used in this study was
calculated by Wientjes et al. [25], as:

Me ¼ 1

Var GPop:1i;Pop:2j−APop:1i;Pop:2j

� � ;
where GPop:1i;Pop:2j and APop:1i;Pop:2j are respectively the
genomic and pedigree relationships between individual i
from population 1 and individual j from population 2,
with the variance taken across all pairs of individuals
from population 1 and 2. When two populations were
combined in the reference population, the complete ref-
erence population was considered as one population in
the calculation of Me. An overview of the estimates of
Me is given in Table 2.

Results
Equal allele substitution effects across populations
The accuracies of genomic prediction obtained with
Bayesian variable selection model are shown in Fig. 1 for
all scenarios assuming equal allele substitution effects

across the three populations. The accuracy of the base
scenario, which refers to within population genomic pre-
diction, was high (>0.92) and increased slightly when the
number of QTL reduced. The standard errors were very
small for the base scenario. Accuracies of the other four
scenarios, in which across population genomic predic-
tion was applied, were lower than the accuracies for the
base scenario. Standard errors for the across population
scenarios were low as well and ranged from 0.009 to
0.02. The accuracy decreased significantly when the
number of QTL was increasing. The effect of changing
the number of QTL was much stronger for the across
populations scenarios than for the within population
scenario and the difference between 30 and 3 QTL was
much smaller than the difference between 3000 and 300
QTL. The largest difference in accuracy was observed
between 300 and 30 QTL underlying the trait.
Altogether, our results show that there is an effect of the
number of QTL on the accuracy of across population
genomic prediction using a Bayesian variable selection
model.
Generally, the numerical accuracy was slightly higher

for selection candidates originating from the GWH
population than for those originating from the MRY
population. For both breeds, the accuracies somewhat
increased when the other breed was added to the HF
reference population.

Different genetic correlation between populations
The accuracies of genomic prediction are shown in Fig. 2
assuming a genetic correlation between the populations
of 0.8 (A.) or 0.4 (B.). The standard errors ranged from
0.01 to 0.05 for all scenarios. When there were 3 QTL
underlying the simulated trait, the standard errors were
larger than when there were 30, 300 or 3000 QTL
underlying the simulated trait. Compared to the scenar-
ios with equal allele substitution effects across popula-
tions, the accuracy of the scenarios with different allele
substitution effects across populations decreased propor-
tional to the correlation in allele substitution effects, i.e.
the genetic correlation. So, when the genetic correlation
was 0.8, the accuracy was approximately 80 % of accur-
acy obtained with a genetic correlation between popula-
tions of 1, and when the genetic correlation was 0.4, the
accuracy was approximately 40 % of the accuracy ob-
tained with genetic correlation between populations of 1.
The effect of the number of QTL on the accuracy was

the same for the scenarios that use a genetic correlation
different from 1 between populations as for the scenar-
ios with a genetic correlation of 1; the accuracy was
increasing when the number of QTL underlying the trait
was decreasing. Remarkably, the accuracies for the sce-
nario using GWH as selection candidates (scenario 1
and 2) with 3 simulated QTL was smaller than the

Table 2 The number of independent chromosome segments
(Me) for each scenario

Scenario Me
a

Base 185

1 1809

2 1891

3 2435

4 2462
aMe is estimated by Wientjes et al. [25] as: Me ¼ 1

Var GPop:1i ;Pop:2j −APop:1i ;Pop:2j

� �;
where GPop:1i ;Pop:2j refers to the genomic relationship between individual i
from population 1 and individual j from population 2, APop:1i ;Pop:2j refers to
the pedigree relationship between individual i from population 1 and
individual j from population 2, and the variance is taken over all pair-wise
relationships between the individuals in the reference population and the
selection candidates
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Fig. 1 Accuracies of genomic prediction assuming equal allele substitution effects across populations. Mean accuracies of genomic prediction
(± standard error) obtained by the Bayesian variable selection model assuming equal allele substitution effects across the three populations for
five different scenarios; Base scenario: reference = HF, selection candidates = HF; Scenario 1: reference = HF, selection candidates = GWH; Scenario
2: reference = HF & MRY, selection candidates = GWH; Scenario 3: reference = HF, selection candidates = MRY; Scenario 4: reference = HF & GWH,
selection candidates = MRY

Fig. 2 Accuracies of genomic prediction assuming different allele substitution effects across populations. Mean accuracies of genomic prediction
(± standard error) obtained by the Bayesian variable selection model assuming genetic correlations of a 0.8 or b 0.4 across the three populations
for four different scenarios; Scenario 1: reference = HF, selection candidates = GWH; Scenario 2: reference = HF & MRY, selection candidates = GWH;
Scenario 3: reference = HF, selection candidates = MRY; Scenario 4: reference = HF & GWH, selection candidates = MRY
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accuracies for the scenario that used 30 QTL when the
genetic correlation was 0.8.
Again, the numerical accuracies for the selection

candidates originating from the breed GWH were gener-
ally slightly higher than the accuracies for the selection
candidates from the breed MRY. In all scenarios, adding
another breed to the HF reference population resulted
in a slightly higher accuracy of genomic prediction for
the selection candidates.

Comparison with GBLUP
Figure 3 shows the comparison between the Bayesian
variable selection and GBLUP model in relation to the
number of QTL for the within population scenario, i.e.
the base scenario using HF both as reference population
and selection candidates, and Fig. 4 shows the compari-
son between the Bayesian variable selection and GBLUP
model for the across population scenarios, i.e. (a) refer-
ence HF, selection candidates GWH, (b) reference HF
and MRY, selection candidates GWH, (c) reference HF,
selection candidates MRY, (d) reference HF and GWH,
selection candidates MRY. Please note that ln(number of
QTL) is plotted against the reliability, since the relation-
ship between number of QTL and reliability is approxi-
mately linearized by a log-transformation due to the
number of QTL occurring in the denominator of the pre-
diction equation of Daetwyler et al. [22].
With a low number of QTL underlying the trait,

Bayesian variable selection performed always better than
GBLUP. When the number of QTL was higher, the
difference between the reliabilities of both approaches
became smaller and eventually the Bayesian variable selec-
tion model resulted in reliabilities comparable to GBLUP.
For the within population scenario (Fig. 3), the difference

between the Bayesian variable selection model and
GBLUP model was already quite small with 3 QTL under-
lying the trait, and when the number of QTL was 300,
both reliabilities were almost equal to each other. For the
across population scenarios (Fig. 4), the difference in reli-
ability of the Bayesian variable selection and GBLUP was
much larger, and both reliabilities became equal when ap-
proximately 2000 QTL were underlying the trait, which
was at a much higher number of QTL than within popula-
tion. This is in agreement with the estimated values for
Me, which were much lower within population than across
populations (see Table 2).

Discussion
The accuracy of across population genomic prediction
The objective of this study was to identify across popula-
tion genomic prediction scenarios in which a Bayesian
variable selection model outperforms GBLUP in terms
of prediction accuracy. The used dataset contained real
genotype information of 1033 HF, 147 MRY and 105
GWH animals [25]. Phenotypes of all individuals were
simulated with two changing variables: (1) the number
of QTL underlying the trait, and (2) the genetic correl-
ation between the populations.
The accuracies for within population genomic pre-

diction were substantially higher than the accuracies
for across population genomic prediction for both the
Bayesian variable selection model and the GBLUP model.
This is in line with the general observation in literature,
e.g. [13, 22, 34] and can be explained by the differences
between populations, such as differences in LD patterns,
allele frequencies and allele substitution effects. These dif-
ferences in combination with the absence of close family

Fig. 3 Comparison of the reliability of within population genomic prediction using Bayesian variable selection or GBLUP models. Comparison of the
mean reliability of genomic prediction using Bayesian variable selection or GBLUP models for the within population scenario. The vertical line indicates
the natural logarithm of the number of independent chromosomes (Me). Me is estimated by Wientjes et al. [25] as: Me ¼ 1

Var GPop:1i ;Pop:2j −APop:1i ;Pop:2j

� �; where
GPop:1i ;Pop:2j refers to the genomic relationship between individual i from population 1 and individual j from population 2, APop:1i ;Pop:2j refers to the
pedigree relationship between individual i from population 1 and individual j from population 2, and the variance is taken over all pair-wise relation-
ships between the individuals in the reference population and the selection candidates
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relationships restrict the accuracy of genomic prediction
across populations [16, 17, 19–21, 35].
As a result of non-additive effects in combination with

different allele frequencies, allele substitution effects
might differ across populations [29]. Those differences
in allele substitution effects between populations can be
summarized in the genetic correlation between the pop-
ulations. This genetic correlation is shown to be an im-
portant factor for the accuracy of across population
genomic prediction obtained by GBLUP [25]. A decrease
in the genetic correlation resulted in a reduction in ac-
curacy obtained by GBLUP proportional to the genetic
correlation. Our results show that the genetic correlation
similarly affects the accuracy of across population

genomic prediction obtained by a Bayesian variable se-
lection model. This relation between the genetic correl-
ation between populations and the obtained accuracy
has also been reported for multi population genomic
prediction obtained with a Bayesian variable selection
model that was similar to the model used in this study
[36].
The genetic correlation between populations was

simulated in this study as the correlation between allele
substitution effects across populations, indicating that
allele substitution effects were different across popula-
tions. Another possible reason for a genetic correlation
between populations lower than 1 is that different QTL
might underlie a trait. The accuracy is influenced by the

Fig. 4 Comparison of the reliability of across population genomic prediction using Bayesian variable selection or GBLUP models. Comparison
of the mean reliability of genomic prediction using Bayesian variable selection or GBLUP models for the four across population scenarios with
genetic correlation of 1.0, 0.8 or 0.4 across populations; a Scenario 1: reference = HF, selection candidates = GWH; b Scenario 2: reference = HF &
MRY, selection candidates = GWH; c Scenario 3: reference = HF, selection candidates = MRY; d Scenario 4: reference = HF & GWH, selection
candidates = MRY. The vertical line indicates the natural logarithm of the number of independent chromosome segments (Me). Me is estimated
by Wientjes et al. [25] as: Me ¼ 1

Var GPop:1i ;Pop:2j −APop:1i ;Pop:2j

� �; where GPop:1i ;Pop:2j refers to the genomic relationship between individual i from population

1 and individual j from population 2, APop:1i ;Pop:2j refers to the pedigree relationship between individual i from population 1 and individual j from
population 2, and the variance is taken over all pair-wise relationships between the individuals in the reference population and the selection candidates
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value of the genetic correlation, as can be seen from the
equation to calculate the accuracy of across and multi
population genomic prediction [25]. This suggests that
the underlying cause of the genetic correlation has no
effect on the accuracy of across and multi population
genomic prediction. Therefore, we think that simulating
a genetic correlation different from 1 in another way
would not have influenced the results of this study.
In this study it is demonstrated that the accuracy of

across population genomic prediction obtained by a
Bayesian variable selection model strongly depends on
the number of QTL underlying the simulated trait. It
was shown that the Bayesian variable selection model
obtained the highest accuracies when the number of
QTL underlying the trait was small. When the number
of QTL increased, the accuracy obtained by the Bayesian
variable selection model declined. When GWH animals
were used as selection candidates and the genetic correl-
ation was 0.8, a slightly higher accuracy was obtained
when 30 QTL were underlying the trait than when 3
QTL were underlying the trait. This result was also ob-
tained using the same data with a GBLUP model [25]
and is probably due to a lower simulated genetic cor-
relation when only 3 QTL were underlying the trait as a
result of a larger sampling error on the simulated genetic
correlation. For the scenarios with 3 QTL underlying the
trait, the average simulated genetic correlation was lower
than 0.8 (average correlations ± standard errors were
0.74 ± 0.040 between HF and GWH, 0.75 ± 0.035 be-
tween HF and MRY, and 0.77 ± 0.043 between GWH
and MRY), since the correlation can only increase till 1,
but decrease till −1. When 30 QTL were underlying the
trait, the average simulated genetic correlations were be-
tween 0.79 and 0.80.
The dependency of the accuracy on the number of

QTL in both within and across population genomic pre-
diction using a Bayesian variable selection model was
also found in literature [17, 23, 37–39]. For example,
Coster et al. [37] investigated the effect of the number of
QTL on the accuracy of within population genomic pre-
diction. They found that the accuracy of within popula-
tion genomic prediction obtained by a Bayesian variable
selection model decreased when the number of simu-
lated QTL increased. Chen et al. [36] have found similar
results for multi population genomic prediction using a
Bayesian variable selection model.
In contrast to the accuracy of genomic prediction ob-

tained by a Bayesian variable selection model, the accuracy
obtained by GBLUP appears unaffected by the number of
QTL underlying the trait. Therefore, the Bayesian variable
selection model was clearly superior to GBLUP for across
population genomic prediction when the number of QTL
was small, i.e. less than ~2000 QTL in our simulated
data. Please note that we have focussed only on three

chromosomes, indicating that this is equivalent to ~10
times more QTL when the whole genome of individuals
from those breeds was considered. When the number of
QTL increased, the difference in accuracy between the
Bayesian variable selection model and GBLUP model de-
creased, until the accuracy of the Bayesian variable selec-
tion model was similar to the accuracy obtained with
GBLUP. An empirical study applying across population
genomic prediction also showed higher accuracies when a
Bayesian variable selection model was used compared to a
GBLUP model for milk production traits [22], with an
average accuracy of 0.30 using a Bayesian variable selec-
tion model and of 0.01 using a GBLUP model when
Holstein Friesian animals were used to predict Jerseys.
Moreover, equal or higher accuracies were obtained with a
Bayesian variable selection model than with a GBLUP
model for different multi population genomic prediction
scenarios using real data, with an average numerical differ-
ence of 0.03 between both models [40, 41].
The differences in dependency of the accuracy from

different genomic prediction models on the number of
QTL can be explained by differences in the model mech-
anism. The original GBLUP model [1], as well as the
GREML model used in this study, assumes an infinitesi-
mal model, i.e. each SNP is assumed to explain an equal
small amount of the variation. Bayesian variable selec-
tion models make a distinction between the SNPs by
allocating a large effect to a small subset of SNPs with a
clear association with the trait, while all other SNPs are
assumed to have a small effect. When the number of
QTL is smaller than Me, there is a clear advantage of
selecting a subset of SNPs to allocate large effects since
it reduces the number of effects that has to be estimated.
When the number of QTL is larger than Me, each SNP
appears to have a small effect on the trait and there is
no clear set of SNPs that the model can select to have a
large effect. Therefore, the number of estimated effects
becomes equal to Me and the advantage of a Bayesian
variable selection model over GBLUP diminishes. A
posteriori the model assigns a fairly equal amount of
variance to each SNP, an approach that is equivalent
to the assumption of the infinitesimal model under-
lying GBLUP.
Daetwyler et al. [23] investigated the difference in

factors acting on the accuracy of within population gen-
omic prediction obtained by a Bayesian variable selec-
tion model and GBLUP model. They reported that the
accuracy of GBLUP is independent from the number of
QTL, but is dependent on genomic properties of the
population such as the effective population size and LD.
The genomic properties of the population can be summa-
rized in the parameter Me, the number of independent
chromosome segments [23]. Me is a statistical concept
that links genomic properties of the population to the
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statistical analysis. It can be derived from the consistency
of variation in LD across the genome and the variation in
relationship around their expectations between individuals
[5]. In a wider sense, Me can be interpreted as the number
of independent markers needed to capture all the vari-
ation in QTL effects or the number of independent effects
that have to be estimated. Thus the accuracy of genomic
prediction obtained by GBLUP is dependent on Me; the
higher Me, the more independent effects have to be esti-
mated and the lower the accuracy of genomic prediction.
For a Bayesian variable selection model this relationship is
slightly more complicated. For within population genomic
prediction, it is shown that when the number of QTL is
lower than Me, the accuracy obtained by Bayesian variable
selection decreases when the number of QTL is increasing
[23]. When the number of QTL is larger than Me and a
QTL is located on each of the independent chromosome
segments, the accuracy is independent from the number
of QTL and similar to the accuracy obtained by GBLUP
[23], since the number of estimated effects is equal to Me

in both GBLUP and the Bayesian variable selection model.
The results of the within population scenario in our study
also show that the difference between GBLUP and Bayes-
ian variable selection declined for a higher number of
QTL underlying the trait, as is shown in Fig. 3. In this fig-
ure, the lines representing the reliability, i.e. the square of
the accuracy, of the Bayesian variable selection and
GBLUP model, however, cross at a much higher number
of QTL thanMe. This might partly be a result of randomly
sampling QTL, allocating no QTL to some independent
chromosome segments and more than one QTL to other
segments, reducing the number of independent QTL seg-
regating in the population. The crossing point at a higher
number of QTL might also be a result of plotting one lin-
ear function through the different data points, although a
breaking point in the function is expected at Me. Given the
results described in literature, we would expect that the
Bayesian variable selection and GBLUP accuracy within
population would be approximately equal when the num-
ber of independent QTL was higher than Me in our study.
The results of the across population scenarios in this study
show that this principle, described by Daetwyler et al. [23]
for within population genomic prediction, is also applicable
for across population genomic prediction (Fig. 4). Due to
the higher number of chromosome segments across popu-
lations, each segment is smaller, and the chance for mul-
tiple QTL on the same segment is decreased. Therefore Me

might be a better approximation for the crossing point for
across population genomic prediction than for within
population genomic prediction when QTL are randomly
distributed. For both scenarios, however, Me can be consid-
ered to be an important parameter.
Wientjes et al. [25] have shown that Me is larger across

populations than within population. They have reported

that estimates for Me were approximately 10 times larger
across populations than within population [25]. The
higher estimates for Me across populations can be ex-
plained by the fact that Me is dependent on the level of
relatedness between individuals [7, 10]. When individ-
uals are closely related, LD is strong and a lower number
of informative markers is needed to explain the variation
in QTL effects, indicating a small value for Me. However,
it is known that there is an absence of closely related indi-
viduals across populations and individuals differ strongly
in LD patterns [16, 21]. So more informative markers are
needed to explain the variation in QTL effects and the
value for Me is higher. Due to the higher value for Me

across populations, it is more likely to have a number of
QTL underlying a trait that is smaller than Me.
A question that remains is; how many QTL are under-

lying the important traits for selection? In dairy cattle, it
is well known that a large part of the genetic variation in
fat content in milk is explained by one gene; DGAT1
(diacylglycerol O-acyltransferase 1) [42]. For this trait,
it was already shown for within population genomic
prediction that Bayesian variable selection models can
obtain a higher accuracy compared to GBLUP [4].
Therefore, a substantial benefit of Bayesian variable
selection models over GBLUP can be expected for
this trait when across or multi population genomic
prediction is applied, as is shown by Hayes et al. [22].
For most quantitative traits, a very small number of
QTL with large effects has been found [43, 44]. This
suggests that a large number of QTL with only small
effects are underlying quantitative traits. For those traits,
the accuracy of within population genomic prediction was
about equal when using a Bayesian variable selection
model compared to GBLUP [4, 45]. For across and multi
population genomic prediction scenarios, however, higher
accuracies were obtained using Bayesian variable selection
models for at least some of the traits [12, 13, 22]. This
shows that for at least a proportion of the quantitative
traits, it can be advisable to use Bayesian variable selection
models when across or multi population genomic pre-
diction is applied. A disadvantage of Bayesian variable
selection models is, however, its potentially larger
computational requirements. Therefore, it might be
good to carefully weigh the potential increase in accuracy
against the larger requirements to decide on the best
model for practical applications.

Conclusion
The accuracy of across population genomic prediction ob-
tained by a Bayesian variable selection model is dependent
on the number of QTL underlying the trait, with the high-
est accuracy when the number of QTL underlying the trait
is small. When the number of QTL underlying the trait is
increasing, the accuracy of genomic prediction obtained
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by a Bayesian variable selection model declines and even-
tually becomes equal to the accuracy obtained by GBLUP.
The point where the accuracy obtained by Bayesian vari-
able selection becomes equivalent to the accuracy ob-
tained by GBLUP can be approximated by the number of
independent chromosome segments (Me). So, Bayesian
variable selection models have an advantage over GBLUP
when the number of QTL is smaller than Me. Across pop-
ulations Me is larger than within populations, indicating
that it is more likely to find a number of QTL underlying
a trait smaller than Me across populations than within
populations. Therefore, Bayesian variable selection
models can improve the accuracy of across population
genomic prediction compared to GBLUP for at least
some traits that are influenced by a relatively small num-
ber of QTL.
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