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Abstract In this paper, it is demonstrated that the exact absolute value penalty func-
tion method is useful for identifying the special sort of minimizers in nonconvex
nonsmooth optimization problems with both inequality and equality constraints. The
equivalence between the sets of strict global minima of order m in nonsmooth mini-
mization problem and of its associated penalized optimization problem with the exact
l1 penalty function is established under nondifferentiable (F, ρ)-convexity assump-
tions imposed on the involved functions. The threshold of the penalty parameter, above
which this result holds, is also given.

Keywords Exact l1 penalty function method · Absolute value penalty function ·
Penalized optimization problem · Locally Lipschitz (F, ρ)-convex function ·
Generalized Karush–Kuhn–Tucker optimality conditions

1 Introduction

The notion of a strict local minimizer of orderm plays an important role in the conver-
gence analysis of iterative numerical methods (see, for example, [1]) and in stability
analysis (see, for example, [2,3]). Some results and optimality conditions concerning
characterizations of suchminimizers for nonlinear constrainedmathematical program-
ming problems have been derived by Auslender [4], Studniarski [5], Ward [6]. These
results, in general, suggest that these minimizers are often exactly those satisfy an
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“m-th derivative test”. In this paper, we present a different approach for identifying of
such minimizers.

In the past few years, considerable attention has been given to devising methods for
solving nonlinear programming problems via unconstrainedminimization techniques.
One of classes of such methods which has emerged as very promising is the class of
exact penalty function methods. The most popular nondifferentiable exact penalty
function is the absolute value penalty function method (also called the exact l1 penalty
function method) and it has been investigated in [7–26], and others. Most of the results
established on the nondifferentiable exact l1 penalty function is devoted to the study of
conditions ensuring that an optimal solution in the given convex optimization problem
is also an unconstrained solution of the penalty function.

In this paper, we present a new characterization of the exact penaltymethodwith the
absolute value penalty function used to solve a class of nonconvex nondifferentiable
optimization problems involving both inequality and equality constraints in which the
functions constituting them are locally Lipschitz (F, ρ)-convex functions of order m,
not necessarily with respect to the same ρ. Namely, we use the exact l1 penalty func-
tion method to find a strict global minimizer of order m in the considered nonconvex
nondifferentiable optimization problem involving both inequality and equality con-
straints. Indeed, we associate a strict global minimizer of order m in the nonsmooth
constrained extremum problem with a strict global minimizer of order m in a uncon-
strained optimization problem (called penalized optimization problem) constructed
in this approach in which the absolute value penalty function is minimized. Further,
we also establish the converse result, that is, that a strict global minimizer of order
m in the penalized optimization problem with the exact l1 penalty function is also
a strict global minimizer of order m in the nonlinear constrained optimization prob-
lem with both inequality and equality constraints. In this way, we prove that the sets
of strict global minimizers of order m in both optimization problems coincide for a
larger class of optimization problems than convex ones. The treshold of the penalty
parameter above which this result holds is equal to the largest Lagrange multiplier
in the absolute value. The results established in the paper are illustrated by suitable
examples of nonconvex nondifferentiable optimization problems solving by using the
exact l1 penalty function method.

2 Preliminaries and problem formulation

Throughout this section, X is a nonempty open subset of Rn .

Definition 1 [27] The Clarke generalized subgradient of f at x ∈ X , denoted ∂ f (x),
is defined by ∂ f (x) = {

ξ ∈ Rn : f 0(x; v) ≥ ξ T v for all v ∈ Rn
}
, where f 0 (x; v) is

theClarkegeneralizeddirectional derivative of a locallyLipschitz function f : X → R
at x ∈ X in the direction v ∈ Rn given by f 0(x; v) = lim supy→x

λ↓0
f (y+λv)− f (y)

λ
.

Definition 2 A functional F : X × X × Rn → R is sublinear (with respect to the
third component) if, for all x, u ∈ X ,

(i) F (x, u; q1 + q2) ≤ F (x, u; q1) + F (x, u; q2), ∀q1, q2 ∈ Rn ,
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(ii) F (x, u;αq) = αF (x, u; q), ∀α ∈ R+, ∀q ∈ Rn .

By (ii), it is clear that

F(x, u; 0) = 0. (1)

Now, we give the definition of a nondifferentiable (F, ρ)-convex function of order
m (see [28]).

Definition 3 A locally Lipschitz function f : X → R is said to be (F, ρ)-convex of
order m at u ∈ X on X if, there exist a sublinear (with respect to the third component)
functional F : X × X × Rn → R, an integer m ≥ 1 and a real number ρ such that,
the following inequality

f (x) − f (u) ≥ F (x, u; ξ) + ρ ‖x − u‖m

holds for every ξ ∈ ∂ f (u) and all x ∈ X . If the above inequality is satisfied for all
u ∈ X , then f is said to be (F, ρ)-convex on X .

In the paper, we consider the following constrained optimization problem:

minimize f (x)

subject to gi (x) ≤ 0, i ∈ I = {1, . . . p} (P)

h j (x) = 0, j ∈ J = {1, . . . , s} ,

where f : X → R and gi : X → R, i ∈ I , h j : X → R, j ∈ J , are locally Lipschitz
functions on a nonempty open set X ⊂ Rn .

For the purpose of simplifying our presentation, we will next introduce some nota-
tionswhichwill be used frequently throughout this paper. Let D := {x ∈ X : gi (x)≤0,
i ∈ I , h j (x) = 0, j ∈ J

}
be the set of all feasible solutions of problem (P). Further,

by I (x) = {i ∈ I : gi (x) = 0}, we denote the set of active inequality constraints at
point x ∈ D.

The concept of a strict local minimizer of order m was defined by Cromme [1],
under the name “strongly unique”minimizer, in a study of iterative numericalmethods.

Definition 4 Let m ≥ 1 be an integer. We say that x is a strict global minimizer of
order m in the considered optimization problem (P) if there exists β > 0 such that

f (x) ≥ f (x) + β ‖x − x‖m

for all x ∈ D.

It is well known (see, for example, [27,29,30]) that, if x ∈ D is an optimal solution
for problem (P), then the following conditions, known as the generalized form of the
Karush–Kuhn–Tucker conditions, are satisfied:
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Theorem 5 (Generalized Karush–Kuhn–Tucker necessary optimality conditions).
Let x ∈ D be an optimal solution of problem (P) and a suitable constraint quali-
fication be satisfied at x. Then, there exist λ ∈ Rp, μ ∈ Rs such that

0 ∈ ∂ f (x) +
p∑

i=1

λi∂gi (x) +
s∑

j=1

μ j∂h j (x), (2)

λi gi (x) = 0, i ∈ I , (3)

λi ∈ R+, i ∈ I. (4)

Remark 6 Note that, following Hiriart-Urruty [30], a constraint qualification assur-
ing the conclusion of the above theorem is the following one: there exists v ∈ Rn ,
g0i (x; v) < 0, i ∈ I (x). In the presence of inequality constraints, from Fritz John
type optimality conditions, Clarke [27] established generalized Karush–Kuhn–Tucker
necessary optimality conditions under the assumptions of “calmness” of the opti-
mization problem. This constraint qualification has the advantage to be present in
most problems, even if it seems difficult to verify it in general. Further, it is possi-
ble to use the following Cottle constraint qualification: either gi (x) < 0, i ∈ I or
0 /∈ conv {∂gi (x) : i ∈ I (x)} . Since the results in the paper have been established
for nondifferentiable optimization problems with generalized convex functions (that
is, locally Lipschitz (F, ρ)-convex of order m), it is possible to use also generalized
Slater constraint qualification.

In the paper, we will assume that a suitable constraint qualification is satisfied at
any optimal solution in the considered nonlinear constrained optimization problem
(P).

Definition 7 The point x ∈ D is said to be a Karush–Kuhn–Tucker point (a KKT
point, for short) if there exist the Lagrange multipliers λ ∈ Rp, μ ∈ Rs such that the
conditions (2)–( 4) are satisfied at x with these Lagrange multipliers.

3 The exact l1 penalty method for optimization problems with locally
Lipschitz (F, ρ)-convex functions of order m

The unconstrained optimization problemwith the exact l1 penalty function constructed
in the exact l1 penalty function method for the considered constrained minimization
problem (P) can be written in the following form

minimize P(x, c) = f (x) + c

⎡

⎣
∑

i∈I
g+
i (x) +

∑

j∈J

∣
∣h j (x)

∣
∣

⎤

⎦ , (P(c)) (5)

where, for a given inequality constraint gi (x) ≤ 0, the function g+
i (x) is defined as

follows:

g+
i (x) =

{
0 if gi (x) ≤ 0,

gi (x) if gi (x) > 0.
(6)
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Wewill call the unconstrained optimization problem (P(c)) the penalized optimization
problem (with the absolute value penalty function).

Theorem 8 Let x ∈ D be a Karush–Kuhn–Tucker point of the constrained opti-
mization problem (P), at which the Generalized Karush–Kuhn–Tucker conditions
(2)–(4) are satisfied with the Lagrange multipliers λ ∈ Rp and μ ∈ Rs. Let
J+ (x) = {

j ∈ J : μ j > 0
}
and J− (x) = {

j ∈ J : μ j < 0
}
. Furthermore, assume

the following hypotheses are satisfied:

(a) the objective function f is locally Lipschitz
(
F, ρ f

)
-convex of order m at x on X,

(b) the inequality constraints gi , i ∈ I (x), are locally Lipschitz
(
F, ρgi

)
-convex of

order m at x on X,

(c) the equality constraints h j , j ∈ J+ (x), are locally Lipschitz
(
F, ρ+

h j

)
-convex of

order m at x on X,

(d) the functions −h j , j ∈ J− (x), are locally Lipschitz
(
F, ρ−

h j

)
-convex of order m

at x on X,
(e) ρ f + ∑

i∈I (x) λiρgi + ∑
j∈J+(x) μ jρ

+
h j

− ∑
j∈J−(x) μ jρ

−
h j

> 0.

If the penalty parameter c is assumed to be sufficiently large (it is sufficient to set
c ≥ max

{
λi , i ∈ I ,

∣
∣μ j

∣
∣ , j ∈ J

}
, where λi , i = 1, . . . , p, μ j , j = 1, . . . , s, are

the Lagrange multipliers associated with the constraint gi and h j , respectively), then
x is also a strict global minimizer of order m in its associated penalized optimization
problem (P(c)) with the exact l1 penalty function.

Proof By assumption, x is a Karush–Kuhn–Tucker point of the constrained optimiza-
tion problem (P). Then, there exist the Lagrange multipliers λ ∈ Rp and μ ∈ Rs such
that the Generalized Karush–Kuhn–Tucker conditions (2)–(4) are satisfied at x . Since
assumptions (a)–(d) are fulfilled, by Definition 3, the following inequalities

f (x) − f (x) ≥ F (x, x; ξ) + ρ f ‖x − x‖m , ∀ξ ∈ ∂ f (x), (7)

gi (x) − gi (x) ≥ F (x, x; ζi ) + ρgi ‖x − x‖m , ∀ζi ∈ ∂gi (x), i ∈ I (x) , (8)

h j (x)−h j (x) ≥ F
(
x, x; ς j

)+ρ+
h j

‖x − x‖m , ∀ς j ∈ ∂h j (x), j ∈ J+ (x) , (9)

− h j (x) + h j (x) ≥ F
(
x, x;−ς j

) + ρ−
h j

‖x − x‖m , ∀ς j ∈ ∂h j (x), j ∈ J− (x)
(10)

hold for all x ∈ X . Multiplying the inequalities (8) and (9) by the corresponding
Lagrange multipliers and the inequalities (10) by −μ j , j ∈ J− (x), then, adding both
sides of the obtained inequalities, we get, for all x ∈ X ,

∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x)

≥
∑

i∈I (x) λi F (x, x; ζi ) +
∑

i∈I (x) λiρgi ‖x − x‖m , ∀ζi ∈ ∂gi (x), (11)
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∑

j∈J+(x)
μ j h j (x) −

∑

j∈J+(x)
μ j h j (x)

≥
∑

j∈J+(x)
μ j F

(
x, x; ς j

)+
∑

j∈J+(x)
μ jρ

+
h j

‖x − x‖m , ∀ς j ∈∂h j (x), (12)

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x) ≥

∑

j∈J−(x)

(−μ j
)
F

(
x, x;−ς j

)

−
∑

j∈J−(x)
μ jρ

−
h j

‖x − x‖m , ∀ς j ∈ ∂h j (x). (13)

Since the functional F : X × X × Rn → R is sublinear (with respect to the third
component), by (11)–(13), we have, for all x ∈ X , respectively,

∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x) ≥ F
(
x, x;

∑

i∈I (x) λiζi

)

+
∑

i∈I (x) λiρgi ‖x − x‖m , ∀ζi ∈ ∂gi (x), (14)

∑

j∈J+(x)
μ j h j (x) −

∑

j∈J+(x)
μ j h j (x) ≥ F

(
x, x;

∑

j∈J+(x)
μ jς j

)

+
∑

j∈J+(x)
μ jρ

+
h j

‖x − x‖m , ∀ς j ∈ ∂h j (x), (15)

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x) ≥ F

(
x, x;

∑

j∈J−(x)
μ jς j

)

−
∑

j∈J−(x)
μ jρ

−
h j

‖x − x‖m , ∀ς j ∈ ∂h j (x). (16)

Adding both sides of (7) and (14)–(16), we get

f (x) − f (x) +
∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x) +
∑

j∈J+(x)
μ j h j (x)

−
∑

j∈J+(x)
μ j h j (x) +

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x) ≥ F (x, x; ξ)

+ F
(
x, x;

∑

i∈I (x) λi ζi

)
+ F

(
x, x;

∑

j∈J+(x)
μ jς j

)
+ F

(
x, x;

∑

j∈J−(x)
μ jς j

)

+
(

ρ f +
∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m .

Since the functional F : X × X × Rn → R is sublinear (with respect to the third
component), we have, for all x ∈ X ,

f (x) − f (x) +
∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x) +
∑

j∈J+(x)
μ j h j (x)

−
∑

j∈J+(x)
μ j h j (x) +

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x)

≥ F
(
x, x; ξ +

∑

i∈I (x) λiζi +
∑

j∈J+(x)
μ jς j +

∑

j∈J−(x)
μ jς j

)

+
(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m .
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Hence, by the Generalized Karush–Kuhn–Tucker condition (2), it follows that the
inequality

f (x) − f (x) +
∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x) +
∑

j∈J+(x)
μ j h j (x)

−
∑

j∈J+(x)
μ j h j (x) +

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x) ≥ F (x, x; 0)

+
(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m

holds for all x ∈ X . Thus, (1) gives

f (x) − f (x) +
∑

i∈I (x) λi gi (x) −
∑

i∈I (x) λi gi (x) +
∑

j∈J+(x)
μ j h j (x)

−
∑

j∈J+(x)
μ j h j (x) +

∑

j∈J−(x)
μ j h j (x) −

∑

j∈J−(x)
μ j h j (x)

≥
(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m .

By the Generalized Karush–Kuhn–Tucker condition (3) and taking the Lagrange mul-
tipliers equal to 0, we have, for all x ∈ X ,

f (x) +
∑p

i=1
λi gi (x) +

∑s

j=1
μ j h j (x) ≥ f (x) +

∑s

j=1
μ j h j (x)

+
(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m .

Using x ∈ D together with (6), we obtain that the inequality

f (x) +
∑p

i=1
λi g

+
i (x) +

∑s

j=1

∣
∣μ j h j (x)

∣
∣ ≥ f (x) +

∑p

i=1
λi g

+
i (x)

+
∑s

j=1

∣
∣μ j h j (x)

∣
∣ +

(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m

holds for all x ∈ X . By assumption, the penalty parameter c is assumed to satisfy
the condition c ≥ max

{
λi , i ∈ I ,

∣
∣μ j

∣
∣ , j ∈ J

}
). Since x ∈ D, the inequality above

gives for all x ∈ X ,

f (x) + c
[∑p

i=1
g+
i (x) +

∑s

j=1

∣
∣h j (x)

∣
∣
]

≥ f (x) + c
[∑p

i=1
g+
i (x) +

∑s

j=1

∣
∣h j (x)

∣
∣
]

+
(
ρ f +

∑

i∈I (x) λiρgi +
∑

j∈J+(x)
μ jρ

+
h j

−
∑

j∈J−(x)
μ jρ

−
h j

)
‖x − x‖m .
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By definition of the objective function in the penalized optimization problem (P(c))
with the exact l1 penalty function, it follows that the inequality

P (x, c) ≥ P (x, c) + β ‖x − x‖m , (17)

holds for all x ∈ X , where

β = ρ f +
∑

i∈I (x)
λiρgi +

∑

j∈J+(x)

μ jρ
+
h j

−
∑

j∈J−(x)

μ jρ
−
h j
. (18)

Since β > 0, by (17) and Definition 4, we conclude that x is a strict global minimizer
of orderm in the penalized optimization problem (P(c)) with the absolute value penalty
function. Thus, the conclusion of theorem is established. 
�

The result below follows directly from Theorem 8.

Corollary 9 Let x be a strict global minimizer of order m for the considered con-
strained optimization problem (P) and the suitable constraint qualification be satisfied
at x . Furthermore, assume that all assumptions of Theorem 8 are fulfilled. Then x is
also a strict global minimizer of order m in the penalized optimization problem (P(c))
with the absolute value penalty function.

In the example below, we consider a nonconvex nonsmooth optimization problem
with (F, ρ)-convex functions of order 3, for which assumption e) of Theorem 8 is
not satisfied. We show that a strict global minimizer of order 3 in the considered
nonconvex nonsmooth optimization problem is not a strict global minimizer of order
3 in its penalized optimization problem (P(c)) with the absolute value penalty function.

Example 10 Consider the following nonsmooth constrained optimization problem

f (x) = x3 + 1

2
|x | → min

g(x) = −x ≤ 0. (P1)

Note that D = {x ∈ R : x ≥ 0} and x = 0 is a strict global minimizer of order 3 in the
considered nonsmooth optimization problem. It can be shown, byDefinition 3, that the
objective function f is locally Lipschitz

(
F, ρ f

)
-convex of order 3 at x on R and the

constraint function g is locally Lipschitz
(
F, ρg

)
-convex of order 3 at x on R, where

a functional F : R × R × R → R is defined by F (x, x;α) = α |x | and ρ f = −1 ,
ρg = 0. Note that assumption e) in Theorem 8 is not satisfied in this case. However, we
use the exact l1 penalty function method to solve the considered nonsmooth optimiza-
tion problem (P1). Therefore, we construct the following unconstrained optimization
problem

P(x, c) = x3 + 1

2
|x | + cmax {0,−x} → min. (P1(c))

Further, it is not difficult to see that, for any c > 0, x = 0 is not a strict global
minimizer of order 3 in the above unconstrained optimization problem generated in
the exact l1 penalty method (more exactly, it is not a strict global minimizer of any
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order). This follows from the fact that the downward order of growth of f exceeds
the upward of growth of g at x when moving from x towards smaller values. Indeed,
note that infx∈R P(x, c) → −∞ when x → −∞ for any c > 0. As it follows from
this example, although the functions constituting the original optimization problem
are locally Lipschitz (F, ρ)-convex of order 3 at x on R, then a feasible point x = 0,
being a strict globalminimizer of order 3 in the given constrained optimization problem
(P1), is not a strict global minimizer of order 3 in its associated penalized optimization
problem generated in the exact l1 penalty function method. This is a consequence of
the fact that the assumption (e) in Theorem 8 is not satisfied in the considered case.
Hence, as it follows even from this example, assumption (e) in Theorem 8 is essential
to prove the result in this theorem and it can not be omitted.

Now, under some stronger assumptions, we prove the converse result.

Theorem 11 Let the point x be a strict global minimizer of order m for the penalized
optimization problem (P(c)) with the absolute value penalty function. Also, let x̃ be
any Karush–Kuhn–Tucker point of the original mathematical programming problem
(P) and the Generalized Karush–Kuhn–Tucker necessary optimality conditions be
satisfied at x̃ with the Lagrange multipliers λ̃i , i = 1, . . . , p, μ̃ j , j = 1, . . . , s,
associated with the constraints gi and h j , respectively. Furthermore, assume that:

(a) the objective function f is locally Lipschitz
(
F, ρ f

)
-convex of order m at x̃ on X,

(b) the inequality constraints gi , i ∈ I (̃x), are locally Lipschitz
(
F, ρgi

)
-convex of

order m at x̃ on X,

(c) the equality constraints h j , j ∈ J+ (̃x), are locally Lipschitz
(
F, ρ+

h j

)
-convex of

order m at x̃ on X,

(d) the functions −h j , j ∈ J− (̃x), are locally Lipschitz
(
F, ρ−

h j

)
-convex of order m

at x̃ on X,
(e) ρ f + ∑

i∈I (̃x) λ̃iρgi + ∑
j∈J+ (̃x) μ̃ jρ

+
h j

− ∑
j∈J− (̃x) μ̃ jρ

−
h j

> 0,
(f) the set D of all feasible solutions in the constrained optimization problem (P) is

compact.

If the penalty parameter c is sufficiently large (namely, it is sufficient that c sat-
isfies the condition c > max

{
λ̃i , i ∈ I ,

∣
∣μ̃ j

∣
∣ , j ∈ J

}
), then x is also a strict global

minimizer of order m for problem (P).

Proof Assume that x is a global minimizer of order m for the penalized optimization
problem (P(c)) with the absolute value penalty function. Then, by definition of the
penalized problem (P(c)) and Definition 4, the following inequality

f (x) + c
(∑p

i=1
g+
i (x) +

∑s

j=1

∣
∣h j (x)

∣
∣
)

≥ f (x) + c
(∑p

i=1
g+
i (x) +

∑s

j=1

∣
∣h j (x)

∣
∣
)

+ β ‖x − x‖m
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holds for all x ∈ X . Using (6) together with the definition of the absolute value, we
get that the following inequality

f (x) + c

⎛

⎝
p∑

i=1

g+
i (x) +

s∑

j=1

∣
∣h j (x)

∣
∣

⎞

⎠ ≥ f (x) + β ‖x − x‖m

holds for all x ∈ X . Therefore, it is also satisfied for all x ∈ D. Hence, by (6), the
inequality

f (x) ≥ f (x) + β ‖x − x‖m (19)

holds for all x ∈ D. The inequality above means that values of the objective function
f are bounded below on the set D. Since f is a continuous function bounded below
on the compact set D, therefore, by Weierstrass’ theorem, f admits its minimum x̃
on D.

Now, we prove that x is a strict global minimizer of order m in the constrained
optimization problem (P). First, we show that x is feasible in the given extremum
problem (P). By means of contradiction, we suppose that x is not feasible in problem
(P). As we have established above, the considered constrained optimization problem
(P) has an optimal solution x̃ . Since the suitable constraint qualification is satisfied at
x̃ , there exist the Lagrange multipliers λ̃ ∈ Rp and μ̃ ∈ Rs such that the Generalized
Karush–Kuhn–Tucker necessary optimality conditions (2)–(4) are satisfied at x̃ . By
hypotheses (a)–(d) and Definition 3, the inequalities

f (x) − f (̃x) ≥ F (x, x̃; ξ) + ρ f ‖x − x̃‖m , ∀ξ ∈ ∂ f (̃x), (20)

gi (x) − gi (̃x) ≥ F (x, x̃; ζi ) + ρgi ‖x − x̃‖m , ∀ζi ∈ ∂gi (̃x), i ∈ I (̃x) , (21)

h j (x)−h j (̃x) ≥ F
(
x, x̃; ς j

)+ρ+
h j

‖x − x̃‖m , ∀ς j ∈∂h j (̃x), j ∈ J+ (̃x) , (22)

− h j (x) + h j (̃x) ≥ F
(
x, x̃;−ς j

) + ρ−
h j

‖x − x̃‖m , ∀ς j ∈ ∂h j (̃x), j ∈ J− (̃x)
(23)

hold. Multiplying inequalities (21)–(23) by the corresponding Lagrange multipliers,
respectively, by the sublinearity of the functional F (with respect to the third compo-
nent), it follows that

f (x) − f (̃x) +
∑

i∈I (̃x) λ̃i gi (x) −
∑

i∈I (̃x) λ̃i gi (̃x) +
∑

j∈J+ (̃x)
μ̃ j h j (x)

−
∑

j∈J+ (̃x)
μ̃ j h j (̃x) +

∑

j∈J− (̃x)
μ̃ j h j (x) −

∑

j∈J− (̃x)
μ̃ j h j (̃x)

≥ F
(
x, x̃; ξ +

∑

i∈I (̃x) λ̃iζi +
∑

j∈J (̃x)
μ jς j

)

+
(
ρ f +

∑

i∈I (̃x) λ̃iρgi +
∑

j∈J+ (̃x)
μ̃ jρ

+
h j

−
∑

j∈J− (̃x)
μ̃ jρ

−
h j

)
‖x − x̃‖m .
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Since the Generalized Karush–Kuhn–Tucker necessary optimality condition (2) is
satisfied at x̃ , by (1), the above inequality implies

f (x) − f (̃x) +
∑

i∈I (̃x) λ̃i gi (x) −
∑

i∈I (̃x) λ̃i gi (̃x) +
∑

j∈J+ (̃x)
μ̃ j h j (x)

−
∑

j∈J+ (̃x)
μ̃ j h j (̃x) +

∑

j∈J− (̃x)
μ̃ j h j (x) −

∑

j∈J− (̃x)
μ̃ j h j (̃x)

≥
(
ρ f +

∑

i∈I (̃x) λ̃iρgi +
∑

j∈J+ (̃x)
μ̃ jρ

+
h j

−
∑

j∈J− (̃x)
μ̃ jρ

−
h j

)
‖x − x̃‖m .

(24)

Since the Generalized Karush–Kuhn–Tucker necessary optimality condition (3) is
satisfied at x̃ , we have

p∑

i=1

λ̃i gi (̃x) = 0. (25)

Using the feasibility of x̃ in the original optimization problem (P) together with (6)
and (25), we obtain

p∑

i=1

λ̃i gi (̃x) =
p∑

i=1

λ̃i g
+
i (̃x),

s∑

j=1

μ̃ j h j (̃x) =
s∑

j=1

∣
∣μ̃ j h j (̃x)

∣
∣ . (26)

Since x is not feasible in problem (P), (6) implies

p∑

i=1

λ̃i g
+
i (x) ≥

p∑

i=1

λ̃i gi (x),
s∑

j=1

μ̃ j
∣
∣h j (̃x)

∣
∣ ≥

s∑

j=1

μ̃ j h j (x). (27)

Combining (24)–(27), we get

f (x) +
∑

i∈I (̃x) λ̃i g
+
i (x) +

∑

j∈J (̃x)

∣
∣μ̃ j

∣
∣
∣
∣h j (x)

∣
∣

≥ f (̃x) +
∑

i∈I (̃x) λ̃i g
+
i (̃x) +

∑

j∈J (̃x)

∣
∣μ̃ j

∣
∣
∣
∣h j (̃x)

∣
∣

+
(
ρ f +

∑

i∈I (̃x) λ̃iρgi +
∑

j∈J+ (̃x)
μ̃ jρ

+
h j

−
∑

j∈J− (̃x)
μ̃ jρ

−
h j

)
‖x − x̃‖m .

(28)

Since c > max
{
λ̃i , i ∈ I ,

∣
∣μ̃ j

∣
∣ , j ∈ J

}
, x̃ ∈ D gives

f (x) + c
(∑

i∈I (̃x) g
+
i (x) +

∑

j∈J (̃x)

∣
∣h j (x)

∣
∣
)

> f (̃x) + c
(∑

i∈I (̃x) g
+
i (̃x) +

∑

j∈J (̃x)

∣
∣h j (̃x)

∣
∣
)

+
(
ρ f +

∑

i∈I (̃x) λ̃iρgi +
∑

j∈J+ (̃x)
μ̃ jρ

+
h j

−
∑

j∈J− (̃x)
μ̃ jρ

−
h j

)
‖x − x̃‖m .

(29)
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Wedenote β̃ = ρ f +∑
i∈I (̃x) λ̃iρgi +

∑
j∈J+ (̃x) μ̃ jρ

+
h j

−∑
j∈J− (̃x) μ̃ jρ

−
h j
. By assump-

tion (e), it follows that β̃ > 0. Thus, by the definition of the objective function in
problem (P(c)), the following inequality

P (x, c) > P (̃x, c) + β̃ ‖x − x̃‖m (30)

holds. Hence,
P (x, c) − β̃ ‖x − x̃‖m > P (̃x, c) .

Since β̃ > 0, it follows that the following inequality

P (x, c) + β ‖x − x̃‖m > P (̃x, c)

holds for every β > 0. But the inequality above contradicts the assumption that x is
a global minimizer of order m in the penalized optimization problem (P(c)) with the
exact absolute penalty function. Thus, we have established that x is feasible in the
constrained optimization problem (P). Then, the conclusion of theorem, that is, the
result that x is a global minimizer of order m in the given constrained optimization
problem (P) follows directly from (19). 
�

The following result follows directly from Corollary 9 and Theorem 11:

Corollary 12 Let all hypotheses of Corollary 9 and of Theorem 11 be fulfilled. Then,
the set of strict global minimizers of order m for the given constrained optimization
problem (P) and the set of strict global minimizers of order m for its associated
penalized optimization problem (P(c)) with the exact absolute value penalty function
coincide.

Now, we illustrate the results established in the paper by the help of nonconvex
nonsmooth optimization problems with locally Lipschitz (F, ρ)-convex of order m
functions.

Example 13 Consider the following nonsmooth constrained optimization problem

f (x) = arctan
(
x2

) + |x | + 1 → min
g(x) = ln

(
x2 − |x | + 1

) ≤ 0.
(P2)

Note that D = {x ∈ R : −1 ≤ x ≤ 1} and it is not difficult to show byDefinition 4 that
x = 0 is a strict globalminimizer of order 1 for the considered nonsmooth optimization
problem (P2). Therefore, the Generalized Karush–Kuhn–Tucker necessary optimality
conditions (2)–(4) are fulfilled at this point with the Lagrange multiplier λ satisfying
the following condition: 0 ∈ ∂ f (x) + λ∂g (x), where ∂ f (x) = [−1, 1] and ∂g (x) =
[−1, 1]. If we set F (x, x;ϑ) = 1

8 |x − x | ϑ , ρ f = 7
8 , ρg = − 9

8 , then, by Definition
3, the objective function f is

(
F, ρ f

)
-convex of order 1 at x on R and the constraint

function g is locally Lipschitz
(
F, ρg

)
-convex of order 1 at x on R , and, moreover, the

condition ρ f + λρg ≥ 0 is satisfied. Since we solve problem (P2) by using the exact
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l1 penalty function method, we construct the following unconstrained optimization
problem

P(x, c) = arctan
(
x2

)
+ |x | + 1 + cmax

{
0, ln

(
x2 − |x | + 1

)}
. (P2(c))

Then, by Theorem 8, it is follows that, for any penalty parameter c satisfying c > λ, the
point x = 0 is also a strict global minimizer of order 1 for the penalized optimization
problem (P2(c)) with the absolute value penalty function given above. Furthermore,
since both the objective function f is

(
F, ρ f

)
-convex of order 1 and the constraint

function g is locally Lipschitz
(
F, ρg

)
-convex of order 1 at any Karush–Kuhn–Tucker

point of problem (P2) on R, by Theorem 11, x = 0, being a strict global minimizer of
order 1 for the penalized optimization problem (P2(c)) for all penalty parameters no
less than 0, is also a strict global minimizer of order 1 for the considered optimization
problem (P2) Thus, in fact, there is the equivalence between the sets of strict global
minimizers of order 1 for optimization problems (P2) and (P2(c)).

In the next example, we consider a nonconvex nonsmooth optimization problem in
which not all involved functions are (F, ρ)-convex functions of the same order with
respect to any sublinear functional F : R × R × R → R. We show in this case that
there is no equivalence between the considered nonsmooth optimization problem and
its associated penalized optimization problemwith the absolute value penalty function
in the sense discussed in the paper. In other words, the sets of strict global minimizers
of the same order are not the same in these two optimization problems.

Example 14 Consider the following nonsmooth constrained optimization problem

f (x) = x3 + |x | → min
g(x) = x2 + x ≤ 0.

(P3)

Note that D = {x ∈ R : −1 ≤ x ≤ 0} and x = 0 is a strict global minimizer of order
3 for the considered optimization problem. It can be proved that the objective function
f is not

(
F, ρ f

)
-convex of orderm on R with respect to any sublinear (with respect to

the third component) functional F : R× R× R → R (see [28]). In other words, there
do not exist real numbers ρ f , ρg (with ρ f > 0 or ρg > 0) and the same sublinear
functional F : R × R × R → R with respect to which the objective function f is(
F, ρ f

)
-convex on R and the constraint function g is

(
F, ρg

)
-convex on R. Since we

use the exact l1 penalty method to solve the considered optimization problem (P3),
we construct the following unconstrained optimization problem:

P(x, c) = x3 + |x | + cmax
{
0, x2 + x

}
→ min. (P3(c))

Then note that x = 0 is not a strict global minimizer of order 3 for its associated
penalized optimization problem (P3(c)) with the exact l1 penalty function for any
penalty parameter c, and the more so, for any penalty parameter c satisfying the
condition c > λ1. Indeed, it is not difficult to see that the downward order of growth
of f exceeds the upward of growth of g at x when moving from x towards smaller
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values. In fact, note that infx∈R Pc(x) → −∞ when x → −∞ for any c > 0.
This follows from the fact that the functions constituting the constrained optimization
problem (P3) are not locally Lipschitz (F, ρ)-convex of order m with respect to the
same (sublinear with respect to the third component) functional F : R× R× R → R.

Now, we give an example of such a nonsmooth optimization problem in which
the objective function is coercive [23], but it is not

(
F, ρ f

)
-convex of order m on

R with respect to any sublinear (with respect to the third component) functional F :
R×R×R → R (see [28]).We show also in such a case that there is no the equivalence
between the considered nonsmooth optimization problem and its associated penalized
optimization problem with the absolute value penalty function in the sense discussed
in the paper. In other words, the corecivity property of the objective function is not
sufficient to ensure that the sets of strict global minimizers of the same order are the
same in these two optimization problems.

Example 15 Consider the following nonsmooth constrained optimization problem

f (x) = 2 |x + 1| − 2 |x | + |x − 1| → min
g(x) = −x ≤ 0.

(P4)

Note that D = {x ∈ R : x ≥ 0} and it can be shown, by Definition 4, that x = 1 is a
strict global minimizer of order 1 in the considered nonsmooth optimization problem
(P4). Further, note that the objective function f is coercive (see [23]), but it is not(
F, ρ f

)
-convex of order 1 on R with respect to any sublinear (with respect to the third

component) functional F : R × R × R → R (see [28]). Since we use the exact l1
penalty method to solve the considered optimization problem (P4), we construct the
following unconstrained optimization problem:

P(x, c) = 2 |x + 1| − 2 |x | + |x − 1| + cmax {0,−x} → min . (P4(c))

Then note that x = 1 is not a strict global minimizer of order 1 in its associated
penalized optimization problem (P4(c)) with the exact l1 penalty function for any
penalty parameter c satisfying the condition c > λ1 = 1. Further, it can be shown, by
Definition 4, that x = −1 is a strict global minimizer of order 1 for penalty parameters
c ∈ [1, 2). In other words, the treshold of penalty parameters above which there is the
equivalence between the sets of strict global minimizers of order 1 in problems (P4)
and (P4(c)) is not equal to the largest Lagrange multiplier in the absolute value. This
follows from the fact that the the objective function in the constrained optimization
problem (P4) is not locally Lipschitz (F, ρ)-convex of order 1 with respect to any
sublinear with respect to the third component functional F : R × R × R → R.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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