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Abstract
This paper deals with the construction of anisotropic curl-free wavelets that satisfy
the tangent boundary conditions on bounded domains. Based on some assumptions,
we first obtain the desired curl-free Riesz wavelet bases through the orthogonal
decomposition of vector-valued L2. Next, the characterization of Sobolev spaces is
studied. Finally, we give the concrete construction of wavelets satisfying the initial
assumptions.
MSC: 42C20

Keywords: anisotropic; curl-free; wavelets; bounded domains; boundary conditions

1 Instruction
Due to their potential use inmany physical problems, like the simulation of incompressible
fluids or electromagnetism, curl-free wavelet bases have been advocated in several papers
and all results focus on the cases of R and R [–]. Moreover, it is questionable whether
they are appropriately called bases and whether they can be used to characterize Sobolev
spaces. However, it is reasonable to study the corresponding wavelet bases on bounded
domains because of some practical use. At the same time, the boundary conditions, the
stability and the characterization of Sobolev spaces are also necessary in some applica-
tions such as adaptive wavelet methods. In references [, ], anisotropic divergence-free
wavelets which satisfy the specific boundary conditions on the hypercube are studied. In-
spired by the fact that a div-free space and a curl-free space form the orthogonalHelmholtz
decomposition, wemainly study the anisotropic curl-free wavelet bases satisfying the tan-
gent boundary conditions on bounded domains in this paper, which is organized as fol-
lows. In Section , based on some assumption, the desired curl-free wavelets are con-
structed through the orthogonal decomposition of vector-valued L. Section  is devoted
to studying the characterization of Sobolev spaces. We give the concrete construction of
wavelets satisfying the initial assumption in the final section.
For two D vectors �u = (u,u)T and �v = (v, v)T , �u× �v is defined as

�u× �v =: uv – uv.

Then for �u(x, y) = (u(x, y),u(x, y))T , we define the D curl-operator by

curl�u =: (∂, ∂)× �u = ∂u – ∂u
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and for �u(x, y, z) = (u,u,u)T , the D curl-operator is defined by

curl�u = (∂, ∂, ∂)× �u = (∂u – ∂u, ∂u – ∂u, ∂u – ∂u)T .

2 Decomposition of L2(In)n

In this part, we will construct curl-free wavelets that satisfy tangent boundary conditions
by the orthogonal decomposition of vector-valued L.
Let I = (, ). For n = , , we firstly define the following spaces:

H
(
curl; In

)
=:

{�u ∈ L
(
In

)n : curl�u ∈ L
(
I

)
or L

(
I

)},
H

(
curl; In

)
=:

{�u ∈H
(
curl; In

)
: �u× �n =  or � on boundary �

}
,

H
(
In

)
=:H

(
curl; In

)
=:

{�u ∈H
(
curl; In

)
: curl�u =  or �}

.

For a scalar function φ(x, y), define
––→
curlφ =: (∂φ, –∂φ)T . Then integration by parts shows

H
(
I

)⊥––→
curlH(I) and H

(
I

)⊥ curlH(I).
Let L =: L(I), L, =: {u ∈ L :

∫ 
 u(x)dx = }. Furthermore, set

̂L
(
I

) =: L, ⊗ L × L ⊗ L,;

̂L
(
I

) =: L, ⊗ L ⊗ L × L ⊗ L, ⊗ L × L ⊗ L ⊗ L,;

Ĥs(In) =:Hs(In) ∩ (
L, ⊗ · · · ⊗ L,

)
, n = , .

For n = , we define Ĥs
(I) =:Hs(I)∩ (L ⊗ L, ⊗ L,) and

Ĥs

(
I

)
=:Hs(I) ∩ (

L, ⊗ L ⊗ L,
)
, Ĥs


(
I

)
=:Hs(I) ∩ (

L, ⊗ L, ⊗ L
)
.

Finally, let Ĥ(In) =:H(In)∩ ̂L(In)n, n = , .
The following result will be proved in Section :

Assumption . There exist bi-orthogonal Riesz bases � (n) = �
(n)
curl ∪ �

(n)
comp and �̃ (n) =

�̃
(n)
curl ∪ �̃

(n)
comp for ̂L(In)n (of wavelet type) such that

�
(n)
curl ⊂ Ĥ

(
In

)
(n = , ), �̃ ()

comp ⊂ ––→
curlĤ(I) or

�̃ ()
comp ⊂ curl

(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

))
.

Proposition . It holds that �
(n)
curl , �̃

()
comp and �̃

()
comp are Riesz bases for Ĥ(In) (n = , ),

––→
curlĤ(I) and curl(Ĥ

 (I)× Ĥ
(I)× Ĥ

(I)), respectively.

Proof For any �u ∈ Ĥ(In) (n = , ), we know

Ĥ
(
I

)⊥––→
curlĤ(I) and Ĥ

(
I

)⊥ curl
(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

))
,
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then �u = 〈�u, �̃ (n)〉L(In)n� (n) = 〈�u, �̃ (n)
curl〉L(In)n� (n)

curl with ‖�u‖L(In)n  ‖〈�u, �̃ (n)
curl〉L(In)n‖� . Fi-

nally, it is easy to verify by the definition of
––→
curl and curl that

––→
curlĤ(I) ⊂ ̂L

(
I

) and curl
(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

)) ⊂ ̂L
(
I

),
the remaining results can be proved similarly. �

Proposition . The following decompositions hold:

̂L
(
I

) = Ĥ
(
I

) ⊕⊥ ––→
curlĤ(I),

̂L
(
I

) = Ĥ
(
I

) ⊕⊥ curl
(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

))
.

Proof We only prove the case of n = , the others can be proved similarly. Since

�u =
〈�u,� ()

curl
〉
L(I)�̃

()
curl +

〈�u,� ()
comp

〉
L(I)�̃

()
comp =

〈�u,� ()
comp

〉
L(I)�̃

()
comp

for any �u ∈ Ĥ(I)⊥, then Ĥ(I)⊥ ⊆ curl(Ĥ
 (I) × Ĥ

(I) × Ĥ
(I)). On the other hand,

since Ĥ(I)⊥ curl(Ĥ
 (I)×Ĥ

(I)×Ĥ
(I)), then curl(Ĥ

 (I)×Ĥ
(I)×Ĥ

(I))⊆ Ĥ(I)⊥.
Therefore, ̂L(I) = Ĥ(I)⊕⊥ curl(Ĥ

 (I)× Ĥ
(I)× Ĥ

(I)). �

Now, we consider the orthogonal decomposition of L(In)n. Let L = L, ⊕⊥ �. Then
there are the following orthogonal decompositions:

L ⊗ L = L, ⊗ L ⊕⊥ � ⊗ L, L ⊗ L = L ⊗ L, ⊕⊥ L ⊗ �;

L ⊗ L ⊗ L = L, ⊗ L ⊗ L ⊕⊥ � ⊗ L ⊗ L;

L ⊗ L ⊗ L = L ⊗ L, ⊗ L ⊕⊥ L ⊗ � ⊗ L;

L ⊗ L ⊗ L = L ⊗ L ⊗ L, ⊕⊥ L ⊗ L ⊗ �.

Therefore, we obtain the following decomposition:

L
(
I

) = ̂L
(
I

) ⊕⊥
(

� ⊗ L



)
⊕⊥

(


L ⊗ �

)
, (.)

L
(
I

) = ̂L
(
I

) ⊕⊥

⎛⎜⎝� ⊗ L ⊗ L




⎞⎟⎠

⊕⊥

⎛⎜⎝ 
L ⊗ � ⊗ L



⎞⎟⎠ ⊕⊥

⎛⎜⎝ 


L ⊗ L ⊗ �

⎞⎟⎠ . (.)

By Proposition ., ̂L(I) = Ĥ(I) ⊕⊥ ––→
curlĤ(I), ̂L(I) = Ĥ(I) ⊕⊥ curl(Ĥ

 (I) ×
Ĥ

(I)× Ĥ
(I)). Moreover,(

� ⊗ L



)
,

(


L ⊗ �

)
⊂ ––→
curlH(I),
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⎛⎜⎝� ⊗ L ⊗ L




⎞⎟⎠ ,

⎛⎜⎝ 
L ⊗ � ⊗ L



⎞⎟⎠ ,

⎛⎜⎝ 


L ⊗ L ⊗ �

⎞⎟⎠ ⊂ curlH(I).

Finally, we obtain L(I) =H(I)⊕⊥ ––→
curlH(I) and L(I) =H(I)⊕⊥ curlH(I).

Now, we will construct Riesz bases for H(In) (n = , ),
––→
curlH(I) and curlH(I). For

n = , we define the embedding E()
{} ,E

()
{} : L(I) –→ L(I) by

(
E()

{}v
)
(x,x) = v(x)�e,

(
E()

{}v
)
(x,x) = v(x)�e,

E()
{,} :

̂L
(
I

) –→ L
(
I

) by
(
E()

{,}�v
)
(x,x) =

∑
i=

vi(x,x)�ei.

For n = , define E()
{} ,E

()
{},E

()
{} : L(I) –→ L(I) by

(
E()

{}v
)
= v(x)v(x)�e,

(
E()

{}v
)
= v(x)v(x)�e,

(
E()

{}v
)
= v(x)v(x)�e,

E()
{,,} :

̂L
(
I

) –→ L
(
I

) by
(
E()

{,,}�v
)
(x,x,x) =

∑
i=

vi(x,x,x)�ei.

It is obvious that E()
{,} = I , E()

{,,} = I . Moreover, the image satisfies

ImE()
{} =

(
� ⊗ L, 

)T , ImE()
{} =

(
,L ⊗ �

)T ;
ImE()

{} =
(
� ⊗ L ⊗ L, , 

)T , ImE()
{} =

(
,L ⊗ � ⊗ L, 

)T ,
ImE()

{} =
(
,,L ⊗ L ⊗ �

)T .
Furthermore, we know from (.) and (.) that L(I) = ImE()

{} ⊕⊥ ImE()
{} ⊕⊥ ImE()

{,},

L
(
I

) = ImE()
{} ⊕⊥ ImE()

{} ⊕⊥ ImE()
{} ⊕⊥ ImE()

{,,}.

Since Im(E()
{,}|Ĥ(I)) ⊂H(I), Im(E()

{,}|––→curlĤ(I)) ⊂
––→
curlH(I) and

Im
(
E()

{,,}|Ĥ(I)
) ⊂H

(
I

)
, Im

(
E()

{,,}|curl(Ĥ
 (I)×Ĥ

(I)×Ĥ
(I))

) ⊂ curlH(I),
we obtain L(I) = Im(E()

{,}|Ĥ(I))⊕⊥ Im(E()
{,}|––→curlĤ(I))⊕⊥ ImE()

{} ⊕⊥ ImE()
{} and L(I) =

Im(E()
{,,}|Ĥ(I))⊕⊥ Im(E()

{,,}|curl(Ĥ
 (I)×Ĥ

(I)×Ĥ
(I))

)⊕⊥ ImE()
{} ⊕⊥ ImE()

{} ⊕⊥ ImE()
{}.

In view of Proposition ., we obtain

Theorem . In the situation of Assumption ., the collections �curl =:� (n)
curl (n = , ) are

Riesz bases forH(In) (n = , ). �̃ ()
comp ∪E()

{}�̃ () ∪E()
{}�̃ () and �̃

()
comp ∪E()

{}�̃ () ∪E()
{}�̃ () ∪

E()
{}�̃ () are Riesz bases for

––→
curlH(I) and curlH(I), respectively.

Note . In fact, Ĥ(In) =H(In) for n = , . �̃ () =: �̃– = {ψ̃–
λ : λ ∈ ∇}, which is defined in

Section .
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3 Characterization of Hm(In)n

This part will show that the curl-free wavelets constructed above can be used to charac-
terize Sobolev spaces. For n = ,  andm ∈N , define the following Sobolev spaces:

�Hm


(
In

)
=:

{�u ∈Hm(
In

)n : �u× �n =  or � on �
}
,

�V (
In

)
=: �Hm


(
In

) ∩H
(
In

)
.

The following result will be verified in Section :

Assumption . The collection � (n) from Assumption . can be constructed so that,
normalized in Hm(In)n, it is a Riesz basis for

̂�Hm


(
In

)
=: �Hm


(
In

) ∩ ̂L
(
In

)n.
Based on this assumption, we obtain:

Theorem . In the situation of Assumptions . and ., the collection �curl =:� (n)
curl , nor-

malized in Hm(In)n, is a Riesz basis for �V (In).

Proof SinceH(In) = Ĥ(In) =H(In)∩ ̂L(In)n, then for any �u ∈ �V (In), we know �u ∈ ̂�Hm
 (In)

and by Assumption .,

�u =
〈�u, �̃ (n)〉

L(In)n�
(n) in Hm(

In
)n

with ‖�u‖Hm(In)n  ∑
ψ̃∈ �̃(n) |〈�u, ψ̃〉L(In)n | · ‖ψψ̃‖Hm(In)n , where ψψ̃ ∈ � (n) denotes the pri-

mal wavelets corresponding to ψ̃ . Furthermore, since �u ∈H(In), then

�u =
〈�u, �̃ (n)

curl
〉
L(In)n�

(n)
curl in Hm(

In
)n

with ‖�u‖Hm(In)n  ∑
ψ̃∈ �̃

(n)
curl

|〈�u, ψ̃〉L(In)n | · ‖ψψ̃‖Hm(In)n . �

4 Construction of wavelets
In this section, wewill give the construction ofwavelets satisfyingAssumptions . and ..

Lemma. ([, Corollary .]) Suppose that the collections� = {ψλ : λ ∈ ∇} and �̃ = {ψ̃λ :
λ ∈ ∇} are bi-orthogonal in L,(I). In addition, for some m < γ < d ∈N ,  < γ̃ < d̃ ∈N ,

inf
v∈span{ψλ :|λ|≤�}

‖u – v‖L(I) � –�d‖u‖Hd(I)
(
u ∈ Ĥd(I)

)
,

inf
v∈span{ψ̃λ :|λ|≤�}

‖u – v‖L(I) � –�̃d‖u‖Hd̃(I)

(
u ∈ Ĥd̃(I)

)
,

for s < γ , ‖ · ‖Hs(I) � �s‖ · ‖L(I) on span{ψλ : |λ| ≤ �},
for s < γ̃ , ‖ · ‖Hs(I) � �s‖ · ‖L(I) on span{ψ̃λ : |λ| ≤ �}.

Define the collections �+ = {ψ+
λ : λ ∈ ∇} and �̃– = {ψ̃–

λ : λ ∈ ∇} by

ψ+
λ (x) =: 

|λ|
∫ x


ψλ(y)dy and ψ̃–

λ (x) =: –
–|λ| ˙̃ψλ.

http://www.journalofinequalitiesandapplications.com/content/2012/1/205
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Then it holds that

{
–|λ|sψλ : λ ∈ ∇}

is a Riesz basis for Ĥs(I), s ∈ [,γ ),{
–|λ|sψ̃λ : λ ∈ ∇}

is a Riesz basis for Ĥs(I), s ∈ [, γ̃ ),{
–|λ|sψ+

λ : λ ∈ ∇}
is a Riesz basis forHs

(I), s ∈ [,γ + ),{
–|λ|sψ̃–

λ : λ ∈ ∇}
is a Riesz basis for Hs(I), s ∈ [, γ̃ – ),

where

Hs
(I) =:

⎧⎨⎩[L(I),H
(I)]s,, s ∈ [, ];

Hs(I)∩H
(I), s ≥ .

Moreover, �+ and �̃– are bi-orthogonal.

Note . It has been pointed out in [] that such wavelet bases can be obtained by taking
standard bi-orthogonal wavelet bases for L(I) that satisfy the corresponding Jackson and
Bernstein assumptions of d, d̃, γ and γ̃ with Ĥd(I) and Ĥd̃(I) reading as Hd(I) and Hd̃(I)
(see []), and then removing those scaling functions without a vanishing moment.

The following result can be proved by the same method as Corollary . of [].

Corollary . For  ≤ s < γ and  ≤ s̃ < γ̃ – , the sets

{( n∑
i=

|λi|
)– s



ψ+
λ ⊗ · · · ⊗ ψλk ⊗ · · · ⊗ ψ+

λn : λ = (λ, . . . ,λn) ∈ �∇ = (∇)n
}
,

{( n∑
i=

|λi|
)– s̃



ψ̃–
λ ⊗ · · · ⊗ ψ̃λk ⊗ · · · ⊗ ψ̃–

λn : λ = (λ, . . . ,λn) ∈ �∇ = (∇)n
}

are Riesz bases for
↓ kth position

Hs
 ⊗ L ⊗ · · · ⊗ L ⊗ L, ⊗ L ⊗ · · · ⊗ L∩

...
kth position L ⊗ · · · ⊗ L ⊗ Ĥs ⊗ L ⊗ · · · ⊗ L∩

...
L ⊗ L ⊗ · · · ⊗ L ⊗ L, ⊗ L ⊗ · · · ⊗Hs


and

↓ kth position
Hs̃ ⊗ L ⊗ · · · ⊗ L ⊗ L, ⊗ L ⊗ · · · ⊗ L∩

...
kth position L ⊗ · · · ⊗ L ⊗ Ĥs̃ ⊗ L ⊗ · · · ⊗ L∩

...
L ⊗ L ⊗ · · · ⊗ L ⊗ L, ⊗ L ⊗ · · · ⊗Hs̃,

http://www.journalofinequalitiesandapplications.com/content/2012/1/205
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respectively. For s = s̃ = , the corresponding collections are bi-orthogonal in L ⊗· · ·⊗L ⊗
L, ⊗ L ⊗ · · · ⊗ L.

For λ ∈ �∇ , we define the vector-valued wavelets

ψ (n)
λ,k =:ψ

+
λ ⊗ · · · ⊗ ψλk ⊗ · · · ⊗ ψ+

λn�ek , ψ̃
(n)
λ,k =: ψ̃

–
λ ⊗ · · · ⊗ ψ̃λk ⊗ · · · ⊗ ψ̃–

λn�ek .

From Corollary . and the definition of ̂�H
(In), we obtain

Proposition . For  ≤ s < γ and  ≤ s̃ < γ̃ – , the sets

{( n∑
i=

|λi|
)– s



ψ (n)
λ,k :  ≤ k ≤ n,λ ∈ �∇

}
and

{( n∑
i=

|λi|
)– s̃



ψ̃
(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇

}

are Riesz bases for the vector spaces⎧⎨⎩[ ̂L(In)n, ̂�H
(In)]s,, s ∈ [, ];

̂�H
(In)∩Hs(In)n, s≥ 

and ̂L(In)n ∩ Hs̃(In)n, respectively. For s = s̃ = , the collections are bi-orthogonal Riesz
bases for ̂L(In)n.

Now, we are in the position to apply the basis transform. LetAλ be an orthogonal matrix
with its st row given by

Aλ
 =:


(
∑n

i= |λi|) 
(
|λ|, . . . , |λn|) = (α, . . . ,αn) =: αT .

Such an example is known as the Householder transform

Aλ = I –
(α – �e)(α – �e)T
(α – �e)T (α – �e) ,

which is

Aλ =

(
α α

α –α

)
and Aλ =

⎛⎜⎜⎝
α α α

α  – α
–α

– αα
–α

α – αα
–α

 – α
–α

⎞⎟⎟⎠
in the case n =  and n = . Defining

⎛⎜⎜⎝
ψ

(n)
λ,
...

ψ
(n)
λ,n

⎞⎟⎟⎠ =: Aλ

⎛⎜⎜⎝
ψ (n)

λ,
...

ψ (n)
λ,n

⎞⎟⎟⎠ and

⎛⎜⎜⎝
ψ̃

(n)
λ,
...

ψ̃
(n)
λ,n

⎞⎟⎟⎠ =: Aλ

⎛⎜⎜⎝
ψ̃

(n)
λ,
...

ψ̃
(n)
λ,n

⎞⎟⎟⎠ .

http://www.journalofinequalitiesandapplications.com/content/2012/1/205
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Set

� (n) =:
{
ψ

(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇}

and �̃ (n) =:
{
ψ̃

(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇}

.

Applying the property of an orthogonal transform, we infer the following result.

Proposition . For  ≤ s < γ and  ≤ s̃ < γ̃ – , the sets

{( n∑
i=

|λi|
)– s



ψ
(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇

}
and

{( n∑
i=

|λi|
)– s̃



ψ̃
(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇

}

are Riesz bases for the vector spaces

⎧⎨⎩[ ̂L(In)n, ̂�H
(In)]s,, s ∈ [, ];

̂�H
(In)∩Hs(In)n, s≥ 

and ̂L(In)n ∩Hs̃(In)n, respectively. In particular, for s = s̃ = , the collections � (n) and �̃ (n)

are bi-orthogonal Riesz bases for ̂L(In)n.

In the following, we are mainly concerned with the cases n =  and n =  because of the
complicated form of curl operators in n > .

Theorem . Let �
(n)
curl =: {ψ (n)

λ, : λ ∈ �∇} and �̃
(n)
comp =: {ψ̃ (n)

λ,k : ≤ k ≤ n,λ ∈ �∇}. Then
(i) �

(n)
curl ⊂ Ĥ(In) (n = , ), �̃ ()

comp ⊂ ––→
curlĤ(I) or

�̃
()
comp ⊂ curl(Ĥ

 (I)× Ĥ
(I)× Ĥ

(I)).

(ii) {(∑n
i= |λi|)–m

 ψ
(n)
λ,k :  ≤ k ≤ n,λ ∈ �∇} is a Riesz basis for the vector valued space

̂�Hm
 (In) =: �Hm

 (In)∩ ̂L(In)n.

Proof (i) It is easy to see that ψ (n)
λ,k ∈H(curl; In) for  ≤ k ≤ n, then

ψ
(n)
λ, = αψ

(n)
λ, + αψ

(n)
λ, + · · · + αnψ

(n)
λ,n ∈H

(
curl; In

)
.

Furthermore,
––→
curlψ ()

λ, =  and curlψ ()
λ, = �. Therefore,� (n)

curl ⊂ Ĥ(In) (n = , ). In addition,

ψ̃
()
λ, = αψ̃

()
λ, – αψ̃

()
λ, =

(
αψ̃λ ⊗ ψ̃–

λ

–αψ̃
–
λ

⊗ ψ̃λ

)

= –


(|λ| + |λ|) 
––→
curlψ̃λ ⊗ ψ̃λ ∈ ––→

curlĤ(I).

http://www.journalofinequalitiesandapplications.com/content/2012/1/205
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Therefore, we obtain �̃
()
comp ⊂ ––→

curlĤ(I). Finally, suppose that a, b and c are the solutions
of ⎧⎪⎪⎨⎪⎪⎩

b|λ| – c|λ| = A,

–a|λ| + c|λ| = A,

–b|λ| + a|λ| = A,

whose existence can be guaranteed by the orthogonality of Aλ. Then

ψ̃
()
λ, = Aψ̃

()
λ, +Aψ̃

()
λ, +Aψ̃

()
λ, =

⎛⎜⎝Aψ̃λ ⊗ ψ̃–
λ

⊗ ψ̃–
λ

Aψ̃
–
λ

⊗ ψ̃λ ⊗ ψ̃–
λ

Aψ̃
–
λ

⊗ ψ̃–
λ

⊗ ψ̃λ

⎞⎟⎠

= curl

⎛⎜⎝aψ̃–
λ

⊗ ψ̃λ ⊗ ψ̃λ

bψ̃λ ⊗ ψ̃–
λ

⊗ ψ̃λ

cψ̃λ ⊗ ψ̃λ ⊗ ψ̃–
λ

⎞⎟⎠ ∈ curl
(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

))
.

Similarly, if a, b and c are the solutions of the equation

⎧⎪⎪⎨⎪⎪⎩
b|λ| – c|λ| = A,

–a|λ| + c|λ| = A,

–b|λ| + a|λ| = A,

then we can also obtain

ψ̃
()
λ, = curl

⎛⎜⎝aψ̃–
λ

⊗ ψ̃λ ⊗ ψ̃λ

bψ̃λ ⊗ ψ̃–
λ

⊗ ψ̃λ

cψ̃λ ⊗ ψ̃λ ⊗ ψ̃–
λ

⎞⎟⎠ ∈ curl
(
Ĥ


(
I

) × Ĥ

(
I

) × Ĥ

(
I

))
.

Therefore, �̃ ()
comp ⊂ curl(Ĥ

 (I)× Ĥ
(I)× Ĥ

(I)).
(ii) Since γ > m, taking s = m in Proposition ., we know the set {(∑n

i= |λi|)–m
 ψ

(n)
λ,k :

 ≤ k ≤ n,λ ∈ �∇} is a Riesz basis for ̂�H
(In)∩Hm(In)n. Furthermore, it is easy to verify

̂�H

(
In

) ∩Hm(
In

)n = �Hm


(
In

) ∩ ̂L
(
In

)n = ̂�Hm


(
In

)
. �
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