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Abstract

Background: Classical approaches to compute the genomic distance are usually limited to genomes with the same
content and take into consideration only rearrangements that change the organization of the genome (i.e. positions
and orientation of pieces of DNA, number and type of chromosomes, etc.), such as inversions, translocations, fusions
and fissions. These operations are generically represented by the double-cut and join (DCJ) operation. The distance
between two genomes, in terms of number of DCJ operations, can be computed in linear time. In order to handle
genomes with distinct contents, also insertions and deletions of fragments of DNA – named indels – must be allowed.
More powerful than an indel is a substitution of a fragment of DNA by another fragment of DNA. Indels and
substitutions are called content-modifying operations. It has been shown that both the DCJ-indel and the
DCJ-substitution distances can also be computed in linear time, assuming that the same cost is assigned to any DCJ
or content-modifying operation.

Results: In the present study we extend the DCJ-indel and the DCJ-substitution models, considering that the
content-modifying cost is distinct from and upper bounded by the DCJ cost, and show that the distance in both
models can still be computed in linear time. Although the triangular inequality can be disrupted in both models, we
also show how to efficiently fix this problem a posteriori.

Keywords: Double cut and join (DCJ), Insertions and deletions (indels), Substitution, Genome rearrangements,
Genomic distance, Evolution, Comparative genomics, Combinatorics, Algorithms

Background
The distance between two genomes is often compu-
ted using only the common markers, that occur in
both genomes. Such distance allows rearrangements that
change the organization of the genome, that is, the posi-
tions and orientations of markers, number and types
of chromosomes. Inversions, translocations, fusions and
fissions are some of these operations [1]. All these rear-
rangements can be generically represented as a double-
cut-and-join (DCJ) operation [2]. The DCJ distance,
which takes into consideration only DCJ operations, can
be computed in linear time [3].
Nevertheless, genomes with the same content are rare,

and differences in gene content may reflect important
evolutionary aspects. In order to handle genomes with
unequal contents, one has to take into consideration

*Correspondence: sdantas@im.uff.br
1IME, Universidade Federal Fluminense, Niterói, Brazil
Full list of author information is available at the end of the article

content-modifying operations, that change the contents
of the genomes. These operations can be an insertion or
a deletion of a piece of DNA. Insertions and deletions
are also called indels. Some extensions of the classi-
cal approaches lead to models that handle genomes with
unequal contents, but without duplicated markers, allow-
ing rearrangements and indels. In 2001, El Mabrouk [4]
extended the classical sorting by inversions approach [5]
and developed a method to compare unichromosomal
genomes with unequal contents, considering only inver-
sions and indels. She provided an exact algorithm that
deals with insertions and deletions asymmetrically, and a
heuristic that handles the operations symmetrically. Then,
in 2009, a model to sort multichromosomal genomes
with unequal contents, using both DCJ and indel opera-
tions was introduced by Yancopoulos and Friedberg [6].
Later, Braga et al. [7] presented an exact formula for the
DCJ-indel distance, that can be computed in linear time
handling indels symmetrically.
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Recently, in 2011, a more powerful content-modifying
operation has also been considered: a substitution allows
a piece of DNA to be substituted by another piece of DNA
[8]. Observe that it is not suggested that a substitution
occurs in a precise moment in evolution, but instead it
represents a region that underwent continuous mutations
(duplications, losses and gene mutations), so that a group
of genes is transformed into a different group of genes
(either of whichmay also be empty, allowing a substitution
to represent an insertion or a deletion). Other studies also
represent continuous mutations as a rearrangement event
[9,10]. By minimizing substitutions we are able to estab-
lish a relation between indels that could have occurred
in the same position of the compared genomes, iden-
tifying genomic regions that could be subject to these
continuous mutations. It has been shown that the DCJ-
substitution distance can also be computed in linear
time [8].
The approaches mentioned above [4,6-8] assign the

same cost to any rearrangement or content-modifying
operation. However, during the evolution of many organ-
isms, content-modifying operations are said to occur
more often than rearrangements and, consequently,
should be assigned to a lower cost. Examples are bac-
teria that are obligate intracellular parasites, such as
Rickettsia [11]. The genomes of such intracellular para-
sites are observed to have a reductive evolution, that is, the
process by which genomes shrink and undergo extreme
levels of gene degradation and loss. In the present work,
we refine the DCJ-indel [7] and the DCJ-substitution [8]
models, by adopting a distinct content-modifying cost
that is upper bounded by the DCJ cost. For simplic-
ity, we assign a cost of 1 to DCJ and a positive cost of
w ≤ 1 to content-modifying operations. We are then able
to give exact formulas for both the DCJ-indel and the
DCJ-substitution distances, for any positive w ≤ 1.
Content-modifying operations are applied to pieces of

DNA of any size, and a side effect of this fact is that the
triangular inequality often does not hold for distances that
consider these operations [4,6-8,12]. In the case of the
models we study here, it is possible to do an a posteriori
correction, using an approach similar to the one described
in [12].
This paper is an extension of [13] and is organized

as follows. In the remainder of this section we give
definitions and previous results used in this work. We
will then present our results, including the formulas for
the distances with distinct DCJ and content-modifying
costs and the correction to establish the triangular
inequality.

Genomes
We deal with models in which duplicated markers are
not allowed. Given two genomes A and B, possibly with

unequal content, let G, A and B be three disjoint sets,
such that G is the set of markers that occur both in A and
B, A is the set of markers that occur only in A, and B is
the set of markers that occur only in B. The markers in
sets A and B are also called unique markers. We denote
by u(A,B) = |A| + |B| the number of unique markers in
genomes A and B.
Each marker g in a genome is a DNA fragment and is

represented by the symbol g, if it is read in direct orienta-
tion, or by the symbol g, if it is read in reverse orientation.
Each one of the two extremities of a linear chromosome
is called a telomere, represented by the symbol ◦. Each
chromosome in a genome can be then represented by a
string that can be circular, if the chromosome is circular,
or linear and flanked by the symbols ◦ if the chromosome
is linear. In general, a genome is either circular (com-
posed of circular chromosomes) or linear (composed of
linear chromosomes). As an example, consider the linear
genomes A =

{
◦bsucavde◦

}
and B = {◦awbxc◦, ◦ydze◦}

,
represented in Figure 1. Here we have G = {a, b, c, d, e},
A = {s,u, v} and B = {w, x, y, z}.

The DCJ model
In this section we will summarize the DCJ model, that
allows the sorting of the common content of two genomes,
also called DCJ-sorting. We will also show how the DCJ
distance can be easily computed with the help of the
adjacency graph.
Given two genomes A and B, we denote the two extrem-

ities of each g ∈ G by gt (tail) and gh (head). Then, a
G-adjacency or simply adjacency [7] in genome A (respec-
tively in genome B) is a string v = γ1�γ2 ≡ γ2�γ1,
such that each γi can be a telomere or an extremity of a
marker from G and � is a substring composed of the mark-
ers that are between γ1 and γ2 in A (respectively in B)
and contains no marker that also belongs to G. The sub-
string � is the label of v. If � is empty, the adjacency is
said to be clean, otherwise it is said to be labeled. If a lin-
ear chromosome is composed only of unique markers, it
is represented by an adjacency ◦�◦. Similarly, a circular
chromosome composed only of unique markers is repre-
sented by a (circular) adjacency �. For the linear genomes
represented in Figure 1, the set of adjacencies in A is

A

B

Figure 1 Genomes A =
{
◦bsucavde◦

}
, composed of one single

linear chromosome, and B = {◦awbxc◦, ◦ydze◦}, composed of
two linear chromosomes. The markers in G are represented in black,
while the unique markers inA and in B are represented in red.
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{◦bt , bhsuch, ctat , ahvdh, dtet , eh◦}
and the set of adjacen-

cies in B is
{◦at , ahwbt , bhxct , ch◦, ◦ydt , dhzet , eh◦}

.

Adjacency graph
Given two genomesA and B, the adjacency graph AG(A,B)

[3] is the bipartite multigraph whose vertices are the adja-
cencies of A and of B and that has one edge for each com-
mon extremity of a pair of vertices. Each of the connected
components of AG(A,B) alternate vertices in genome A
and in genome B. Each component can be either a cycle,
or an AB-path (that has one endpoint in genome A and
the other in B), or an AA-path (that has both endpoints in
genome A), or a BB-path (that has both endpoints in B).
A special case of an AA or a BB-path is a linear singleton,
that is a linear chromosome represented by an adjacency
of type ◦�◦, where � contains only unique markers. Paths
occur when the genomes are linear. For circular genomes,
the graph AG(A,B) is composed of cycles only, and may
also have a special type of component composed of a sin-
gle vertex, that corresponds to a circular chromosome
composed only of markers that are not in G, called circular
singleton. In Figure 2 we show the adjacency graph built
over the linear genomes represented in Figure 1.

DCJ operations
A cut performed on a genome A separates two adjacent
markers of A. A cut affects a single adjacency v in A:
it is done between two symbols of v, creating two open
ends. In general a cut can be performed between two
markers of a label, but the DCJ-indel distance can be com-
puted considering only cuts that do not “break” labels.
A double-cut and join or DCJ applied on a genome A is
the operation that performs cuts in two different adja-
cencies in A, creating four open ends, and joins these
open ends in a different way. In other words, a DCJ rear-
ranges two adjacencies in A, transforming them into two
new adjacencies. As an example consider a DCJ applied
to genome A (from Figure 1), that rearranges the adja-
cencies ahvdh and dtet into the new adjacencies ahvdt and
dhet . Observe that this operation corresponds to the inver-
sion of marker d in genome A. Indeed, a DCJ operation
can correspond to several rearrangements, such as an
inversion, a translocation, a fusion or a fission [2].

A

B
Figure 2 For genomes A and B (Figure 1), the graph has one BB
and two AB-paths.

DCJ-sorting and DCJ distance
Given two genomes A and B, the components of AG(A,B)

with 3 or more vertices need to be reduced, by applying
DCJ operations, to components with only 2 vertices, that
can be cycles or AB-paths [14]. This procedure is called
DCJ-sorting of A into B. The number of AB-paths in
AG(A,B) is always even and a DCJ can be of three types [7]:
it can either decrease the number of cycles by one, or the
number of AB-paths by two (counter-optimal); or it does
not affect the number of cycles and AB-paths (neutral); or
it can either increase the number of cycles by one, or the
number of AB-paths by two (optimal). The DCJ distance
of A and B, denoted by dDCJ (A,B), is the minimum num-
ber of steps required to do a DCJ-sorting ofA into B, given
by the following theorem.

Theorem 1 (from [3]). Given two genomes A and B, we
have dDCJ (A,B) = |G|−c− b

2 , where G is the set of common
markers and c and b are, respectively, the number of cycles
and of AB-paths in AG(A,B).

Internal DCJ operations and recombinations
Observe that a DCJ operation ρ acts on two different
adjacencies, that can be in the same or in two distinct
connected components of the graph. The components on
which the cuts are applied are called sources and the com-
ponents obtained after the joinings are called resultants
of ρ. With respect to the adjacency graph, ρ can be of
two types: internal, when ρ is applied to two adjacen-
cies belonging to a single component; and recombination,
when ρ is applied to adjacencies belonging to two distinct
components.
Any recombination applied to a vertex of an AA-path

and a vertex of a BB-path is optimal [14]. A recombina-
tion applied to vertices of two distinct AB-paths can be
either neutral, when the resultants are also AB-paths, or
counter-optimal, when the resultants are an AA-path and
a BB-path. All other types of path recombinations are neu-
tral and all recombinations involving at least one cycle are
counter-optimal.
It is possible to do a separate DCJ-sorting in any com-

ponent P of AG(A,B) [14] by applying DCJs internal to P.
We denote by dDCJ (P) the number of optimal DCJ opera-
tions used for DCJ-sorting P separately (dDCJ(P) depends
only on the number of vertices or, equivalently, the num-
ber of edges of P [14]). Thus, the DCJ distance can also
be re-written in terms of the sum of the distance per
component:

Lemma 1 (derived from [14]). Given two genomes A and
B, we have dDCJ (A,B) = ∑

P∈AG(A,B) dDCJ (P).

Only optimal DCJs, counted in the equivalent formu-
las given by Theorem 1 and Lemma 1, are necessary
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to do a DCJ-sorting. Given a DCJ ρ, the DCJ variation
of ρ, denoted by �DCJ (ρ), is defined to be respectively
0, 1 and 2 depending whether ρ is optimal, neutral or
counter-optimal.

Modifying the content of a genome
In the previous section, the unique markers appeared as
labels of adjacencies, but the DCJ operations are only able
to change the organization of the genomes. Here we intro-
duce the operations that are applied to the labels and
change the content of the genomes.

Indel operations
The most classical content-modifying operations are
insertions and deletions of blocks of contiguous markers
[4,6]. We refer to insertions and deletions as indel oper-
ations. In the model we consider, an indel only affects
the label of one single adjacency, by deleting or insert-
ing contiguous markers in this label, with the restriction
that an insertion cannot produce duplicated markers [7].
Thus, while sorting A into B, the indels are the steps in
which the markers in A are deleted and the markers in B
are inserted. At most one chromosome can be entirely
deleted or inserted at once. We illustrate an indel with the
following example: the deletion of markers su from adja-
cency bhsuch of genome A (Figure 2), which results into
the clean adjacency bhch. The opposite operation would be
an insertion.

Substitutions
Substitutions are more powerful content-modifying oper-
ations, that allow blocks of contiguous markers to be
substituted by other blocks of contiguous markers [8]. In
other words, a deletion and a subsequent insertion that
occur at the same position of the genome can be modeled
as a substitution, counting together for one single sorting
step.
A substitution only affects the label of one single adja-

cency, by substituting contiguous markers in this label,
with the restriction that it cannot produce duplicated
markers [8]. An example is the substitution of markers
su in adjacency bhsuch by x , which results into adjacency
bhxch. At most one chromosome can be entirely substi-
tuted at once (but we do not allow the substitution of a
linear by a circular chromosome nor vice-versa). As pre-
viously mentioned, insertions and deletions are special
cases of substitutions. If a block of markers is substituted
by the empty string, we have a deletion. Analogously, if the
empty string is substituted by a block of markers, we have
an insertion.

Runs, indel- and substitution-potentials
In this section we introduce some definitions and con-
cepts that will help us to integrate the DCJ model with

content-modifying operations. These concepts will be
very useful in our results, when we will show how to
use DCJ operations to minimize the number of content-
modifying operations to be performed.
First, let us recall the concept of run, introduced in

[7]. Given two genomes A and B and a component P of
AG(A,B), a run is a maximal subpath of P, in which the first
and the last vertices are labeled and all labeled vertices
belong to the same genome (or partition). An example is
given in Figure 3. A run in genome A is also called an A-
run, and a run in genome B is called a B-run. We denote
by �(P) the number of runs in a component P. While a
path can have any number or runs, a cycle has either 0, 1,
or an even number of runs.
A set of labels of one genome can be accumulated with

DCJs. For example, take the adjacencies dhzet and dty◦
from genome B (Figure 3). A DCJ applied to these two
adjacencies could result into dtet and dhzy◦, in which the
label zy resulted from the accumulation of the labels of
the two original adjacencies. In particular, when we apply
optimal DCJs internal to a single component of the adja-
cency graph, we can accumulate an entire run into a single
adjacency [7].
Runs can be merged by DCJ operations. Consequently,

during the optimal DCJ-sorting of a component P, we
can reduce its number of runs. The indel-potential of
P, denoted by λ(P), is defined in [7] as the minimum
number of runs that we can obtain by DCJ-sorting P
with optimal DCJ operations. An example is given in
Figure 4.
The indel-potential of a component depends only on its

number of runs:

Proposition 1 (from [7]). Given two genomes A and B
and a component P of AG(A,B), the indel-potential of P
is given by λ(P) = ��(P)+1

2 �, if �(P) ≥ 1. Otherwise, if
�(P) = 0, then λ(P) = 0.

A

B

Figure 3 An AB-path with 3 runs (extracted from Figure 2).
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Figure 4 Two optimal sequences for DCJ-sorting an AB-path with� = 3 (the cuts of each DCJ in each sequence are represented by “|”).
In (i) the overall number of runs in the resulting components is three, while in (ii) the resulting components have only two runs. Indeed, in this case,
the best we can have is the indel-potential λ = 2.

Similarly, the substitution-potential of a component P
is the minimum number of substitutions that we can
obtain by DCJ-sorting P with optimal DCJ operations.
The substitution-potential is denoted by σ(P) and can be
computed as follows:

Proposition 2 (from [8]). Given genomes A and B and
a component P of AG(A,B), the substitution-potential of P
is given by σ(P) = ��(P)+1

4 �, if �(P) ≥ 1. Otherwise, if
�(P) = 0, then σ(P) = 0.

Results
In this section we show how to compute the DCJ-
indel and the DCJ-substitution distances, considering that
the content-modifying cost is distinct from and upper
bounded by the DCJ cost. We assign the cost of 1 to each
DCJ and a positive cost w ≤ 1 to each content-modifying
operation.

The DCJ-indel model with distinct operation costs
First we consider the case in which only indels are allowed
as content-modifying operations. Given two genomes A
and B, we define the DCJ-indel distance of A and B,
denoted by didDCJ (A,B), as the minimum cost of a DCJ-
indel sequence of operations that sorts A into B. If w = 1,
the DCJ-indel distance corresponds exactly to the min-
imum number of steps required to sort A into B. To
compute the distance in this case, a linear algorithm was
given in [7]. Here we present a more general method to
compute the DCJ-indel distance for any positive w ≤ 1.

An upper bound for the DCJ-indel distance
We can obtain a good upper bound for the DCJ-indel dis-
tance by showing how to compute the DCJ-indel distance
per component. Given a DCJ operation ρ, let λ0 and λ1 be,
respectively, the sum of the indel-potentials for the com-
ponents of the adjacency graph before and after ρ, and
let �λ(ρ) = λ1 − λ0. If ρ is an optimal DCJ internal to
a single component of the graph, the definition of indel-
potential implies �λ(ρ) ≥ 0. We also have �λ(ρ) ≥ 0, if

ρ is counter-optimal, and �λ(ρ) ≥ −1, if ρ is neutral [7].
Recall that �DCJ (ρ) is, respectively, 0, 1 and 2, depending
whether the DCJ ρ is optimal, neutral or counter-optimal.
We define �DCJ-λ(ρ) = �DCJ (ρ)+w�λ(ρ).
We know that each component P of AG(A,B) can

be DCJ-sorted separately, and the labels can then be
easily sorted with indel operations. Let didDCJ (P) be the
DCJ-indel distance of P, that is the minimum cost of
a DCJ-indel sequence of operations sorting P sepa-
rately. This can be computed according to the following
proposition.

Proposition 3. For each P ∈ AG(A,B), didDCJ (P) =
dDCJ (P) + wλ(P).

Proof. By the definition of λ, the best we can do with
optimal DCJs is dDCJ (P) + wλ(P). From [7], we have
�DCJ-λ(ρ) ≥ 2 if ρ is counter-optimal, thus we can only
get more expensive sorting scenarios if we use such oper-
ation. We also know that, if ρ is neutral �DCJ-λ(ρ) ≥
1 − w ≥ 0, for any positive w ≤ 1.

This allows us to get a good upper bound for the DCJ-
indel distance with distinct operation costs:

Lemma 2. Given two genomes A and B and a positive
indel cost w ≤ 1, we have

didDCJ (A,B) ≤ dDCJ (A,B) + w
∑

P∈AG(A,B)

λ(P).

Proof. If we sort the components separately we have
didDCJ (A,B) ≤ ∑

P∈AG(A,B) didDCJ (P), which, according to
Lemma 1 and Proposition 3, corresponds exactly to
dDCJ (A,B) + w

∑
P∈AG(A,B) λ(P).

Recombinations and the exact DCJ-indel distance
Until this point, we have explored the possible effects
of any DCJ that is internal to a single component
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of the graph. Now we will analyze the effect of
recombinations, that have �λ ≥ −2 [7]. We saw
previously that any recombination involving cycles is
counter-optimal. Since any counter-optimal recombina-
tion has �DCJ-λ ≥ 2 − 2w ≥ 0, only path recombinations
can have �DCJ-λ < 0.
Although the space of recombinations is not small, some

observations allow us to explore it efficiently. Proposi-
tion 1 shows that the indel-potential increases of one
when the number of runs increases of two. Furthermore,
when we decrease the number of runs of a path by one,
it will decrease the indel-potential only if its initial num-
ber of runs is one or a multiple of two. However, the exact
number of runs does not really matter. In the path recom-
bination analysis, we only have to consider the following
properties for each path:

• whether it is an AA, or a BB, or an AB-path;
• whether it has zero, or an odd or an even number of

runs; and
• whether its first run is in A or in B (by convention,

an AB-path is always read from A to B).

An empty sequence (with no run) is represented by ε.
For the benefit of the reader, for an integer i ≥ 0, let
A (respectively B) be a sequence with odd 2i + 1 runs,
starting and ending with an A-run (respectively B-run).
Similarly, let AB (respectively BA), be a sequence with
even 2i + 2 runs, starting with an A-run (respectively B-
run) and ending with a B-run (respectively A-run). Then
each one of the notations AAε , AAA, AAB , AAAB ≡
AABA, BBε , BBA, BBB , BBAB ≡ BBBA, ABε , ABA, ABB ,
ABAB and ABBA represents a particular type of path (AA,
BB or AB) with a particular structure of runs (ε,A, B,AB
or BA). An example of this notation is given in Figure 5,
which represents a neutral recombination possibly with
�DCJ-λ < 0.
Each type of recombination can lead to different resul-

tants, depending on where the cuts are applied. However,
it is always possible to choose the “best” resultants in each
case: we take the recombination with the smallest �DCJ-λ,
whose resultants can be better reused in further recombi-
nations. The main observations to guide this task are: only

recombinations of paths whose runs are AB or BA have
�λ = −2 and only recombinations of type AA + BB are
optimal and have �DCJ = 0. In Table 1, we list all path
recombinations that can have �DCJ-λ < 0, together with
neutral recombinations that have�DCJ-λ = 1−w ≥ 0, but
produce an AAAB or a BBAB path. We denote by • an AB-
path that never appears as a source of a recombination in
this table (these paths are ABε , ABA and ABB).

The DCJ-indel distance formula By analyzing the
whole universe of operations, we could identify groups
of recombinations, as listed in Table 2. Since some resul-
tants of recombinations can be used in other recombina-
tions, the groups can have more than one recombination.
Groups P , S1 and S2 are composed of a single recombi-
nation, while groups T , N1 and N2 are composed of two
recombinations and groups Q and M are composed of
three recombinations. recombination is not an associative
operation, thus, in column ‘DCJ seq.’ of Table 2, we indi-
cate how the sequence of DCJs must be applied in each
group (the symbol≺ separates preceeding and succeeding
recombinations).
While in groupsQ and T the preceding recombinations

have lower �DCJ-λ, in groups M, N1 and N2 we need
to use operations of type n-1 in order to prepare better
recombinations. Another important observation concern-
ing groupsQ and T is that, although their�DCJ-λ indicate
that Q could be applied for w > 1/4 and T could be
applied for w > 1/3, the last operation of these groups is
of type n-2 and actually increases �DCJ-λ for w ≤ 1/2. For
this reason, we skip groupsQ and T for w ≤ 1/2 (there is
no loss with this approach, since their optimal operations
are then counted in S1).
The deductions shown in Table 2 can be computed

with an approach that greedily maximizes the number
of occurrences in P , Q, T , S1, S2, M, N1 and N2 in
this order. The two groups in Q are mutually exclusive
after maximizing P . The lines in T are subgroups of the
lines in Q, that is, they are only computed when there
are enough remaining components after maximizing Q.
Similarly, each one of the remaining groups are computed
when there are enough remaining components after max-
imizing the upper groups. With the results presented in

Figure 5 Neutral recombination that has�DCJ-λ = 1 − 2w (we represent only the labels of the adjacencies, the cuts of the recombination
are represented by “/” and “\”).
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Table 1 Path recombinations that are used to compute the DCJ-indel distance

Sources Resultants �λ �DCJ �DCJ -λ Sources Resultants �λ �DCJ �DCJ -λ

o-2 AAAB + BBAB • + • −2 0 −2w

n-2 AAAB + AAAB AAA + AAB −2 1 1 − 2w

o-1 AAA + BBAB • + ABAB −1 0 −w n-2 BBAB + BBAB BBA + BBB −2 1 1 − 2w

o-1 BBA + AAAB • + ABBA −1 0 −w n-2 AAAB + ABAB • + AAA −2 1 1 − 2w

o-1 AAB + BBAB • + ABBA −1 0 −w n-2 AAAB + ABBA • + AAB −2 1 1 − 2w

o-1 BBB + AAAB • + ABAB −1 0 −w n-2 BBAB + ABAB • + BBB −2 1 1 − 2w

o-1 AAA + BBA • + • −1 0 −w n-2 BBAB + ABBA • + BBA −2 1 1 − 2w

o-1 AAB + BBB • + • −1 0 −w n-2 ABAB + ABBA • + • −2 1 1 − 2w

n-1 AAA + ABBA • + AAAB −1 1 1 − w n-1 BBA + ABAB • + BBAB −1 1 1 − w

n-1 AAB + ABAB • + AAAB −1 1 1 − w n-1 BBB + ABBA • + BBAB −1 1 1 − w

Recombinations of type o-2 (optimal with �λ = −2), o-1 (optimal with �λ = −1) and n-2 (neutral with �λ = −2) can have �DCJ-λ < 0. Recombinations of type n-1
(neutral with �λ = −1) have �DCJ-λ = 1 − w ≥ 0, but produce an AAAB or a BBAB path.

Table 2 All recombination groups that determine the deductions for computing the DCJ-indel distance

Sources Resultants DCJ seq. �DCJ-λ skip if

P AAAB + BBAB 2 • o-2 −2w

Q 2AAAB + BBA + BBB 4 • 2o-1 ≺ n-2 1 − 4w w ≤ 1
2

2BBAB + AAA + AAB 4 • 1 − 4w

T AAAB + BBA + ABAB 3 • o-1 ≺ n-2 1 − 3w w ≤ 1
2

AAAB + BBB + ABBA 3 • 1 − 3w

BBAB + AAA + ABBA 3 • 1 − 3w

BBAB + AAB + ABAB 3 • 1 − 3w

2BBAB + AAA 2 • +BBB 1 − 3w

2BBAB + AAB 2 • +BBA 1 − 3w

2AAAB + BBA 2 • +AAB 1 − 3w

2AAAB + BBB 2 • +AAA 1 − 3w

S1 AAA + BBA 2 • o-1 −w

AAB + BBB 2 • −w

AAAB + BBA • + ABBA −w

AAAB + BBB • + ABAB −w

BBAB + AAA • + ABAB −w

BBAB + AAB • + ABBA −w

S2 ABAB + ABBA 2 • n-2 1 − 2w w ≤ 1
2

AAAB + ABAB • + AAA 1 − 2w

AAAB + ABBA • + AAB 1 − 2w

BBAB + ABAB • + BBB 1 − 2w

BBAB + ABBA • + BBA 1 − 2w
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Table 2 All recombination groups that determine the deductions for computing the DCJ-indel distance (continued)

AAAB + AAAB AAA + AAB 1 − 2w

BBAB + BBAB BBA + BBB 1 − 2w

M 2ABAB + AAB + BBA 4 • 2n-1 ≺ o-2 2 − 4w w ≤ 1
2

2ABBA + AAA + BBB 4 • 2 − 4w

N1 ABAB + AAB + BBA 2 • +ABBA n-1 ≺ o-1 1 − 2w w ≤ 1
2

ABBA + AAA + BBB 2 • +ABAB 1 − 2w

N2 2ABAB + AAB 2 • +AAA n-1 ≺ n-2 2 − 3w w ≤ 2
3

2ABAB + BBA 2 • +BBB 2 − 3w

2ABBA + AAA 2 • +AAB 2 − 3w

2ABBA + BBB 2 • +BBA 2 − 3w

this section we have an exact formula to compute the
DCJ-indel distance:

Theorem 2. Given two genomes A and B and a positive
indel cost w ≤ 1,

didDCJ (A,B) = dDCJ (A,B) + w
∑

P∈AG(A,B)

λ(P) − 2wP

− (4w − 1)Q − (3w − 1)T
− wS1 − (2w − 1)(S2 + 2M + N1)

− (3w − 2)N2,

where P, Q, T , S1, S2, M, N1 and N2 are computed as
described above.

As we mentioned before, the groups Q and T are
skipped (Q = T = 0) for w ≤ 1/2. Furthermore, we also
have S2 = M = N1 = 0 if w ≤ 1/2 and N2 = 0 if
w ≤ 2/3. Although some groups have reusable resultants,
those are actually never reused (if groups that are lower
in the table use as sources resultants from higher groups,
the sources of all referred groups would be previously con-
sumed in groups that occupy even higher positions in the
table). Due to this fact, the number of occurrences in each
group depends only on w and the initial number of each
type of component.
Observe that, for w = 1, our formula is identical to

the one proposed in [7]. Actually, for any 2/3 < w ≤ 1,
the two formulas are equivalent, since the same occur-
rences of groups of recombinations and an equivalent
upper bound are taken into account.
We illustrate the result of our formula with an example.

Let AG(A,B) have only the following labeled paths: two
AAAB , one BBA and one BBB . In this case, there are no
occurrences of P , thus we have P = 0. If we take w > 1

2 ,

all labeled paths are consumed in one occurrence of Q.
We have Q = 1, while all other values are zero, resulting
in �DCJ-λ = 1 − 4w. On the other hand, if w ≤ 1

2 , we
automatically set Q = T = S2 = M = N1 = N2 =
0. The labeled paths are consumed in two occurrences of
S1, that is, S1 = 2, resulting in �DCJ-λ = −2w. For sure,
−2w ≤ 1 − 4w only if w ≤ 1

2 .

The DCJ-substitution model with distinct operation costs
Now we consider a different model in which substitu-
tions are the content-modifying operations. Recall that
substitutions include indels. Again we assign the cost of
1 to each DCJ and the cost of w ≤ 1 to each sub-
stitution. The DCJ-substitution distance of genomes A
and B, denoted by dsbDCJ (A,B), is then the minimum
cost of a DCJ-substitution sequence that sorts A into B.
If w = 1, this corresponds exactly to the minimum
number of steps required to sort A into B and can be
computed in linear time [8]. Here we present a gen-
eral method to compute the DCJ-substitution distance
for any positive w ≤ 1. Similarly to the approach used
with the DCJ-indel model, we will first use internal
DCJs to obtain a good upper bound and then analyze
recombinations to compute the exact DCJ-substitution
distance.

An upper bound for the DCJ-substitution distance
We can also obtain a good upper bound for the DCJ-
substitution distance by showing how to compute the
DCJ-substitution distance per component. Given a DCJ
operation ρ, let σ0 and σ1 be, respectively, the sum of the
substitution-potentials for the components of the adja-
cency graph before and after ρ, and let �σ(ρ) = σ1 − σ0.
If ρ is an optimal DCJ internal to a single component of
the graph, the definition of substitution-potential implies
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�σ(ρ) ≥ 0. We also have �σ(ρ) ≥ 0, if ρ is counter-
optimal, and �σ(ρ) ≥ −1, if ρ is neutral [8]. We define
�DCJ-σ (ρ) = �DCJ (ρ) + w�σ(ρ).
After DCJ-sorting a component P of AG(A,B), the

remaining labels can be easily sorted with substitutions.
Let dsbDCJ (P) be the DCJ-substitution distance of P, that
is the minimum cost of a DCJ-substitution sequence of
operations sorting P separately. This is given by the fol-
lowing proposition.

Proposition 4. For each P ∈ AG(A,B), dsbDCJ (P) =
dDCJ (P) + wσ(P).

Proof. Analogous to the proof of Proposition 3.

If P is a singleton in AG(A,B), dsbDCJ (P) = w (the indel
of the whole chromosome). A linear cannot be substi-
tuted by a circular singleton and vice-versa. However, a
pair composed by a singleton in genome A and a sin-
gleton in genome B, such that both are linear or both
are circular, can be sorted with one substitution (which
saves one sorting step per pair). Let PLS and PCS be,
respectively, the maximum number of disjoint pairs of
linear and circular singletons in AG(A,B). Together with
Proposition 4, these numbers give a good upper bound for
the DCJ-substitution distance:

Lemma 3. Given genomes A and B and a positive substi-
tution cost w ≤ 1,

dsbDCJ (A,B) ≤ dDCJ (A,B) +w
∑

P∈AG(A,B)

σ (P) − w(PLS + PCS),

where PLS and PCS are the numbers of disjoint pairs of
linear and circular singletons.

Proof. If we sort the components separately we have
dsbDCJ (A,B) ≤ ∑

P∈AG(A,B) dsbDCJ (P), which, according to
Lemma 1 and Proposition 4, corresponds exactly to
dDCJ (A,B) + w

∑
P∈AG(A,B) σ (P).

Recombinations and the exact DCJ-substitution distance
Nowwe also need to analyze the effect of path recombina-
tions, that have �σ(ρ) ≥ −2 [8], in the DCJ-substitution
distance. Here the space of recombinations is even larger,
but can still be efficiently explored. Proposition 2 shows
that the substitution-potential increases of one when the
number of runs increases of four. Furthermore, when we
decrease the number of runs of a path by one, it will
decrease the indel-potential only if its initial number of
runs is one or a multiple of four. Again, the exact num-
ber of runs does not really matter. We have to consider the
following properties for each path:

• whether it is an AA, or a BB, or an AB-path;

• whether it has zero, or a number of runs that is a
multiple of four, or a multiple of four plus 1, or a
multiple of four plus 2, or a multiple of four plus 3; and

• whether its first run is in A or in B (by convention,
an AB-path is always read from A to B).

Recall that an empty sequence (with no run) is rep-
resented by ε. For labeled paths we adopt a different
meaning for A, B, AB, BA: for an integer i ≥ 0, let A
(respectively B) be a sequence with odd 4i+ 1 runs, start-
ing and ending with an A-run (respectively B-run), and
let AB (respectively BA), be a sequence with even 4i + 2
runs, starting with an A-run (respectively B-run) and
ending with a B-run (respectively A-run). Here we still
have some additional cases: let ABA (respectively BAB)
be a sequence with odd 4i + 3 runs, starting and end-
ing with an A-run (respectively B-run), and let ABAB
(respectively BABA), be a sequence with even 4i+4 runs,
starting with an A-run (respectively B-run) and ending
with a B-run (respectively A-run). Then, for each type of
path (AA, BB or AB) with a particular structure of runs
(A, B,AB, BA,ABA, BAB,ABAB, or BABA), we have
a particular notation. An example of this notation is given
in Figure 6, which represents a neutral recombination
with �DCJ-σ = 1 − w.
Again, although each type of recombination can lead

to different resultants, it is always possible to choose the
“best” resultants in each case: we take the recombination
with the smallest �DCJ-σ , whose resultants can be bet-
ter reused. In Table 3, we list all recombinations that can
have �DCJ-σ < 0, together with those that have �DCJ-σ =
1 − w ≥ 0, but produce an AA or a BB-path with runs
ABAB or A or B. We denote by • an AB-path that never
appears as a source in this table (these are all AB paths,
with the exception of ABABAB and ABBABA).

The DCJ-substitution distance formula In Table 4 we
list groups of recombinations, which allow the com-
putation of the exact DCJ-substitution distance, with
an approach that greedily maximizes the number of
occurrences inU ,V ,W ,X1,X2,Y ,Z1 andZ2 in this order.
The two groups inV aremutually exclusive after maximiz-
ing U , while those inW are subgroups of V (they are only
computed when there are enough remaining components
after maximizing V). Similarly, each one of the remaining
groups are computed when there are enough remaining
components after maximizing the upper groups. As pre-
viously observed, the recombination is not associative,
thus the column ‘DCJ seq.’ determines in which order the
sequence of DCJs must be applied in each group. Here
we also need to skip some recombinations depending on
the value of w. In particular, although �DCJ-σ indicates
that W could be applied for w > 1/3 and V for w >

1/4, the last operation of these groups is of type n-2 and
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Figure 6 Neutral recombination that has�DCJ-σ = 1−w (we represent only the labels of the adjacencies, the cuts of the recombination
are represented by “/”).

increases �DCJ-σ for w ≤ 1/2. Groups V and W are
skipped forw ≤ 1/2, and their optimal operations are then
counted in X1.
The recombinations allow us to obtain an exact formula

for the DCJ-substitution distance:

Theorem 3. Given genomes A and B and a positive
substitution cost w ≤ 1,

dsbDCJ (A,B) = dDCJ (A,B) + w
∑

P∈AG(A,B)

σ (P)

− 2wU − (4w − 1)V − (3w − 1)W
− wX1 − (2w − 1)(X2 + 2Y + Z1)

− (3w − 2)Z2 − w(PLS + PCS),

where U , V , W , X1, X2, Y , Z1 and Z2 are computed
as described above and PLS and PCS are the numbers of
disjoint pairs of linear and circular singletons.

Observe that the number of occurrences in each group
depends only on w and the initial number of each
type of component and, for any 2/3 < w ≤ 1,
our formula is equivalent to the one proposed in [8],
since the same occurrences of groups of recombina-
tions and an equivalent upper bound are taken into
account.

Complexity
Both AG(A,B) and dDCJ (A,B) can be computed in linear
time [3]. The occurrences in each recombination group

Table 3 Path recombinations that are used to compute the DCJ-substitution distance

Sources Result. �σ �DCJ �DCJ -σ Sources Result. �σ �DCJ �DCJ-σ

o-1 AAA + BBABAB • + ABABAB −1 0 −w

o-2 AAABAB + BBABAB • + • −2 0 −2w o-1 AAB + BBABAB • + ABBABA −1 0 −w

o-1 AAABAB + BBA • + ABBABA −1 0 −w

o-1 AAABAB + BBB • + ABABAB −1 0 −w

o-1 AAA + BBABA • + • −1 0 −w

o-1 AAB + BBBAB • + • −1 0 −w n-2 AAABAB + AAABAB AAABA + AABAB −2 1 1 − 2w

o-1 AAABA + BBA • + • −1 0 −w n-2 BBABAB + BBABAB BBABA + BBBAB −2 1 1 − 2w

o-1 AABAB + BBB • + • −1 0 −w n-2 AAABAB + ABABAB • + AAABA −2 1 1 − 2w

o-1 AAAB + BBABAB • + • −1 0 −w n-2 AAABAB + ABBABA • + AABAB −2 1 1 − 2w

o-1 AAABAB + BBAB • + • −1 0 −w n-2 BBABAB + ABABAB • + BBBAB −2 1 1 − 2w

o-1 AAAB + BBAB • + • −1 0 −w n-2 BBABAB + ABBABA • + BBABA −2 1 1 − 2w

o-1 AAABA + BBABAB • + • −1 0 −w n-2 ABABAB + ABBABA • + • −2 1 1 − 2w

o-1 AABAB + BBABAB • + • −1 0 −w

o-1 AAABAB + BBABA • + • −1 0 −w n-1 AAA + ABBABA • + AAABAB −1 1 1 − w

o-1 AAABAB + BBBAB • + • −1 0 −w n-1 AAB + ABABAB • + AAABAB −1 1 1 − w

o-1 AAA + BBA • + • −1 0 −w n-1 BBA + ABABAB • + BBABAB −1 1 1 − w

o-1 AAB + BBB • + • −1 0 −w n-1 BBB + ABBABA • + BBABAB −1 1 1 − w

o-1 AAA + BBAB • + • −1 0 −w n-1 AAAB + ABABAB • + AAA −1 1 1 − w

o-1 AAB + BBAB • + • −1 0 −w n-1 AAAB + ABBABA • + AAB −1 1 1 − w

o-1 AAAB + BBA • + • −1 0 −w n-1 BBAB + ABBABA • + BBA −1 1 1 − w

o-1 AAAB + BBB • + • −1 0 −w n-1 BBAB + ABABAB • + BBB −1 1 1 − w

Recombinations of type o-2 , o-1 and n-2 can have �DCJ-σ < 0. Recombinations of type n-1 have �DCJ-σ ≥ 0, but produce an AA or a BB-path with runsABAB orA
or B.
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Table 4 All recombination groups that determine the deductions for computing the DCJ-substitution distance

Sources Resultants DCJ seq. �DCJ-σ skip if

U AAABAB + BBABAB 2 • o-2 −2w

V 2AAABAB + BBA + BBB 4 • 2o-1 ≺ n-2 1 − 4w w ≥ 1
2

2BBABAB + AAA + AAB 4 • 1 − 4w

W AAABAB + BBA + ABABAB 3 • o-1 ≺ n-2 1 − 3w w ≥ 1
2

AAABAB + BBB + ABBABA 3 • 1 − 3w

BBABAB + AAA + ABBABA 3 • 1 − 3w

BBABAB + AAB + ABABAB 3 • 1 − 3w

2AAABAB + BBA 2 • +AABAB 1 − 3w

2AAABAB + BBB 2 • +AAABA 1 − 3w

2BBABAB + AAA 2 • +BBBAB 1 − 3w

2BBABAB + AAB 2 • +BBABA 1 − 3w

X1 AAA + BBABAB • + ABABAB o-1 −w

AAB + BBABAB • + ABBABA −w

AAABAB + BBA • + ABBABA −w

AAABAB + BBB • + ABABAB −w

AAAB + BBABAB • + • −w

AAABAB + BBAB • + • −w

AAAB + BBAB • + • −w

AAABA + BBABAB • + • −w

AABAB + BBABAB • + • −w

AAABAB + BBABA • + • −w

AAABAB + BBBAB • + • −w

AAA + BBA • + • −w

AAB + BBB • + • −w

AAA + BBAB • + • −w

AAB + BBAB • + • −w

AAAB + BBA • + • −w

AAAB + BBB • + • −w

AAA + BBABA • + • −w

AAB + BBBAB • + • −w

AAABA + BBA • + • −w

AABAB + BBB • + • −w

X2 AAABAB + AAABAB AAABA + AABAB n-2 1 − 2w w ≥ 1
2

BBABAB + BBABAB BBABA + BBBAB 1 − 2w

AAABAB + ABABAB • + AAABA 1 − 2w

AAABAB + ABBABA • + AABAB 1 − 2w

BBABAB + ABABAB • + BBBAB 1 − 2w

BBABAB + ABBABA • + BBABA 1 − 2w

ABABAB + ABBABA • + • 1 − 2w
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Table 4 All recombination groups that determine the deductions for computing the DCJ-substitution distance (continued)

Y 2ABABAB + AAB + BBA 4 • 2n-1 ≺ o-2 2 − 4w w ≥ 1
2

2ABBABA + AAA + BBB 4 • 2 − 4w

Z1 ABABAB + AAAB + BBABA 3 • n-1 ≺ o-1 1 − 2w w ≥ 1
2

ABBABA + AAAB + BBBAB 3 • 1 − 2w

ABBABA + AAABA + BBAB 3 • 1 − 2w

ABABAB + AABAB + BBAB 3 • 1 − 2w

ABABAB + AAB + BBABA 3 • 1 − 2w

ABABAB + AABAB + BBA 3 • 1 − 2w

ABBABA + AAA + BBBAB 3 • 1 − 2w

ABBABA + AAABA + BBB 3 • 1 − 2w

ABABAB + AAB + BBA 2 • +ABBABA 1 − 2w

ABBABA + AAA + BBB 2 • +ABABAB 1 − 2w

Z2 2ABABAB + AAB 2 • +AAABA n-1 ≺ n-2 2 − 3w w ≥ 2
3

2ABABAB + BBA 2 • +BBBAB 2 − 3w

2ABBABA + AAA 2 • +AABAB 2 − 3w

2ABBABA + BBB 2 • +BBABA 2 − 3w

depends only on w and the initial components. The runs
are obtained by a single walk through each path, thus the
whole procedure takes linear time for both models.

Establishing the triangular inequality
We have presented two genomic distances that combine
DCJ and content-modifying operations and can be com-
puted in linear time. However, content-modifying oper-
ations are applied to pieces of DNA of any size, and
a side effect of this fact is that the triangular inequal-
ity often does not hold for distances that consider these
operations [4,6-8,12].
LetA, B andC be three genomes, with unequal contents,

and consider, without loss of generality, that didDCJ (A,B) ≥
didDCJ (A,C) and didDCJ (A,B) ≥ didDCJ (B,C). The triangu-
lar inequality is then the property which guarantees that
the inequality didDCJ (A,B) ≤ didDCJ (A,C) + didDCJ (B,C) also
holds. Unfortunately this is not the case for the DCJ-indel
distance, and also not the case for the DCJ-substitution
distance. Take for example the genomes A = {◦abcde◦},
B = {◦acdbe◦} and C = {◦ae◦} [6]. While the cost of sort-
ing A (or B) into C is w (one indel), the minimum number
of DCJs (that are inversions in this case) required to sort
A into B is three. We have didDCJ (A,B) = 3, didDCJ (A,C) =
w, didDCJ (B,C) = w and the triangular inequality is
disrupted.
Denote by A, B, C, D, E , F and G the disjoint sets of

markers such that: A, B or C are the sets of markers that
occur respectively only in genome A, B or C, the markers

in D are common only to genomes A and B, the markers
in E are common only to B and C, the markers in F are
common only to A and C, and, G is the set of markers that
are common to all three genomes A, B and C. These sets
are represented in Figure 7.
When D = ∅, meaning that genomes A and B have no

common marker that does not occur in C, the triangular
inequality holds for both DCJ-indel and DCJ-substitution

Figure 7 The set of markers of each genome is represented by a
circle.
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distances [12]. However, if D �= ∅, the triangular inequal-
ity can be disrupted for didDCJ and dsbDCJ , and this may be an
obstacle if one intends to use these distances to compute
the median of three or more genomes and in phylogenetic
reconstructions.
It is possible to establish the triangular inequality in our

two models a posteriori, by adapting an approach pro-
posed in [12]: we simply sum to each distance a surcharge
that depends on the number of unique markers, as we will
see in the following subsections.
We define the diameter as the maximum distance

between any pair of genomes, usually as a function on the
size of the genomes. We use this definition in the next
results.

Correction for the DCJ-indel distance
For genomes A and B and a positive constant k, let
mid(A,B) = didDCJ (A,B) + k · u(A,B), where u(A,B) is the
number of unique markers between A and B [7,12]. We
then havemid(A,B) = didDCJ (A,B)+k(|A|+|F |+|B|+|E |),
mid(A,C) = didDCJ (A,C) + k(|A| + |D| + |C| + |E |) and
mid(B,C) = didDCJ (B,C) + k(|B| + |D| + |C| + |F |). From
this definition we can derive a simpler inequality that can
be used to determine the value of the constant k:

Proposition 5 (from [12]). Given three genomes A,
B and C without duplicated markers, the inequality
mid(A,B) ≤ mid(A,C) + mid(B,C) holds if, and only if,
didDCJ (A,B) ≤ didDCJ (A,C)+didDCJ (B,C)+2k|D|, whereD is
the set of markers common only to A and B.

The problem now is to find the minimum value of k
for which the inequality of Proposition 5 holds. In order
to accomplish this task, the first step is to determine the
diameter of the DCJ-indel distance.

Lemma 4. Given a positive indel cost w ≤ 1 and two
genomes A and B with n common markers, then

didDCJ (A,B) ≤ (w + 1)n + w(LA + SA + LB + SB),

where LA, SA and LB, SB are, respectively, the number of
linear chromosomes and circular singletons in genomes A
and B.

Proof. Let |P| be the number of vertices in component P,
that is DCJ-sorted with � |P|−1

2 
 DCJs [14]. If |P| is even,
P is sorted with |P|

2 −1 DCJs and λ(P) ≤ |P|
2 +1 indels,

then didDCJ (P) ≤ |P|
2 −1+w(

|P|
2 +1) = (w+1)|P|

2 +w−1. If
|P| is odd, P is sorted with |P|−1

2 DCJs and λ(P) ≤ |P|+1
2

indels, then didDCJ (P) ≤ |P|−1
2 +w |P|+1

2 = (w+1)|P|+w−1
2 . As

w ≤ 1 implies w − 1 ≤ w−1
2 ≤ 0, for any compo-

nent P we have didDCJ (P) ≤ (w+1)|P|+w−1
2 . Then, didDCJ (A,B) ≤

∑
P∈AG(A,B)didDCJ (P) ≤ ∑

P∈AG(A,B)
(w+1)|P|+w−1

2 = w+1
2∑

P∈AG(A,B)|P| + ∑
P∈AG(A,B)

w−1
2 . Each linear chromosome

corresponds to one path in AG(A,B), thus the num-
ber of components is at least (LA + SA + LB + SB) and∑

P∈AG(A,B)
w−1
2 ≤ (LA+SA+LB+SB)(w−1)

2 ≤ 0. Furthermore,
from [12] we know that

∑
P∈AG(A,B) |P| = 2n+LA+SA+

LB+SB.

We are ready to generalize the result of [12], and deter-
mine the minimum possible value of k.

Theorem 4. For any positive indel cost w ≤ 1, the func-
tion mid satisfies the triangular inequality if and only if
k ≥ w+1

2 .

Proof. Recall that, to prove the triangular inequality for
mid, we only need to find a k such that didDCJ (A,B) ≤
didDCJ (A,C) + didDCJ (B,C) + 2k|D| holds (Proposition 5).
We know that the inequality holds when D = ∅ [12].
It remains to examine the case in which D �= ∅. The
worst case would be to have an empty genome C [12]. Let
XA and XB be the number of chromosomes in A and B.
Since C is empty, we know that didDCJ (A,C) = wXA and
didDCJ (B,C) = wXB. From Lemma 4, we have didDCJ (A,B) ≤
(w+1)|D|+w(LA+SA+LB+SB). This gives (w+1)|D|+w(LA+
SA+LB+SB) ≤ w(XA+XB)+2k|D|. Since LA+SA+LB+SB ≤
XA+XB, we have (w+1)|D| ≤ 2k|D|, which holds for any
k ≥ w+1

2 .
For the necessity, take A and B with n common

markers and let each genome be composed of one
circular chromosome, meaning that we have one adja-
cency per common marker in each genome (or n adjacen-
cies per genome). Then let AG(A,B) have one single cycle
with 2n vertices and let each vertex be labeled, so that the
number of runs in the cycle is 2n and the number of
unique markers in each genome is n. Thus, we have
didDCJ (A,B) = (n−1)+w(n+1) = (w+1)n+(w−1) and the cor-
rected distance ismid(A,B) = (w+1)n+(w−1)+2kn. TakeC
as an empty genome, so that didDCJ (A,C) = didDCJ (B,C) = w
and mid(A,C) = mid(B,C) = w+ 2kn. The inequality
mid(A,B) ≤ mid(A,C)+mid(B,C) corresponds to (w+1)n+
(w−1)+2kn ≤ 2w+4kn or, equivalently, 2kn ≥ (w+1)n−w−1,
that is k ≥ w+1

2
(
1 − 1

n
)
, which holds for all n only if

k ≥ w+1
2 .

Correction for the DCJ-substitution distance
Similarly, in the case of the DCJ-substitution distance,
for genomes A and B and a positive constant k′, let
msb(A,B) = dsbDCJ (A,B) + k′ · u(A,B), where u(A,B) is the
number of unique markers between A and B [7,12]. We
then havemsb(A,B) = dsbDCJ (A,B)+k′(|A|+|F |+|B|+|E |),
msb(A,C) = dsbDCJ (A,C) + k′(|A| + |D| + |C| + |E |) and
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msb(B,C) = dsbDCJ (B,C)+k′(|B|+|D|+|C|+|F |). Again, from
this definition we can derive a simpler inequality that can
be used to determine the value of the constant k′:

Proposition 6 (from [12]). Given three genomes A,
B and C without duplicated markers, the inequality
msb(A,B) ≤ msb(A,C) + msb(B,C) holds if, and only if,
dsbDCJ (A,B) ≤ dsbDCJ (A,C) + dsbDCJ (B,C) + 2k′|D|, where D is
the set of markers common only to A and B.

In order to find the minimum value of k′ for which
the inequality of Proposition 6 holds, we need to deter-
mine the diameter of the DCJ-substitution distance, that
is given by the following lemma.

Lemma 5. If A and B are genomes with n common
markers, then

dsbDCJ (A,B) ≤ (w + 2)
2

n + w(LA + SA + LB + SB),

where LA, SA, LB and SB are, respectively, the number of
linear chromosomes and circular singletons in genomes A
and B.

Proof. Let |P| be the number of vertices in component P,
that is DCJ-sorted with � |P|−1

2 
 DCJs [14]. If |P| is even,
then P can be DCJ-sorted with |P|

2 − 1 DCJs. We have to
analyze two cases: (i) if |P| = 4x + 4, then σ(P) ≤ |P|

4 + 1
and dsbDCJ (P) ≤ (

|P|
2 − 1) + w(

|P|
4 + 1) = (w+2)|P|

4 + w − 1;
(ii) if |P| = 4x + 2, then σ(P) ≤ |P|−2

4 + 1 and dsbDCJ (P) ≤
(
|P|
2 −1)+w(

|P|−2
4 +1) = (w+2)|P|

4 + w−2
2 . Asw ≤ 1 implies

w−2
2 ≤ w − 1 ≤ 0. If |P| is odd, then P is an AA- or a BB-

path and can be DCJ-sorted with |P|−1
2 DCJs. Again, we

have to analyze two cases: (i) if |P| = 4x + 3, then σ(P) ≤
|P|+1
4 and dsbDCJ (P) ≤ |P|−1

2 + w(
|P|+1
4 ) = (w+2)|P|

4 + w−2
4 ;

(ii) if |P| = 4x + 1, then σ(P) ≤ |P|+3
4 and dsbDCJ (P) ≤

|P|−1
2 + w(

|P|+3
4 ) = (w+2)|P|

4 + 3w−2
4 . In this last case we

could have dsbDCJ (P) >
(w+2)|P|

4 . Observe however that the
numbers of AA- and BB-paths are bounded, respectively,
by LA and LB. Then, dsbDCJ (A,B) ≤ ∑

P∈AG(A,B)dsbDCJ (P) ≤∑
P∈AG(A,B)

(w+2)|P|
4 + (3w−2)(LA+LB)

4 = w+2
4

∑
P∈AG(A,B)|P| +

(3w−2)(LA+LB)
4 . From [12] we know that

∑
P∈AG(A,B) |P| =

2n+LA+SA+LB+SB. Therefore, dsbDCJ (A,B) ≤ w+2
4 (2n+LA+

SA+LB+SB) + (3w−2)(LA+LB)
4 = (w+2)

2 n + w(LA + LB) +
(w+2)(SA+SB)

4 ≤ (w+2)
2 n + w(LA + LB + SA + SB).

We are ready to generalize the result of [12], and deter-
mine the minimum possible value of k′.

Theorem 5. For any positive substitution cost w ≤ 1, the
function msb satisfies the triangular inequality if and only
if k′ ≥ w+2

4 .

Proof. Recall that, to prove the triangular inequality for
msb, we only need to find a k′ such that dsbDCJ (A,B) ≤
dsbDCJ (A,C) + dsbDCJ (B,C) + 2k′|D| holds (Proposition 6).
We know that the inequality holds when D = ∅ [12]. It
remains to examine the case in which D �= ∅. The worst
case would be to have an empty genomeC [12]. LetXA and
XB be the number of chromosomes in A and B. Since C is
empty, we know that dsbDCJ (A,C) = wXA and dsbDCJ (B,C) =
wXB. From Lemma 5, we have dsbDCJ (A,B) ≤ (w+2)|D|

2 +
w(LA+SA+LB+SB). This gives (w+2)|D|

2 +w(LA+SA+LB+SB) ≤
w(XA+XB)+2k′|D|. Since LA+SA+LB+SB ≤ XA+XB, we
have (w+2)|D|

2 ≤ 2k′|D|, which holds for any k′ ≥ w+2
4 .

For the necessity, take A and Bwith n commonmarkers,
for n even, and let each genome be composed of one cir-
cular chromosome, meaning that we have one adjacency
per commonmarker in each genome (or n adjacencies per
genome). Then let AG(A,B) have one single cycle with 2n
vertices and let each vertex be labeled, so that the num-
ber of runs in the cycle is 2n and the number of unique
markers in each genome is n. Thus, we have dsbDCJ (A,B) =
(n−1)+w(n2 +1) = (w+2)n

2 + (w−1) and the corrected
distance is msb(A,B) = (w+2)n

2 +(w−1)+2k′n. Take C as
an empty genome, so that dsbDCJ (A,C) = dsbDCJ (B,C) = w
and msb(A,C) = msb(B,C) = w+ 2k′n. The inequality
msb(A,B) ≤ msb(A,C)+msb(B,C) corresponds to (w+2)n

2 +
(w−1)+2k′n ≤ 2w+4k′n or, equivalently, 2k′n ≥ (w+22 )n−
w−1, that is k′ ≥ w+2

4 − w+1
2n , which holds for all n only if

k′ ≥ w+2
4 .

Conclusions
In this work we have presented methods to compute in
linear time the DCJ-indel and DCJ-substitution distances
between two genomes without duplicated markers, when
the content-modifying cost is distinct from and upper
bounded by the DCJ cost. Content-modifying operations
can be applied to pieces of DNA of any size, and a side
effect of this property is that the triangular inequality
does not hold for our distance formulas. However we have
shown that an a posteriori correction can be applied to
establish the triangular inequality in both DCJ-indel and
DCJ-substitution distances.
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