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1 Introduction

High energy QCD has reached a mature stage [1–10] and has become the common language

to discuss high energy scattering where the dense system of partons (quarks and gluons) is

produced. The most theoretical progress has been reached in the description of dilute-dense

scattering. The deep inelastic scattering of electron is well known example of such process.

For these processes the non-linear equations that govern such processes, have been derived

and discussed in details [11–21]. The extended phenomenology has been developed based

on these equations1 which describes the main features of the high energy scattering. For

phenomenology the numerical solution to the non-linear equations have been used but it

is important to mention that in two limited cases: deeply in the saturation region [23] and

in the vicinity of the saturation scale [24–26]; the analytical solutions have been suggested

(see ref. [27] where the procedure to incorporate these analytical solutions are suggested

that leads to successful description of HERA data).

In this short paper we re-visit the solution deeply in the saturation region [23]. We

have two motivations for this. First, in the semi-classical approach [28] we obtain a different

solution with the geometric scaling behaviour [29–34] than in ref. [23]. Second, the solution

for heavy ions has not been found for the general BFKL kernel [39, 40] in spite of several

attempts to find it (see refs. [35, 36]).

We start by recalling the derivation of ref. [23]. The non-linear Baslitsky-Kovchegov

equation [11–13] takes the form

∂N01

∂Y
= ᾱS

∫
d2x02

2π

x2
01

x2
02x

2
12

{
N02 +N12 −N02N12 −N01

}
(1.1)

1We refer the recent review (see ref. [22]) which, in our opinion, gives both: the up-to-date status report

on the theoretical development and the discussion of the phenomenological description of the experimental

data in CGC/saturation approach.
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where Nik = N (Y, xik, b) and ᾱS = αSNc/π. In eq. (1.1) we assume that b � xik.

Introducing Nik = 1−∆ik we obtain the following equation for ∆ik:

∂∆01

∂Y
= ᾱS

∫
d2x02

2π

x2
01

x2
02x

2
12

{
∆02∆12 −∆01

}
(1.2)

Deeply in the saturation region x2
01Q

2
s (Y, b) � 1 where Q2

s (Y, b) is the new scale:

saturation momentum. It is equal to (see refs. [1, 24, 25, 37, 38])

Q2
s (Y, b) = Q2

s (Y = 0, b) eᾱSκY with κ =
χ (γcr)

1− γcr
(1.3)

In eq. (1.3)

χ (γcr)

1− γcr
= −dχ (γcr)

dγcr
and χ (γ) = 2ψ (1)− ψ (γ)− ψ (1− γ) (1.4)

χ (γ) is the kernel of the BFKL linear equation [39, 40] where ψ(γ) = d ln Γ (γ) /dγ is the

Euler psi-function (see formula 8.36 of ref. [42]).

Assuming that both x12 and x02 are in the saturation region, i.e. x2
12Q

2
s (Y, b) > 1

and x2
02Q

2
s (Y, b) > 1 we can consider that ∆ik � 1 and neglect the term proportional to

∆02∆12 in comparison with ∆01. Resulting equation takes the form

∂∆01

∂Y
= −ᾱS∆01

∫
d2x02

2π

x2
01

x2
02x

2
12

= − ᾱS
2π

∆01

{
π

∫ x2
01

1/Q2
s

dx2
02

x2
02︸ ︷︷ ︸

x02 � x01

+π

∫ ∫ x2
01

1/Q2
s

dx2
12

x2
12︸ ︷︷ ︸

x12 � x01

}
= −ᾱSz∆01 (1.5)

where we introduce a new variable

z = ln
(
x2

01Q
2
s (Y, b)

)
= ᾱSκY + ξ (1.6)

with ξ = ln
(
x2

01Q
2
s (Y = 0, b)

)
.

One can see that the solution to eq. (1.5) is

∆01 = Const exp

(
− z

2

2κ

)
(1.7)

It should be stressed that this solution shows the geometric scaling behaviour [29–34] being

function of only one variable: z.

This derivation shows two problems that have been mentioned above: we need to

assume that the main contribution in eq. (1.5) stems from the saturation region; and the

answer has a geometric scaling behaviour that contradicts the initial condition for the DIS

with nuclei.

Indeed, at Y = YA for DIS with nuclei we have McLerran-Venugopalan formula for the

imaginary part of the dipole-nucleus amplitude, which takes the following form [3–7, 10]

(see figure 1)

N
(
x2, Y = YA

)
= 1− exp

(
−1

4
x2Q2

s (Y = YA, b) ln

(
1

xΛ

))
(1.8)
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Y = ln(1/x)

2 2
s

z  =  0

Y  = (1/3)ln A
A

pQCD

saturation region

A

Figure 1. Saturation region of QCD. Red line shows the saturation boundary (z=0).

One can see that eq. (1.8) does not reproduce the solution of eq. (1.7) at Y = YA. Compar-

ing eq. (1.8) and eq. (1.7) we see that the geometric scaling behaviour cannot be correct

in the entire saturation region.

2 Equation and solution in the momentum space

2.1 Equation and geometric scaling solution

We re-write the Balitsky-Kovchegov equation of eq. (1.1) in the momentum space intro-

ducing

N
(
x2, b;Y

)
= x2

∫
d2k⊥
2π

ei
~k⊥·~xÑ (k⊥, b;Y ) (2.1)

It takes the form [1, 41]

∂Ñ (k⊥, b;Y )

∂Y
= ᾱS

{
χ

(
− ∂

∂ξ̃

)
Ñ (k⊥, b;Y )− Ñ2 (k⊥, b;Y )

}
(2.2)

where

ξ̃ = ln
(
k2
⊥/Q

2
s (Y = YA, b)

)
and z̃ = ᾱSκ (Y − YA)− ξ̃ = ln

(
Q2
s (Y, b) /k2

⊥
)

(2.3)

The advantage of the non-linear equation in eq. (2.2) that the non-linear term depends

only on external variable and does not contain the integration over momenta. The BFKL

kernel: χ
(
− ∂
∂ξ̃

)
, can be written as the series over positive powers of ∂/∂ξ̃ except of the

first term

1

γ
Ñ (k⊥, b;Y )→

∫ k2
⊥ dk′2⊥
k′2⊥

Ñ
(
k′⊥, b;Y

)
(2.4)

Differentiating eq. (2.2) over ξ̃ one can see that it can be re-written as

∂Ñ ′
ξ̃

(k⊥, b;Y )

∂Y
(2.5)

= ᾱS

{(
χ (γ)− 1

γ

)
Ñ ′
ξ̃

(k⊥, b;Y ) + Ñ (k⊥, b;Y )− 2Ñ ′
ξ̃

(k⊥, b;Y ) Ñ (k⊥, b;Y )

}
where γ = − ∂

∂ξ̃
.
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Introducing the variable z̃ instead of ξ̃ and the new function M as

Ñ ′z̃ (z̃, b;Y ) =
1

2
+M (z̃, b;Y ) or Ñ (z̃, b;Y ) =

1

2
z̃ +

∫ z̃

0
dz̃′M

(
z̃′, b;Y

)
(2.6)

we can re-write eq. (2.5) in the form

ᾱSκ
∂M

(
z̃, b; Ỹ

)
∂z̃

+ ᾱS
∂M

(
z̃, b; Ỹ

)
∂Ỹ

(2.7)

= ᾱS

{(
χ (γ)− 1

γ

)
M
(
z̃, b; Ỹ

)
− z̃M

(
z̃, b; Ỹ

)
−M

(
z̃, b; Ỹ

)∫ z̃

0
dz̃′M

(
z̃′, b; Ỹ

)}
with γ = ∂

∂z̃ and Ỹ = ᾱSY .

We can re-write eq. (2.7) excluding dependence on ᾱS and it takes the form

κ
∂M

(
z̃, b; Ỹ

)
∂z̃

+
∂M

(
z̃, b; Ỹ

)
∂Ỹ

(2.8)

=

(
χ (γ)− 1

γ

)
M
(
z̃, b; Ỹ

)
− z̃M

(
z̃, b; Ỹ

)
−M

(
z̃, b; Ỹ

)∫ z̃

0
dz̃′M

(
z̃′, b; Ỹ

)
.

We are going to find solution inside the saturation region where function M is small

at large z̃. However, we need to re-write eq. (2.8) replacing it by

κ
∂M

(
z̃, b; Ỹ

)
∂z̃

+
∂M

(
z̃, b; Ỹ

)
∂Ỹ

(2.9)

=

(
χ (γ)− 1

γ

)
M
(
z̃, b; Ỹ

)
− (z̃ + λ)M

(
z̃, b; Ỹ

)
+M

(
z̃, b; Ỹ

)∫ ∞
z̃

dz̃′M
(
z̃′, b; Ỹ

)
where

λ =

∫ ∞
0

dz̃′M
(
z̃′, b; Ỹ

)
(2.10)

Neglecting the last term in this equation one can see that we need to solve the following

linear equation

κ
∂M

(
z̄, b; Ỹ

)
∂z̄

+
∂M

(
z̄, b; Ỹ

)
∂Ỹ

=

(
χ (γ)− 1

γ

)
M
(
z̄, b; Ỹ

)
− z̄M

(
z̄, b; Ỹ

)
(2.11)

with γ = ∂
∂z̄ and z̄ = z̃ + λ. Note, that the contribution of the last term is of the order of(

M
(
z̃, Ỹ

))2
�M

(
z̃, Ỹ

)
where M is the solution to eq. (2.11), and can be neglected. On

the other hand, λ ∼ O (1) since the main contribution to this integral stems from z̃′ → 0.

Recall, M (z̃ = 0) = φ0 − 1
2 . Hence, the term λM has to be taken into account. We will

discuss corrections that stem from the last term in eq. (2.9) below in section 3.1.

First we find the geometrical scaling solution which depends only on z̄. In this case

eq. (2.11) takes the form

κ
dM (z̄, b)

dz̄
=

(
χ (γ)− 1

γ

)
M (z̄, b)− z̄M (z̄, b) (2.12)
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The boundary condition for this equation we take

N ′z̃ (z̃ = 0, b) =
1

2
+M (z̃ = 0, b) = φ0(b)� 1 (2.13)

where φ0(b) is the solution to the linear BFKL equation at z̃ = 0. φ0(b) ≤ 1 due to unitarity

constraint and should be small to neglect that non-liner term at z̃ = 0.

Eq. (2.12) can be solved using the Mellin transform

M (z̄, b) =

∫ ε+i∞

ε−i∞

dγ

2πi
eγz̄m (γ, b) (2.14)

where m (γ, b) satisfies the equation:

(κγ − χ (γ) + 1/γ)m (γ, b) =
dm (γ, b)

dγ
. (2.15)

The solution for m (γ, b) takes the following form

m (γ) = exp

(∫ γ

0
dγ′
(
κγ′ − χ

(
γ′
)

+ 1/γ′
))

(2.16)

and taking into account the explicit form of the BFKL kernel given by eq. (1.4) one can

re-write eq. (2.16) in the form

m (γ) = exp
(
κγ2/2− 2ψ(1)γ

)( γΓ(γ)

Γ(1− γ)

)
= exp

(
κγ2/2− 2ψ(1)γ

) Γ(1 + γ)

Γ(1− γ)
(2.17)

Substituting eq. (2.17) into eq. (2.14) we obtain

M (z̄, b) =

∫ ε+i∞

ε−i∞

dγ

2πi
eγz̄+κγ

2/2 Γ(1 + γ)

Γ(1− γ)
(2.18)

where for z̄ we use a new definition: z̄ = z̃ + λ− 2ψ (1).

One can see that in eq. (2.18) we cannot close the contour of integration in γ neither

on the left semi-plane nor on the right one. Introducing γ = iγ̄ we reduce eq. (2.18) to the

form

M (z̄, b) =

∫ +∞

−∞

dγ̄

2π
eiγ̄z̄−κγ̄

2/2 Γ(1 + iγ̄)

Γ(1− iγ̄)
(2.19)

For large z̃ and γ̄ is large about z̃, we can use the approximation

Γ (1 + iγ̄)
γ̄�1−−−→

√
2π|γ̄|

1
2 e−

1
2
π|γ̄| (2.20)

(see formula 8.328 of ref. [42]). Using eq. (2.20), eq. (2.19) takes the form

M (z̄, b) =

∫ +∞

−∞

dγ̄

2π
eiγ̄z̄−κγ̄

2/2 (2.21)

which is equal (see formulae 3.462(3), 9.246 of ref. [42])

M (z̄, b) =
1√
2πκ

e−
z̄2

4κD0

(
− z̄√

κ

)
=

1√
2πκ

e−
z̄2

2κ (2.22)
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where Dn(z) = 2−
1
2
ne−

z̄2

4 Hn(z/
√

2) is the parabolic cylinder function (see formulae 9.24–

9.25 of ref. [42]).

Therefore we reproduce the solution of eq. (1.7). Choosing the coefficient in front of

eq. (2.22) we can easily satisfy the boundary condition of eq. (2.13) which leads to the

solution

M (z̄, b) =

(
φ0 (b)− 1

2

)
e−

z̄2

2κ (2.23)

Actually, eq. (2.23) satisfies the condition M (z̄ = 0) = φ0 (b) − 1
2 instead of M (z̃ = 0) =

φ0 (b)− 1
2 . The correct matching we will make in section 3.3.

2.2 General solution and initial condition at Y = YA

As has been mentioned we are not able to find the geometric scaling solution that satisfy

both initial and boundary conditions given by eq. (1.8) and eq. (2.13). We need to solve

a general eq. (2.11) to find such a solution. We start with re-writing initial condition

of eq. (1.8) for function M (z̃, b;Y ) in momentum representation. Actually, we replace

eq. (1.8) by the simplified formula that looks as follows

N
(
x2, Y = YA

)
= 1− exp

(
−1

4
x2Q2

s (Y = YA, b)

)
= 1− exp

(
−eξ

)
(2.24)

ln
(

1
xΛ

)
in eq. (1.8) plays a very important role for large values of momenta leading to the

correct operator product expansion. However, inside the saturation region where all terms

of the operator product expansion become of the same order, this log does not carry any

significance. On the other hand the simplified formula of eq. (2.24) results in a dramatic

simplification of the calculations which are nevertheless quite cumbersome and tedious. As

one can see below that none of our qualitative results depends on the exact form of the

boundary condition but the exact form of the dividing line in figure 2.

Eq. (2.24) leads to the following initial condition

1

2
+M

(
z̃, b; Ỹ = ỸA

)
=

d

dz̃

∫
d2r

r2
ei
~k·~r
(

1− exp
(
−r2Q2

s

(
b; Ỹ = ỸA

)
/4
))

=
d

dz̃

1

2
Γ0

 k2
⊥

Q2
s

(
b; Ỹ = ỸA

)
 =

d

dz̃

(
1

2
Γ0

(
e−z̃
))

=
1

2
exp

(
−e−z̃

)
M
(
z̃, b; Ỹ = ỸA

)
= −1

2

(
1− exp

(
−e−z̃

))
(2.25)

We solve eq. (2.11) using the double Mellin transform: viz.

M
(
z̄, b; Ỹ

)
=

∫ ε+i∞

ε−i∞

dω

2πi

∫ ε+i∞

ε−i∞

dγ

2πi
eω(Ỹ−ỸA)+γz̄m (ω, γ; b) (2.26)

– 6 –
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For m (ω, γ; b) the equation takes the form2(
ω + κγ − χ (γ) +

1

γ

)
m (ω, γ) =

∂m (ω, γ)

∂γ
(2.27)

Solution to eq. (2.27) can be written in the form

M
(
z̄, Ỹ

)
=

∫ ε+i∞

ε−i∞

dω

2πi
eω(Ỹ−ỸA)

∫ ε+i∞

ε−i∞

dγ

2πi
I (ω) exp

(
ωγ + γz̄ + κγ2/2

) Γ(1 + γ)

Γ(1− γ)
(2.28)

where function I (ω) has to be found from eq. (2.25). At Y = YA eq. (2.25) can be written as

M
(
z̄, Ỹ = ỸA

)
=

∫ ε+i∞

ε−i∞

dω

2πi

∫ ε+i∞

ε−i∞

dγ

2πi
I (ω) exp

(
ωγ + γz̄ + κγ2/2

) Γ(1 + γ)

Γ(1− γ)

=

∫ ε+i∞

ε−i∞

dγ

2πi
J (γ) exp

(
γz̃ + κγ2/2− 2ψ(1)γ + λγ

) Γ(1 + γ)

Γ(1− γ)
(2.29)

One can see that

J (γ) =

∫ ε+i∞

ε−i∞

dω

2πi
eωγI (ω) =

1

2

Γ (1− γ)

Γ (1 + γ)

(
Γ (γ)− 1

γ

)
exp

(
−κγ

2

2
+ 2ψ(1)γ − λγ

)
(2.30)

leads to eq. (2.29). Indeed, substituting eq. (2.30) into eq. (2.29) one obtains eq. (2.25)

closing contour in γ over negative γ-s. For Ỹ > ỸA the solution takes the form3

M
(
z̄, Ỹ

)
=

∫ ε+i∞

ε−i∞

dγ

2πi
J (Y + γ) exp

(
γz̄ + κγ2/2

) Γ(1 + γ)

Γ(1− γ)
(2.31)

=
1

2

∫ ε+i∞

ε−i∞

dγ

2πi
exp

(
γz̃ − γκỸ − 1

2
κỸ 2 + (2ψ(1)− λ)Ỹ

)
Γ (1 + γ)

Γ (1− γ)

×
Γ
(

1− γ − Ỹ
)

Γ
(

1 + γ + Ỹ
) (Γ

(
γ + Ỹ

)
− 1

γ + Ỹ

)

=
1

2
e−

1
2
κỸ 2

∫ ε+i∞

ε−i∞

dγ

2πi
exp

(
−γξ̃ + (2ψ(1)− λ)Ỹ

) Γ (1 + γ)

Γ (1− γ)

×
Γ
(

1− γ − Ỹ
)

Γ
(

1 + γ + Ỹ
) (Γ

(
γ + Ỹ

)
− 1

γ + Ỹ

)

= −1

2
e−

1
2
κỸ 2+(2ψ(1)−λ)Ỹ

∫ ε+i∞

ε−i∞

dγ

2πi
exp

(
−γξ̃

) Γ (1 + γ)

Γ (1− γ)

×
Γ
(
−γ − Ỹ

)
Γ
(
γ + Ỹ

) (
Γ
(
γ + Ỹ

)
− 1

γ + Ỹ

)

= −1

2
e−

1
2
κỸ 2+(2ψ(1)−λ)Ỹ

{
I1

(
Ỹ , ξ̃

)
− I2

(
Ỹ , ξ̃

)}
2We omitted argument b in m (ω, γ; b) since our equations do not depend on b and it enters only through

the initial and boundary conditions.
3For simplicity we use Ỹ = Ỹ − ỸA to the end of this section. We hope that using the same letter Y for

both variables, will not cause any inconvenience.
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Since ξ̃ < 0 we can take the integrals over γ in I1

(
Ỹ , ξ̃

)
and in I2

(
Ỹ , ξ̃

)
closing contours

of integrations on the left semi-plane. In I1

(
ξ̃
)

and I2

(
ξ̃
)

we have two sets of poles:

γ = −n− 1 from Γ (1 + γ) and γ = n− [Ỹ ] where [Ỹ ] is the integer part or floor function

of Ỹ , from Γ
(
−γ − Ỹ

)
. These sets lead to the following contributions to I1

(
Ỹ , ξ̃

)
and to

I2

(
Ỹ , ξ̃

)
:

I1

(
Ỹ , ξ̃

)
= I1

1

(
Ỹ , ξ̃

)
+ I2

1

(
Ỹ , ξ̃

)
;

I1
1

(
Ỹ , ξ̃

)
=
∞∑
n=0

(−1)n

n!

Γ
(
n+ 1− Ỹ

)
Γ (n+ 2)

e(n+1)ξ̃

= eξ̃Γ
(

1− Ỹ
)

1F1

(
1− Ỹ , 2,−eξ̃

)
; (2.32)

I2
1

(
Ỹ , ξ̃

)
= eξ̃Ỹ

[Ỹ ]∑
n=0

(−1)n

n!

Γ
(
n+ 1− Ỹ

)
Γ
(

1− n+ Ỹ
)e−nξ̃; (2.33)

I2

(
Ỹ , ξ̃

)
= I1

2

(
Ỹ , ξ̃

)
+ I2

2

(
Ỹ , ξ̃

)
;

I1
2

(
Ỹ , ξ̃

)
=
∞∑
n=0

(−1)n

n!

Γ
(
n+ 1− Ỹ

)
Γ (n+ 2) Γ

(
Ỹ − n

)e(n+1)ξ̃

= eξ̃
Γ
(

1− Ỹ
)

Γ
(
Ỹ
) 2F1

(
1− Ỹ ,−Ỹ , 2,−eξ̃

)
; (2.34)

I2
2

(
Ỹ , ξ̃

)
= eξ̃Ỹ

[Ỹ ]∑
n=0

(−1)n

n!

Γ
(
n+ 1− Ỹ

)
Γ
(

1− n+ Ỹ
)

Γ (n+ 1)
e−nξ̃; (2.35)

In eqs. (2.32)–(2.35) 1F1 (α, β, t) is the confluent hypergeometric function (another

notation is Φ (α, β, t), see formulae 9.2 of ref. [42]) and 2F1 (α, β, γ, t) is the hypergeometric

function (see formulae 9.1 of ref. [42]).

For matching of this solution with the solution given by eq. (2.23) we need to know

the asymptotic behaviour of eqs. (2.32)–(2.35) at large values of Ỹ . Using Kummer’s

transformation: 1F1 (α, β, t) = et1F1 (β − α, β,−t) we can re-write eq. (2.32) in the form

I1
1

(
Ỹ , ξ̃

)
= eξ̃Γ

(
1− Ỹ

)
exp

(
−eξ̃

)
1F1

(
1 + Ỹ , 2, eξ̃

)
(2.36)

Ỹ�1−−−→ eξ̃ exp
(
−eξ̃

)
Γ
(

1− Ỹ
) ∞∑
n=0

Ỹ n

n!(n+ 1)!
enξ̃

= eξ̃ exp
(
−eξ̃

) Γ
(

1− Ỹ
)

2
√
Ỹ eξ̃

I1

(
2
√
Ỹ eξ̃

)
where I1 (t) is the modified Bessel function of the first kind (see formulae 8.445–8.451 of

– 8 –
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ref. [42]). Using their asymptotic behaviour at large values of the argument we obtain

I1
1

(
Ỹ , ξ̃

)
Ỹ�1−−−→ eξ̃ exp

(
−eξ̃

)
e−Ỹ (ln Ỹ−1) 1√

2π
(

4Ỹ exp
(
ξ̃
))3

exp

(
2

√
Ỹ exp

(
ξ̃
))

(2.37)

We replace eq. (2.33) by the integral, i.e.

I2
1

(
Ỹ , ξ̃

)
→ eξ̃Ỹ

∫ Ỹ

0
dt

Γ
(

1 + t− Ỹ
)

Γ
(

1− t+ Ỹ
)

Γ (1 + t)
e−ξ̃t+iπt (2.38)

The steepest decent method leads to the following contribution

I2
1

(
Ỹ , ξ̃

)
→
√
π
(
Ỹ eξ̃

) 1
2
e−Ỹ ln Ỹ (2.39)

at the saddle point tSP which can be found from the equation

− ln tSP + 2 ln
(
Ỹ − tSP − 1

)
− ξ̃ = 0; tSP = Ỹ −

√
Ỹ e

1
2
ξ̃atỸ � 1 (2.40)

The large Ỹ behaviour of eq. (2.34) can be obtained using the transformation 2F1(α, β, γ, t)

= (1− t)γ−α−β2F1(γ − α, γ − β, γ, t) (see formulae 9.131 of ref. [42])

I1
2 (Ỹ , ξ̃) = eξ̃ Γ(1−Ỹ )

Γ(Ỹ ) 2F1(1− Ỹ ,−Ỹ , 2,−eξ̃) = (1 + eξ̃)1+2Ỹ
2F1(1 + Ỹ , 2 + Ỹ , 2,−eξ̃)

Ỹ�1−−−→
∑∞

n=0
(Γ(Ỹ+n))2

(Γ(Ỹ ))2

(−eξ̃)n
n!(n+1)! = eξ̃e−2Ỹ (ln Ỹ−1) 1

2Ỹ e
1
2 ξ̃
J1

(
2Ỹ e

1
2
ξ̃
)

and knowing the asymptotic representation of Bessel function we get

I1
2 (Ỹ , ξ̃)

Ỹ�1−−−→ 1
2e
ξ̃e−2Ỹ (ln Ỹ−1) 1

(Ỹ e
1
2 ξ̃)

3
2

{
cos
({

8Ỹ e
ξ̃
2 − 3π

}
/4
) [

Γ(7/2)
Γ(−1/2) +O((Ỹ 2eξ̃)−1)

]
− sin

({
8Ỹ e

ξ̃
2 − 3π

}
/4
) [

Γ(9/2)
Γ(−3/2) +O((Ỹ 2eξ̃)−1)

]}
(2.41)

Finally, we replace eq. (2.35) by the integral to estimate the large Y dependence of this

term, i.e.

I2
2

(
Ỹ , ξ̃

)
→ eξ̃Ỹ

∫ Ỹ

0
dt

Γ
(

1 + t− Ỹ
)

Γ
(

1− t+ Ỹ
)

Γ2 (1 + t)
e−ξ̃t+iπt (2.42)

Taking the integral by the steepest decent method in the same way as in eq. (2.41) we

obtain the equation for the saddle point tSP :

− 2 ln tSP + 2 ln
(
Ỹ − tSP − 1

)
− ξ̃ = 0; tSP =

Ỹ − 1

1 + e
1
2
ξ̃

(2.43)
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Y

z
~McLerran−Venugopalan initial  conditions

M
(Y

, 
z
 =

 0
) 

=
 C

o
n

s
t

~

Geometric scaling solution

Solution without geometric scaling

Figure 2. Saturation region: two domains in which there is the geometric scaling behaviour of the

solution and there is no such behaviour. The border red line is eq. (2.45).

and

I2
2

(
Ỹ , ξ̃

)
→

√√√√√π(Ỹ − 1)e
1
2
ξ̃

4
(

1− eξ̃
) e

−2Ỹ ln Ỹ+Ỹ ξ̃ e
1
2 ξ̃

1+e
1
2 ξ̃ (2.44)

Comparing eq. (2.37), eq. (2.39), eq. (2.41) and eq. (2.44) we see that at large values

of Ỹ solutions of eq. (2.23) and of eq. (2.31) match each other on the line ξ̃ = − ln Ỹ which

can be translate as the line in (Y, z̃) plane (see figure 2):

z̃ = ᾱSκY + ln Ỹ (2.45)

3 Matching two solutions: at small z̃ and at large z̃

3.1 Corrections at large z̃

In this section we are going to find the first correction to the non-linear equation (see

eq. (2.9)) deeply in the saturation region where we expect that solution has a geometric

scaling behaviour, or in other words, it is a function of z̃. One can see that the equation for

first correction takes the following form after substituting M = M (0) +M (1) into eq. (2.9):

κ
dM (1) (z̄)

dz̄
=

{
χ (γ)− 1

γ

}
M (1) (z̄)− z̄M (1) (z̄) +M (0) (z̄)

∫ ∞
z̄

dz̄′M (0)
(
z̄′
)

(3.1)

where λ =
∫∞

0 M (0) (z̃′) dz̃′ = A
√

πκ
2 .

In eq. (3.1) M (0) is the solutions to eq. (2.12) that takes the form

M (0) (z̄) = A exp
(
−z̄2/ (2κ)

)
(3.2)

which we will use below. It should be noted that A < 0 due to unitarity constraints; and

eq. (2.23) for A was derived from the matching of this solution at z̃ = 0. Here, we wish to

suggest a better procedure for matching.

– 10 –
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After taking the integral the last term of eq. (3.1) can be reduced to the form

M (0) (z̄)

∫ ∞
z̄

dz̄′M (0)
(
z̄′
)

= M (0) (z̄)A

√
πκ

2
Erfc

(
z̄√
2κ

)
z�1−−−→ A2κ

z̄
e−

z̄2

κ (3.3)

Using the Mellin transform of eq. (2.14) we obtain eq. (3.1) in the form:(
κγ − χ (γ) +

1

γ
+ λ

)
m(1) (γ) =

dm(1) (γ)

dγ
+ 2A2

√
πκ

γ
eκγ

2/4. (3.4)

The solution to eq. (3.4) takes the form (see ref. [43, 44])

m(1) (γ) = m(0) (γ)A2

∫ ∞
γ

dγ′

m(0) (γ′)

√
πκ

γ′
eκγ

′2/4

= m(0) (γ)A2√πκ
∫ ∞
γ

dγ′

γ′
Γ (1− γ′)
Γ (1 + γ′)

e−κγ
′2/4 (3.5)

where m(0) is given by eq. (2.17). As has been discussed in the integral of eq. (2.14) we

expect that large γ’s will be essential. In eq. (3.5) the typical dγ′ ∼ 1/
√
κ� γ and we can

replace this integral by

m(1) (γ) = 2m(0) (γ)A2√πκΓ (1− γ)

Γ (1 + γ)

∫ ∞
γ

dγ′

γ′
e−κγ

′2/4

= −2m(0) (γ)A2√πκΓ (1− γ)

Γ (1 + γ)
Ei
(
−κγ2/4

)
(3.6)

See ref. [42]: formula 3.352(2) for the last integration and formula 8.21 for the exponential

integral E (x). For large γ eq. (3.6) takes the form

m(1) (γ) = m(0) (γ)A2√πκΓ (1− γ)

Γ (1 + γ)

4

κγ2
exp

(
− κγ2/4

)
(3.7)

Plugging eq. (3.7) in eq. (2.14) we obtain M (1) (z̄) in the form

M (1) (z̄) = A2 4
√
πκ

κ

∫ ε+i∞

ε−i∞

dγ

2πi

1

γ2
eγz̄+

κγ2

4

= −A2e−z̄
2/2κD−2

(
z̄

√
2

κ

)
z̄�1−−−→ −A2 κ

z̄2
e−z̄

2/κ (3.8)

where Dp (z) is the parabolic cylinder function (see formulae 9.24–9.25 of ref. [20]).

3.2 Corrections at small z̃

In the region of small z̃ we can solve eq. (2.2) for the amplitude N (z̃) noting that the

geometric scaling solution to the BFKL equation occurs at γ = γcr. In the vicinity of the

saturation scale the linear BFKL equation can be simplified and replaced by

dÑ (z̃)

dz̃
= (1− γcr) Ñ (z̃) (3.9)

– 11 –
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One can see that this equation leads to Ñ (z̃) ∝ exp ((1− γcr)z̃). The solution to the BFKL

equation with full kernel in the vicinity of the saturation scale takes the form [24–27]

Ñ (z̃;Qs (Y )) = φ0e
(1−γcr)z̃ exp

(
− z̃2

2
χ′′
γγ(γcr)

κ ln (Q2
s (Y ) /Q2

s (0))

)
(3.10)

Therefore, we can trust eq. (3.9) only for

z̃ �

√
2
χ′′γγ (γcr)

κ
ln (Q2

s (Y ) /Q2
s (0)) = 9.9

√
Y (3.11)

For such z̃ the non-linear equation (see eq. (2.2)) can be re-written in the form

κ
dÑ (z̃)

dz̃
= κ (1− γcr) Ñ (z̃)− Ñ2 (z̃) (3.12)

The solution to this equation that satisfies the initial condition Ñ (z̃ = 0) = N0 takes

the following form

Ñ (z̃) =
κ (1− γcr)N0

N0 − (N0 − κ (1− γcr)) e−(1−γcr)z̃
(3.13)

As we will discuss in the next subsection the scattering amplitude in the coordinate

space is equal to

N (z) = 2
dÑ (z̃)

dz̃

∣∣∣
z̃=z

= −2
κ (1− γcr)2 (N0 − κ (1− γcr))N0e

−(1−γcr)z(
N0 − (N0 − κ (1− γcr)) e−(1−γcr)z

)2 (3.14)

We will use this equation in the matching procedure described below in the next section.

3.3 Matching procedure

In this subsection we would like to discuss matching of two solutions at small and large z̃.

First, we calculate the scattering amplitude of two dipoles in the coordinate representation

where we know that at large z this amplitude N (z)→ 1.

From eq. (2.1) we see that

2πÑ (k⊥, b;Y ) = 2π

∫
xdx

J0 (k⊥x)

x2
N (x, b;Y ) (3.15)

The main contribution to the integral over x stems from k⊥x ≤ 2.4, where 2.4 is the zero

of J0 (k⊥x) (J0 (k⊥x = 2.4) = 0), and therefore, we can replace the integral by

Ñ (k⊥, b;Y ) =
1

2

∫ 2.42

k2
⊥

0

dx2

x2
N (x, b;Y ) =

1

2

∫ ln(2.42/k2
⊥)

−∞
d lnx2N

(
x2, b, Y

)
(3.16)

or

N (x, b, Y ) = 2
dÑ (k⊥, b;Y )

d ln(2.42/k2
⊥)

∣∣∣
x=2.4/k⊥

(3.17)
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Figure 3. The scattering amplitude N (z) in the coordinate representation: (figure 3-a) matching

of two solutions: N (z) at z < 1 ( dashed black b line) and N (0) (z) z � 1( solid blue line) and

(figure 3-b) matching of two solutions: N (z) at z < 1 ( dashed black line) and N (1) (z) z � 1( solid

red line). The ratio M (1) (z) /M (0) (z) is shown in figure 3-c. The value of A is chosen to be equal

to 0.69 for figure 3-a and A=0.65 for figure 3-b. The vertical line marks zm = 3.5, for z > zm the

corrections due to M (1) are small (less 30%), while for z < zm the non-linear contributions to the

amplitude is less than 30% (see figure 3-f where the ratio of the contribution proportional to N2 (z)

to the contribution proportional to N (z) is shown). Figure 3-d and figure 3-e show the resulting

amplitude due to the matching procedure presented in figure 3-a and figure 3-b . The value of N0

is chosen to be equal 0.1 in the picture and z = ln
(
x2Q2

s/ (2.4)
2
)

.

For the solution with the geometric scaling behaviour eq. (3.17) takes the form

N (z) = 2
dÑ (z̃)

dz̃

∣∣∣
z=z̃

(3.18)

Note, that in eq. (3.18) we redefined z as z = ln
(
x2Q2

s/(2.4)2
)

including factor 2.42 in

comparison with eq. (1.6). It should be noted that in McLerran-Venugopalan formula

(eqs. (1.8) and (2.24)) z is defined as z = ln
(
x2Q2

s/4
)

.

Bearing eq. (3.18) in mind we can formulate the matching procedure in the following

way

Nz<1 (zm, N0) = N
(0)
z�1 (zm, A) = 1 + 2M (0) (zm, A)

dNz<1 (zm, A)

dz
=
dN

(0)
z�1 (zm, A)

dz
= +2

dM (0) (zm, A)

dz
(3.19)

where we denote Nz<1 the solution for small z while Nz�1 is the solution at large z.

One can see from figure 3-a that we cannot find the solution to both eq. (3.19), but

the second equation in eq. (3.19) is almost satisfied. Actually, this matching supports

the approach developed in ref. [27]. From figure 3-b one can see that the next to leading

– 13 –
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corrections at large z drastically change the situation leading to the fact that both equations

of eq. (3.20) are satisfied.

Nz<1 (zm, N0) = N
(1)
z�1 (zm, A) = 1 + 2M (0) (zm, A) + 2M (1) (zm, A) ;

dNz<1 (zm, N0)

dz
=
dN

(1)
z�1 (zm, A)

dz
= 2

d
(
M (0) (zm, A) +M (1) (zm, A)

)
dz

(3.20)

It is interesting to note that the solution to eq. (3.20): zm = 3.5 and A = 0.65,

gives such values of these parameters that matching occurs in the region where the

next-to-leading corrections to asymptotical contribution (M (1)) is less or about of 30%

(M (1) (zm) /M (0) (zm) ≤ 0.3). On the other hand the non-linear corrections are not large

(<30%) and we can trust the simplified eq. (3.12), since zm satisfies eq. (3.10) even at

Y = 1.

In general we consider this matching as a strong argument for the procedure suggested

in ref. [27] for finding the approximate solution of the non-linear equation which is suited

for phenomenology.

4 Conclusions

In this paper we show that at large z the solution to Balitsky-Kovchegov equation takes

the following form

N (z) = 1−A exp

−
(
z +A

√
κπ/8− 2ψ(1)

)2

2κ

 (4.1)

which is the same as solution given in ref. [23] at z � 1. However, the asymptotic behaviour

of the solution depends on different variable z + A
√
κπ/8 − 2ψ(1) while the solution at

small z in the vicinity of the saturation scale is determined by z. This observation, we

believe, is essential for understanding the matching of the solutions at small and large

z and for searching the solution for intermediate z. We would like to note again that

z = ln
(
x2Q2

s/(2.4)2
)
.

We found the solution in the entire kinematic region at large z which satisfies the

McLerran-Venugopalan initial condition in the simplest form of eq. (2.24). This problem

has been discussed in refs. [35, 36] in the case of simplified kernels but here we give the

solution for the full BFKL kernel. The fact that we use eq. (2.24) instead of eq. (1.8) does

not change our conclusion that the saturation region has to be divided in two: the first

with the geometric scaling behaviour for large values of Y and the second where we do

not expect the geometric scaling behaviour. The dividing line depends on the boundary

conditions and it is given in the paper for eq. (2.24). It should be mentioned that eq. (2.24)

is widely used in the phenomenological applications [22].

The next-to-leading in the region of large z has been calculated and it is demonstrated

that this correction change crucially the matching with the solution in the vicinity of the

saturation scale.

We hope that this paper will be useful for finding general features of the behaviour of

the dipole scattering amplitude in the saturation region.
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