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Abstract

Background: Tuberculosis (TB) is a respiratory tract disease caused by Mycobacterium tuberculosis infection. M.
tuberculosis exploits immune privilege to grow and divide in pleural macrophages. Fibrates are associated with the
immune response and control lipid metabolism through glycolysis with β-oxidation of fatty acids.

Results: In this study, we investigated the effect of fibrate pretreatment on the immune response during M.
smegmatis infection in U937 cells, a human leukemic monocyte lymphoma cell line. The protein expression of
tumor necrosis factor α (TNF-α), an inflammatory marker, and myeloid differentiation primary response gene 88
(MyD88), a toll like receptor adaptor molecule, in the infected group increased at 1 and 6 h after M. smegmatis
infection of U937 cells. Acetyl coenzyme A acetyl transferase-1 (ACAT-1), peroxisome proliferator-activated receptor-α
(PPAR-α), TNF-α, and MyD88 decreased in U937 cells treated with fibrates at 12 and 24 h after treatment. More than a
24 h pretreatment with fibrate resulted in similar expression levels of ACAT-1 and PPAR-α between infected vehicle
control and infected groups which were pretreated with fibrate for 24 h. However, upon exposure to M. smegmatis,
the cellular expression of the TNF-α and MyD88 in the infected groups pretreated with fibrate for 24 h decreased
significantly compared to that in the infected vehicle group.

Conclusion: These results suggest that fibrate pretreatment normalized the levels of inflammatory molecules in
Mycobacterium smegmatis-infected U937 cells. Further studies are needed to confirm the findings on pathophysiology
and immune defense mechanism of U937 by fibrates during M. tuberculosis infection.
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Background
Mycobacterium tuberculosis causes tuberculosis (TB) in-
fection, a disease which kills two million people every
year [1-3]. Phagocytosis of M. tuberculosis by alveolar
macrophages results in the accumulation of oxidized
low-density lipoproteins which provides immune privil-
ege to the pathogen. M. tuberculosis exists inside a
granuloma, a hallmark of TB. However, the underlying
mechanism of TB pathogenesis is not fully understood
[4-6]. Because M. tuberculosis is highly infectious and
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research on the mechanism of TB infection has generally
been performed using alternative mycobacterium species
such as M. smegmatis, M. bovis, Bacillus calmette-guerin
(BCG) or M. marinum [7-10]. Detection of mannose-6-
phosphate isomerase class I (ManA) and methionine
amino peptidase (MetAP) using polymerase chain reac-
tion (PCR) has been performed to diagnose mycobac-
teria infection in macrophages [4,11-13]. Furthermore,
ManA [14] and MetAP [12] from M. tuberculosis have
been regarded as promising antituberculosis targets.
Fibrates affect lipid and lipoprotein metabolism through
activating transcription factors including peroxisome
proliferator-activated receptor-α (PPAR-α) [15]. About
80 fibrate substances are synthesized from dehydrocholic
acid, phenylethyl acetic acid, and other acetic acids and
studies have shown the effects of hypocholesterolemia in
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both humans and rats [16-19]. Several fibrates have been
developed, including bezafibrate, fenofibrate, and gemfibro-
zil. Fenofibrate and gemfibrozil have been used in North
America and bezafibrate and ciprofibrate in Europe. The
direct effect of fibrates on TB infection have not been stud-
ied well. Among fibrates, it was reported that gemfibrozil, a
commonly prescribed hypolipidemic drug, blocked TB
growth by inhibiting enoyl reductase [20] and bezafibrate
differentiates human myeloid leukemia cells [21].
PPAR-α belongs to the large PPAR nuclear receptor

superfamily and forms a heterodimer with the 9-cis-
retinoic acid receptor (RXR) to bind to the peroxisome
proliferator response element complex, which is a tran-
scriptional regulatory element controlling lipid and
carbohydrate metabolism with hypolipidemic effects
[22-25]. In addition, PPAR-α is involved in endothelial
dysfunction, myocardial ischemic injury, and immune-
inflammatory responses in cells [26]. Cholesterol levels
of host cells have an effect on TB infection, as a high
level of cholesterol in the diet contributes to increase in
TB infection rate [16,18,19]. In addition, TB is known
to aggress upon host cells via cholesterol-rich mem-
brane microdomains [2,3,27]. Despite the possible mu-
tual link between TB and PPAR-α via lipid metabolism,
the direct involvement of PPAR-α in TB pathogenesis is
still obscure.
In the case of bacterial infection including TB, several

immune response factors, such as nuclear factor kappa
beta (NF-κB) and tumor necrosis factor-α (TNF-α) in
human monocytes, play important roles in innate im-
munity and function, leading to migration of NF-κB into
the nucleus by immune signal transduction via TLR2
[28,29]. Especially, TNF-α is involved at multiple steps in
immune response toM. tuberculosis [30]. In addition, mye-
loid differentiation primary response gene 88 (MyD88) is
important for triggering macrophage effector mechanisms
against M tuberculosis [31]. PPAR-α activator, gemfibrozil,
has shown the inhibitory effect of TNF-α partly by antag-
onizing NF-κB in neonatal rat cardiac myocytes [32].
M. smegmatisU937

Figure 1 Mycobacterium smegmatis infection analysis performed by p
(ManA) and methionine amino peptidase (MetAP) bands were detected us
smegmatis-infected U937 cells. B.
Acetyl coenzyme A acetyl transferase-1 (ACAT-1) is a
mitochondrial enzyme that participates in the degrad-
ation and formation of ketone bodies, and synthesis of
acetoacetyl-CoA using two acetyl-CoAs [5,6,33,34].
Acetoacetyl-CoA is converted to cholesterol in the early
cholesterol biosynthetic pathway [8-10,35,36]. Despite
the possible mutual link between TB and ACAT-1 via
lipid metabolism, the direct involvement of ACAT-1 in
TB pathogenesis is still obscure.
In this study, we intended to investigate the impact of

fibrates treatment on M. smegmatis infected cells, and
observed that pretreatment of differentiated U937 cells
with fibrate affects the expression of PPAR-α, which is a
target receptor of fibrates, myeloid differentiation pri-
mary response gene 88 (MyD88), which participates in
the immune response, and acetyl coenzyme A acetyl
transferase-1 (ACAT-1), which participates in TNF-α ac-
tivation and early cholesterol pathway, consequently alle-
viated infection by M. smegmatis in macrophages.

Results
Identification of M. smegmatis infection
The U937 cells differentiated by PMA were exposed to M.
smegmatis to identify the infection. After lysis of differen-
tiated U937 cells, the collected genomic DNA was used
with a specific primer designed for mannose-6-phosphate
isomerase class I (ManA) and methionine amino peptid-
ase (MetAP), which are both specifically expressed in M.
smegmatis. ManA and MetAP bands were observed, and,
thus, M. smegmatis infection in the U937 cells was con-
firmed (Figure 1).

Differential expression of ACAT-1, PPARα, TNF-α, and
MyD88 in U937cells infected with M. smegmatis
Western blotting was performed to identify the effect of M.
smegmatis infection in U937 cells by examining the expres-
sion of ACAT-1, PPARα, TNF-α, and MyD88 (Figure 2).
The expression level of ACAT-1 in the infected group was
significantly different at 12 h after infection compared to
M. smegmatis-
infected U937
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Figure 2 Fibrate pretreatment affects acetyl coenzyme A acetyl transferase-1 (ACAT-1), peroxisome proliferator-activated receptor-α
(PPAR-α), tumor necrosis factor-α (TNF-α), and myeloid differentiation primary response gene 88 (MyD88) expression patterns in U937
cells. (A) The expression patterns of various factors at 12 h or 24 h are shown after treatment with fibrates. The expression patterns associated
with all factors decreased after 12 h and 24 h compared with those in the untreated control. β-actin was used as the loading control. (B)
Each protein density of fibrate-treated cells were normalized to that of untreated vehicle cells. Each result represents the mean ± SD of three
experiments. Significance was calculated as *p value < 0.05 compared to the control by Student’s unpaired t-test. Beza, bezafibrate; Feno,
fenofibrate; Gem, gemfibrozil.
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that of the non-infected vehicle control (ACAT-1, 1 h in-
fection; 1.05 ± 0.05, p > 0.01, 6 h infection; 1.12 ± 0.07,
p > 0.01, 12 h infection; 1.42 ± 0.05 p < 0.05, 24 h in-
fection; 1.18 ± 0.19, p > 0.05), whereas PPAR-α expression
decreased slightly at 1 h after M. smegmatis infection
(PPAR-α, 1 h infection; 0.85 ± 0.02, p < 0.05, 6 h infection;
1.12 ± 0.10, p > 0.05, 12 h infection; 0.99 ± 0.03, p > 0.05,
24 h infection; 1.02 ± 0.06, p > 0.05) and increased at 6 h
after M. smegmatis infection. TNF-α expression increased
by about 30% at 6 h and then decreased to normal expres-
sion levels at 24 h. (TNF-α, 1 h infection; 1.01 ± 0.07,
p > 0.05, 6 h infection; 1.27 ± 0.13, p < 0.05, 12 h infection;
1.05 ± 0.05, p > 0.05, 24 h infection; 1.07 ± 0.09 p > 0.05)
MyD88 expression increased significantly at 1, 6, and
12 h after M. smegmatis infection. (MyD88, 1 h infec-
tion; 1.44 ± 0.08, p > 0.05, 6 h infection; 1.47 ± 0.04, p < 0.01,
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12 h infection; 2.14 ± 0.12, p < 0.01, 24 h infection;
1.18 ± 0.19, p > 0.05).

Expression of ACAT-1, PPAR-α, TNF-α, and MyD88 after
U937 cell pretreatment with fibrates
Bezafibrate, fenofibrate, and gemfibrozil were selected
among the commonly available fibrates to study their
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Figure 3 Fibrate pretreatment affects acetyl coenzyme A acetyl trans
(PPAR-α), tumor necrosis factor-α (TNF-α), and myeloid differentiation
cells. (A) The expression patterns of various factors at 12 h or 24 h are sho
with all factors decreased after 12 h and 24 h compared with those in the
protein density of fibrate-treated cells were normalized to that of untreated ve
Significance was calculated as *p value < 0.05 compared to the control by Stud
effects on differentiated U937 cells. Western blotting was
used to identify ACAT-1, which participates in early chol-
esterol synthesis, PPAR-α, which is a fibrate receptor,
TNF-α, which is a inflammatory cytokine, and MyD88,
which is a promoter of signal transduction for TB and
binds to the Toll like receptor 2 (TLR2) membrane pro-
tein (Figure 3). ACAT-1, PPAR-α, and TNF-α expression
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levels decreased about 15–35% compared with that in the
vehicle control following treatment with bezafibrate, feno-
fibrate, or gemfibrozil. MyD88 in U937 cells treated with
fibrates decreased by about 50% compared with that in
the control group, and the decrease was generally main-
tained for 24 h or more.

The effect of fibrate pretreatment on ACAT-1, PPARα,
TNF-α, and MyD88 protein expression in U937 cells
infected by M. smegmatis
ACAT-1 protein expression in the infected group in-
creased slightly at 6 h after infection compared to that
in the non-infected vehicle control, but the difference
was not significant. PPAR-α protein expression was also
not significantly different between the infected and ve-
hicle control groups and the fibrate pretreated group.
However, TNF-α protein expression decreased about

50% in the bezafibrate, 55% in the fenofibrate, and 25%
in the gemfibrozil treated groups compared with that in
the non-infected vehicle control group at 1 h after infec-
tion. At 6 h, the TNF-α had decreased about 35% in the
bezafibrate, 40% in the fenofibrate, and 25% in the gem-
fibrozil treated cells (1 h infection: 24 h bezafibrate treat-
ment; 0.49 ± 0.13, p < 0.01, 24 h fenofibrate treatment;
0.44 ± 0.12, p < 0.01, 24 h gemfibrozil treatment; 0.75 ±
0.13, p < 0.05, 6 h infection: infected control; 1.26 ± 0.12,
p < 0.05, 24 h bezafibrate treatment; 0.65 ± 0.17, p < 0.05,
24 h fenofibrate treatment; 0.58 ± 0.15, p < 0.01, 24 h
gemfibrozil treatment; 0.74 ± 0.13, p < 0.05).
MyD88 increased in infected cells (Figure 4, panels a

and b, lane 2) compared with that in the non-infected
vehicle control group, whereas the protein level was not
different in fenofibrate and gemfibrozil treated cells
compared to that in the non-infected vehicle control at
1 and 6 h, respectively. MyD88 expression in the bezafi-
brate treated group was not significantly different com-
pared to that in the vehicle control group at 1 h; however,
it decreased to the non-infected vehicle control level at 6 h
(1 h infection: infected vehicle control; 2.17 ± 0.20, p < 0.01,
24 h bezafibrate treatment; 2.00 ± 0.04, p < 0.01, 6 hr infec-
tion: infected vehicle control; 2.52 ± 0.19, p < 0.01)
(Figure 4).

Discussion
Tuberculosis is an infectious disease caused by M. tuber-
culosis that grows and divides in pleural macrophages.
Fibrates are associated with the immune response and
control of the intracellular lipid metabolism. In this study,
we investigated the effect of fibrate pretreatment on the
immune response during M. smegmatis infection in the
U937 human leukemic monocyte lymphoma cell line. Our
results suggest that fibrate pretreatment reduced the in-
flammatory stresses in M. smegmatis-infected U937 cells
through a PPAR-α independent pathway.
ManA belongs to phosphomannose isomerase and is
encoded by the ManA gene, which interconverts fructose-
6-phosphate and mannose-6-phosphate [4]. Methionine
amino peptidase is encoded by the MetAP gene and de-
letes the N-terminal methionine from polypeptides during
protein synthesis in eukaryotes and prokaryotes [7]. Genes
of both enzymes were found in M. smegmatis [4,11]. In
this study, M. smegmatis was collected from U937 cells
exposed to M. smegmatis to confirm infection. The gen-
omic DNA was then used in a PCR reaction with ManA
and MetAP specific primers. Bands appeared at the same
size as the control group; thus, confirming infection by M.
smegmatis (Figure 1).
The effect of M. smegmatis infection on target protein

expression in U937 cells was identified by Western blot.
The expression of ACAT-1, TNF-α, PPAR-α, and MyD88
increased (Figure 2). Especially, the expression of MyD88,
which binds to TLR2, a receptor of Mycobacterium spp.
[29], markedly increased in M. smegmatis–infected U937
cells (Figure 2). Inflammatory responses to M. smegmatis
infection could be predicted in U937 cells due to the ele-
vated expression of TNF-α and MyD88.
Western blotting was performed using ACAT-1 anti-

bodies on fibrate-treated U937 cells to examine the ef-
fect of bezafibrate, fenofibrate, and gemfibrozil on U937
cells (Figure 3). ACAT-1 participates in the degradation
and formation of ketone bodies and cholesterol biosyn-
thetic pathway [35,36]. ACAT-1 protein expression was
suppressed in fibrate pretreated U937 cells, which may
represent increased lipid β-oxidation, and both choles-
terol and ketone body synthesis were inhibited (Figure 3).
However the ACAT-1 expression pattern did not change
following M. smegmatis infection (Figure 4). Our results
indicate that the M. smegmatis infection mechanism has
no relationship with the cholesterol and ketone body
synthetic pathway.
Fibrates are known to inhibit lipid synthesis and lipid

metabolism via activation of PPAR-α [15,37,38] and effect
of lipid metabolism during TB infection has been reported
in numerous studies [16,18,19,27]. Phagocytosis control,
enabled by control of other lipid metabolism, can inhibit
infection. The effects of fibrates, which are PPAR-α ago-
nists, on PPAR-α expression in M. smegmatis-infected
U937 cells was investigated. Their expression patterns
were not so different under fibrate pretreatment; thus, the
effect of PPAR-α signaling on the infection mechanism
was unclear (Figure 4). Because it was reported and hy-
pothesized that gemfibrozil blocked TB by inhibiting enoyl
reductase [20] or by regulating cholesterol metabolism via
RORγ inhibition in macrophages [39], other targets or
mechanism of fibrates except for PPAR-α could be
deduced.
The cells were pretreated with fibrates for 24 h prior

to exposure to M. smegmatis for 1 or 6 hours to examine
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the effect of fibrate pretreatment on M. smegmatis infec-
tion in U937 cells. Western blotting was used to observe
changes in the expression of inflammatory protein,
MyD88 and TNF-α. Fibrate-treatment resulted in down-
regulation of MyD88 and TNF-α expression at 1 and 6 h
after infection in U937 cells (Figure 4). MyD88 is a mes-
senger of TLR signaling during a TB infection [17,29]
and TNF-α is important in the macrophage infection
mechanism via TB phagocytosis [40-42]. It was reported
that fibrates could target membrane isoprenoid quinones
and could show toxicity in M. tuberculosis [43], possibly
resulting in the reduction of the burden of infection and
inflammation. Since TNF-α and MyD88 have been
regarded as a critical component of the inflammatory
immune response to M. tuberculosis, the normalization
of their expression possibly means the amelioration of
pathologic condition of fibrate pretreated differentiated
macrophages or the decrease in the infection rate.

Conclusion
Our data suggest that fibrate pretreatment normalized
the levels of inflammatory molecules in Mycobacterium
smegmatis-infected U937 cells. The possible effect of
fibrate treatment on M. smegmatis in macrophages was
suggested here by examination of protein expression of
ACAT-1, PPAR-α, TNF-α, and MyD88. New approaches
using fibrates to evaluate TB infection could function to
explain the mechanism of host immune response and
the infection inhibition. Further studies are needed to
establish the mechanism of action of fibrates in inhibit-
ing Mycobacterium spp. infection.

Methods
Cell culture and differentiation
Human leukemic lymphoma U937 cells were cultured
on 100 mm cell culture plates in RPMI 1640 medium
(Caisson Labs, Logan, UT, USA) with 10% fetal bovine
serum (Thermo Scientific, Waltham, MA, USA), 1%
penicillin-streptomycin (Invitrogen, Carlsbad, CA, USA)
and 1% sodium pyruvate (Welgene, Seoul, Korea) at 37°C
in an incubator (Thermo Scientific) containing 95% air and
5% CO2. The cells were differentiated by treatment with
phorbol myristate acetate (PMA, 10 μg/ml, Sigma, St
Louis, MO) for 72 h [1].

Bacteria
Mycobacterium smegmatis (mc2155), stored at −70°C,
was thawed and then resuspended in RPMI 1640
medium for the infection test.

M. smegmatis infection assayed by PCR
Differentiated U937 cells were exposed to M. smegmatis
for 1 h (multiplicity of infection, MOI, 5:1 mycobacteria
to cell ratio). The U937 cells were removed from the
medium and washed with PBS three times, and dH2O
was added to lyse the U937 cells through osmosis. The
supernatant was transferred to new tubes and centri-
fuged. The resulting bacteria pellet was resuspended in
Tris-EDTA buffer. The bacteria were boiled at 100°C for
3 min, and then PCR analysis was performed on their gen-
omic DNA using the following sense and antisense primers:
ManA, forward primer 5’-TCGACGGCGCGATCAACT
AC-3’ (527–546), reverse primer 5’-ATCTCGTGTCCG
AGCTGCTC-3’ (931–950); MetAP, forward primer 5’-
CACGACCGCTGAACGAACTC-3’ (8–27), reverse primer
5’-GACGCTGGAGCAGTTCGTTG-3’ (640–659). The
thermocycling protocol used for amplification of ManA
and MetAP included 35 cycles of 95°C for 60 s, 58.5°C for
60 s, and 72°C for 1.5 min, followed by 10 min of final ex-
tension at 72°C. The PCR products were separated using
electrophoresis on a 1.2% agarose gel and visualized by eth-
idium bromide staining.
Western blotting
Differentiated U937 cells (2.5 × 106) were cultured on
100 mm plates in medium and then mixed with either
dimethyl sulfoxide (0.001% DMSO), as the vehicle con-
trol, or with 1 μM of each fibrate (bezafibrate, fenofi-
brate, and gemfibrozil) for 24 h at 37°C in an incubator
(Thermo Scientific) containing 95% air and 5% CO2.
After 24 h, the treated cells were exposed to M. smegma-
tis for 1 h or 6 h (MOI, 5:1). After washing with PBS,
the proteins were extracted using RIPA buffer (Novagen,
Madison, WI, USA). A protease-inhibitor cocktail (Sigma,
St Louis, MO, USA Catalog Number P2714) was added at
each step to extract the proteins. From each sample, 15–
40 μg of protein was extracted and electrophoresed on a
sodium dodecyl sulfate polyacrylamide gel (Bio-Rad,
Hercules, CA, USA). The proteins were then transferred to
a polyvinylidene fluoride membrane (Bio-Rad) for Western
blot analysis. The protein-containing membrane was
blocked using 5% skim milk (Bio-Rad) and then incubated
with primary anti-ACAT-1 (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-PPARα (Santa Cruz Biotech-
nology), anti-TNF-α (Santa Cruz Biotechnology), anti-
MyD88 (Santa Cruz Biotechnology) or anti- β-actin (Sigma)
antibodies. Subsequently, anti-mouse (Santa Cruz Biotech-
nology), anti-rabbit (Santa Cruz Biotechnology) or anti-goat
(Santa Cruz Biotechnology) secondary antibodies was incu-
bated with the membrane, and the protein band was visual-
ized using Super-Signal West Pico Luminal/Enhancer
solution (Thermo Scientific). All images were enhanced
using Photoshop (Adobe Systems, San Jose, CA, USA).
Statistical analysis
Experiments were performed in triplicate. Statistical signifi-
cance was evaluated by Student’s t-test using the TINA 2.0
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densitometric analytical system (Raytest, Straubenhardt,
Germany). P values < 0.05 were considered significant.
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