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Abstract We investigate the scalar perturbation produced
at the pre-inflationary stage driven by a massive scalar field
in Eddington-inspired Born–Infeld gravity. The scalar power
spectrum exhibits a peculiar rise for low k-modes. The tensor-
to-scalar ratio can be significantly lowered compared with
that in the standard chaotic inflation model in general relativ-
ity. This result is very affirmative considering the recent dis-
pute on the detection of gravitational wave radiation between
PLANCK and BICEP2.

1 Introduction

The Eddington-inspired Born–Infeld (EiBI) gravity is
described by the action [1],

SEiBI = 1

κ

∫
d4x

[ √−|gμν + κRμν(�)| − λ
√−|gμν |

]

+SM(g, ϕ), (1)

where κ is the only additional parameter of the theory to the
gravitational constant G (in this work, we set 8πG = 1), λ

is a dimensionless parameter, and SM(g, ϕ) is the action for
the matter, which is coupled only to the gravitational field
gμν . The cosmological constant is related by � = (λ −
1)/κ , which we will set to zero in this paper. The theory
follows the Palatini formalism, in which the metric gμν and
the connection �

ρ
μν are treated as independent fields. The

Ricci tensor Rμν(�) is evaluated solely by the connection.
The inflationary model with a massive scalar field in this

theory was investigated in Ref. [2]. The matter action is given
by
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SM(g, ϕ) =
∫

d4x
√−|gμν |

[
−1

2
gμν∂

μϕ∂νϕ − V (ϕ)

]
,

V (ϕ) = m2

2
ϕ2, (2)

which is of the same form as for the chaotic inflation model
[3] in general relativity (GR).

Due to the square-root type of the EiBI action, there is
an upper bound in pressure beyond which the theory is not
defined. In the maximal pressure state (MPS), the scale factor
exhibits an exponential expansion of the Universe. The MPS
is the past attractor from which all the evolution paths of
the Universe originate [2]. At early times, the energy density
is very high at the MPS (the magnitudes of the field ϕ and
its velocity are very large). The Hubble parameter becomes
HMPS ≈ 2m/3, and thus the curvature scale remains con-
stant. In describing the high-energy state of the early uni-
verse, therefore, quantum gravity is not necessary.

The MPS is known to be unstable under the global per-
turbation (zero-mode scalar perturbation) [2]. With a small
perturbation, the Universe evolves to the near-MPS stage,
and then enters into the intermediate stage, which is followed
by an inflationary attractor stage. The inflationary feature at
the attractor stage was found to be the same as the ordinary
chaotic inflation in GR [2].

As a whole, there are two inflationary stages in the EiBI
inflation model, the near-MPS stage and the attractor stage.
(Since the inflationary feature at the attractor stage is similar
to the standard inflation, we call the near-MPS stage as the
pre-inflationary stage for convenience.) If the initial condi-
tions drive the Universe to evolve in such a way as to acquire
the sufficient 60 e-foldings at the attractor stage, the cosmo-
logical situation must be very similar to that of the standard
chaotic inflation. However, if they do not, the supplementary
e-foldings should be provided at the near-MPS stage to solve
cosmological problems. In this case, the story of the density
perturbation may be altered in the long-wavelength modes.
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The tensor perturbation in the EiBI inflation model was
investigated in Ref. [4]. For short-wavelength modes, the
perturbation is very similar to that of the standard chaotic
inflation in GR, with a small EiBI correction. The ten-
sor power spectrum is smaller than that in GR as PT ≈
PGR

T /(1 + κm2ϕ2
i /2), where ϕi is the value of the scalar

field at the beginning of the inflationary attractor stage. For
long-wavelength modes, there exists a peculiar rise in the
power spectrum PT originating from the near-MPS stage.

The scalar perturbation produced at the inflationary attrac-
tor stage was investigated in Ref. [5] in the limit of κm2 � 1.
The scalar power spectrum is smaller than that in GR as
PATT
R ≈ (1 − 4κm2/3)PGR

R . From the results of the tensor
and the scalar spectra, the tensor-to-scalar ratio r becomes
smaller than that in GR as r ≈ [(1 + 4κm2/3)/(1 +
κm2ϕ2

i /2)]rGR.
In this paper, we investigate the scalar perturbation pro-

duced at the near-MPS stage in the very early universe. One
question is whether or not the peculiar phenomenon arises
for long-wave modes as in the tensor mode, which may leave
a signature in the cosmic microwave background radiation.
The other is how different the tensor-to-scalar ratio would be
from that for the perturbation produced at the attractor stage.
The results are summarized as follows. The peculiar rise in
the scalar power spectrum PR for long-wavelength modes
appears exactly in the same way as the tensor spectrum PT

in EiBI theory. The ratio r is not different from that for the
perturbation produced at the attractor stage because the EiBI
correction turns out to be exactly the same.

The density perturbation in EiBI gravity has been inves-
tigated in Refs. [6–9] for the Universe with the perfect-fluid
background. Some other works on cosmology and astro-
physics in EiBI gravity can be found in Refs. [10–27].

This paper is organized as follows. In Sect. 2, we present
the background field equations and the perturbation equa-
tions in the literature following Refs. [1,4–6]. In Sect. 3, we
apply the near-MPS approximation to the equations, and we
obtain the solution for the scalar perturbation. In Sect. 4,
following the solution-matching technique used in Ref. [4],
we derive the power spectrum and obtain the tensor-to-scalar
ratio. In Sect. 5, we conclude.

2 Field equations

In this section, we present the background field equations,
the scalar perturbations and their field equations introduced
in Ref. [5].

2.1 Background field equations

When there is no cosmological constant (λ = 1), the EiBI
action (1) is equivalent to a bimetric-like theory action

S[g, q, ϕ] = 1

2

∫
d4x

√−|qμν |
[
R(q) − 2

κ

]

+ 1

2κ

∫
d4x

(√−|qμν |qαβgαβ − 2
√−|gμν |

)

+SM[g, ϕ], (3)

where gμν is the physical metric and qμν is the auxiliary
metric by which the affine connection � is determined. From
this action, the equations of motion are obtained as

√−|q|√−|g| q
μν = λgμν − κTμν, (4)

qμν = gμν + κRμν, (5)

where Tμν is the energy–momentum tensor in the standard
form. The ansätze for the metrics are

qμνdxμdxν = b2(η)

[
− dη2

z(η)
+ δi jdx

idx j
]

, (6)

gμνdxμdxν = −dt2 + a2(t)δi jdx
idx j = a2(η)

×(−dη2 + δi jdx
idx j ), (7)

where t and η are the cosmological and the conformal time,
respectively. For the derivatives, we denote ∧ ≡ d/dt, ′ ≡
d/dη, H ≡ a′/a, H ≡ â/a, and h ≡ b′/b. The components
of Eq. (4) give

b2√z = (1 + κρ0)a
2,

b2

√
z

= (1 − κp0)a
2, (8)

where the subscript 0 stands for the unperturbed background
fields, i.e.,ρ0 = ϕ′2

0 /2a2+V (ϕ0) and p0 = ϕ′2
0 /2a2−V (ϕ0).

From Eq. (8), we get z = (1+κρ0)/(1−κp0). The dynamical
equations for the metric coefficients are obtained from the
components of Eq. (5) as

b2 = 3κz

(
b′

b

)2

− a2

2
(z − 3), (9)

b2 = a2 + κz

[
b′′

b
+

(
b′

b

)2

+ 1

2

b′

b

z′

z

]
, (10)

and the scalar-field equation is in the standard form,

ϕ′′
0 + 2Hϕ′

0 + a2 dV

dϕ0
= 0. (11)

We can get the background solutionsa,b, z, and ϕ0 by solving
Eqs. (8)–(11).

2.2 Scalar perturbations and their equations

Let us introduce the scalar perturbations for qμν and gμν as
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ds2
q = b2

{
−1 + 2φ1

z
dη2 + 2

B1,i√
z

dηdxi

+ [(1 − 2ψ1)δi j + 2E1,i j ]dxidx j
}

, (12)

ds2
g = a2{−(1 + 2φ2)dη2 + 2B2,idηdxi

+ [(1 − 2ψ2)δi j + 2E2,i j ]dxidx j }, (13)

and the scalar-field perturbation is given by ϕ = ϕ0 + χ .
Plugging these perturbed metrics and the scalar field into
the action (3), we can write the second-order action for the
perturbation fields as Ss = S1 + S2 + S3, where S1 involves
the perturbation fields for qμν , S2 involves the perturbation
fields for gμν and the mixing terms with qμν , and S3 involves
the matter-field perturbation, as was presented in Ref. [5],

S1[φ1, B1, ψ1, E1] = 1

2

∫
d4x

{
b2

√
z
[4zhψ ′

1E1,i i − 6zψ
′2
1

− 12zh(φ1 + ψ1)ψ
′
1

− 2ψ1,i (2φ1,i − ψ1,i )

− 4hψ1,i B1,i + 6zh2(φ1 + ψ1)E1,i i

− 4
√
zh(φ1 + ψ1)(B1 − √

zE ′
1),i i

− 4
√
zψ ′

1(B1 − √
zE ′

1),i i

− 4
√
zhE1,i i (B1 − √

zE ′
1), j j

+ 4
√
zhE1,i i B1, j j + 3zh2E1,i i E1, j j

+ 3zh2B1,i B1,i − 9zh2(φ1 + ψ1)
2 ]

− 2b4

κ
√
z

[
3

2
ψ2

1 − 3φ1ψ1 + 1

2
B1,i B1,i

− 1

2
E1,i i E1, j j − 1

2
φ2

1

+ E1,i i (φ1 − ψ1)

]}
, (14)

S2[φk, Bk, ψk, Ek] = 1

2

∫
d4x

{
a2b2

κ
√
z

[
2
√
zB1,i B2,i

+ φ1[(z − 1)(3ψ1 − E1,i i )

− 6ψ2 + 2E2,i i − 2zφ2]
+ ψ1[6ψ2 − (z − 1)E1,i i

− 2E2,i i − 6zφ2]
− 1

2
(z − 1)(E1,i i E1, j j + B1,i B1,i )

+ 3

2
(φ2

1 + ψ2
1 )(z − 1)

− 2E1,i i (ψ2 − zφ2 + E2,i i )
]

− 2a4

κ

[
3

2
ψ2

2 − 1

2
φ2

2

+ 1

2
B2,i B2,i − 1

2
E2,i i E2, j j

+ (φ2 − ψ2)E2,i i − 3φ2ψ2

]}
, (15)

S3[φ2, B2, ψ2, E2, χ ] = 1

2

∫
d4x a2

{
ϕ′2

0 (4φ2
2 − B2,i B2,i )

+ (ϕ′2
0 − 2V0a

2)

[
1

2
(3ψ2

2 − φ2
2

+ B2,i B2,i − E2,i i E2,i i )

− 3φ2ψ2 + (φ2 − ψ2)E2,i i

]

− 2ϕ′
0χ,i B2,i − 4ϕ′

0χ
′φ2 + χ ′2

+ 2(φ2 − 3ψ2 + E2,i i )

× (χ ′ϕ′
0 − V1a

2 − φ2ϕ
′2
0 )

− χ,iχ,i − 2V2a
2
}

. (16)

Here, Vi is the i th-order potential from V = V0(ϕ0) +
V1(χ) + V2(χ). Using ρ0 and p0, S3 can be rewritten as

S3[φ2, B2, ψ2, E2, χ ] =
∫

d4xa4

×
{
p0

[
1

2
(3ψ2

2 − φ2
2 + B2,i B2,i

− E2,i i E2,i i )

− 3φ2ψ2 + (φ2 − ψ2)E2,i i

]

+ (ρ0 + p0)

[
2φ2(φ2 − Xχ ′)

− 1

2
B2,i (B2,i + 2Xχ,i )

+ (φ2 − 3ψ2 + E2,i i )(Xχ ′ − Yχ

− φ2)

]
+ 1

2a2 (χ ′2 − χ,iχ,i )

− m2

2
χ2

}
, (17)

where

X ≡ 1

a
√

ρ0 + p0
, Y ≡ −m

√
ρ0 − p0

ρ0 + p0
. (18)

(Please note that there was a typo in the definition for Y in
Ref. [5]; the signature “−” was missing.)

Denoting nine perturbation fields as Fl (l = 1 ∼ 9), we
introduce the Fourier modes as

Fl(η, 	x) =
∫

d3k

(2π)3/2 Fl(η, 	k)ei 	k·	x . (19)

The gauge conditions for the scalar-field type and the perfect-
fluid type have been rigorously studied in Ref. [6]. For the
scalar-field type, one element of the two sets given below can
be fixed,

(ψ1, ψ2, χ) + (E1, E2). (20)
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We fix the gauge conditions as

ψ1 = 0 and E1 = 0. (21)

Performing the variation for S2 and S3 with respect to φ2,
ψ2, E2, and B2, we get

(1 − 2z)φ2 + zφ1 − 3zψ2 − k2zE2 − (1 − z)Xχ ′

− (1 − z)Yχ = 0, (22)

3ψ2 + 3φ1 − 3zφ2 + k2E2 − 3(1 − z)Xχ ′

+ 3(1 − z)Yχ = 0, (23)

k2E2 − φ1 + zφ2 − ψ2 + (1 − z)Xχ ′ − (1 − z)Yχ = 0,

(24)

zB2 − √
zB1 − (1 − z)Xχ = 0, (25)

and for S1 and S2 with respect to φ1 and B1, we get

(6κh2 − a2)zφ1 + a2zφ2 + 3a2ψ2 + k2a2E2

− 2k2κh
√
zB1 = 0, (26)

a2B1 − 2κh
√
zφ1 − a2√zB2 = 0. (27)

From Eqs. (23) and (24), we get E2 = 0. From Eqs. (22) and
(24), we get

φ2 = (z − 1)(3z + 1)Xχ ′ − (z − 1)(3z − 1)Yχ + 4zφ1

(z + 1)(3z − 1)

,(28)

and from Eqs. (25) and (27), we get

φ1 = a2(z − 1)Xχ

2κhz
. (29)

Then we finally get from Eqs. (23) and (28),

ψ2 = z − 1

2κhz(z + 1)(3z − 1)

×
[
−2κhz(z − 1)Xχ ′ + a2(z − 1)2Xχ

+2κhz(3z − 1)Yχ
]
, (30)

which is expressed only by the matter-field perturbation χ

and the background fields. This result for ψ2 will be used in
evaluating the comoving curvature later.

Using the results of Eqs. (22)–(30), Ss[χ ] is expressed
only by χ and the background fields in the Fourier space as

Ss[χ ] = 1

2

∫
d3kdη

[
f1(η, k)χ ′2 − f2(η, k)χ2

]
, (31)

where

f1(η, k) = a2 + 2a2(z − 1)2X 2[a2(z − 3) − 6κh2z]
κ
√
z(z + 1)(3z − 1)

, (32)

and

f2(η, k) = β

8κ3h2z5/2(z + 1)2
. (33)

Here,

β = a2
[

β1

3z − 1
+ β2

(3z − 1)2

]
, (34)

where

β1 = (z + 1){8κ3h2z2(3z − 1)[k2√z − 12h2Y2z

+ k2z3/2 + 24h2Y2z2 − 12h2Y2z3

− 3k2h2X 2(z − 1)2(z + 1)]
+ a6X 2(z − 3)(z − 1)3(3z2 − 2z + 3)

+ 4κa4hX z(z − 1)2

× [Y(z − 3)2(3z − 1) − 3hX z(3z2 − 6z − 1)]
+ 4κ2a2h2z(3z − 1)[−6hXY(z − 3)(z − 1)2z

+ X 2(z − 1)2(z + 1)[(k2 + 9h2)z − 3k2]
+ 4Y2z(z − 3)(z − 1)2 + 2κm2z3/2(z + 1)]}, (35)

β2 = (z − 1)[a2(z − 3) − 6κh2z]
× {a4X 2(z − 1)2(z + 1)(3z − 1)(3z2 − 2z + 3)

+ 4κ2h2z(3z − 1)2[2z(z − 1)(z + 1)[2(h + H)XY
+ (XY)′] + XY(z2 + 6z + 1)z′]
+ 2κa2hX [z(z − 1)(z + 1)(3z − 1)(3z2 − 2z

+ 3)[(h + 4H)X + 2X ′]
+ X (9z5 + 21z4 − 34z3 + 30z2 + 9z − 3)z′]}. (36)

We can construct a perturbation field Q in the canonical
form from the action (31) by a transformation Q = ωχ with
introducing a new time coordinate τ by dτ = (ω2/ f1)dη.
The field equation then becomes

Q̈ +
(

σ 2
s k

2 − ω̈

ω

)
Q = 0, (37)

where˙≡ d/dτ and σ 2
s ≡ f1 f2/k2ω4. We consider a Bunch–

Davies vacuum in the k → ∞ limit. Requiring σ 2
s → 1 in

this limit determines ω to be

ω4 = a4

2κ2z2(z + 1)(3z − 1)

{
a2X 2(z − 3)(z − 1)2

− 2κz
[
3h2X 2(z − 1)2 − √

z
]}

×
{

2a2X 2(z − 3)(z − 1)2 − κ
√
z

×[12h2X 2√z(z − 1)2 − 3z2 − 2z + 1]
}

. (38)

The normalization condition for the canonical field is given
by
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QQ̇∗ − Q∗ Q̇ = i. (39)

3 Production of perturbation at near-MPS stage

In this section, we investigate the scalar perturbation pro-
duced at the near-MPS stage by solving the perturbation
equation (37). In order to do that, we need to know f1, f2,
and ω as a function of τ . First, we evaluate them in terms of
a and z, and then get the expressions in τ .

f1(a, z) and ω(a, z) are obtained in general, while
f2(a, z) is obtained only in the near-MPS approximation.
Let us get f1(a, z) and ω(a, z) first. Equation (9) can be
rewritten as

h2 = 1

3κz

[
b2 + 1

2
a2(z − 3)

]
. (40)

Using Eq. (8), we get

X 2 = 1

a2 (ρ0 + p0)
= κ

√
z

b2(z − 1)
. (41)

Using the two equations (40) and (41), f1 and ω in Eqs. (32)
and (38) can be simplified as

f1(a, z) = a2(3z2 − 2z + 3)

(z + 1)(3z − 1)
(42)

and

ω4(a, z) = a4(3z2 − 2z + 3)

z(z + 1)(3z − 1)
. (43)

3.1 Perturbation equation in near-MPS approximation

In this subsection, we introduce the near-MPS solutions
investigated in Ref. [2], and apply the approximation using
them in order to get f2(a, z). Then we get a(τ ) and ω(τ)

in this approximation, and finally we get the perturbation
equation in terms of τ .

The maximal pressure state (MPS) is achieved when p0 =
1/κ ,

1

κ
− p0 = 1

κ
− ϕ̂2

0

2
+ V (ϕ0) = 0. (44)

When p0 > 1/κ , the action (1) becomes imaginary, and the
theory is not well defined. As studied in Ref. [2], however,
the MPS state is the past attractor of all the evolution paths
of the Universe. If we flush back in time, the Universe takes
an infinite time to reach this state. The path never crosses the
MPS, and the ill-defined region of the pressure is dynamically
inaccessible. The MPS solution for the background scalar
field is obtained from this condition [2],

ϕ0(t) =
√

2

κm2 sin h(mt), (45)

where we considered the scalar field initially rolling down the
potential in the region of ϕ0 < 0 (so ϕ̇0 > 0). At the MPS, the
Friedmann equation reduces to H = â/a = −(2/3)dU/dϕ0,

where U ≡ √
2[1/κ + V (ϕ0)] =

√
2/κ + m2ϕ2

0 , and the
scale factor is solved as [2]

a(t) = a0U
−2/3 = a0

(κ

2

)1/3
cos h−2/3(mt), (46)

where a0 is an integration constant. The MPS was found to
be unstable under the global perturbation in Ref. [2]. With a
small perturbation, the Universe leaves the MPS and evolves
to the near-MPS. Introducing small perturbations ψ(t) and
γ (t) for the velocities of the scalar field and the scale factor
at the near-MPS as

ϕ̂0 = U [1 + ψ(t)], (47)

H = â

a
= −2

3

dU

dϕ0
[1 + γ (t)], (48)

the solutions were found as [2]

ψ = ψ0U
−4/3et/tc , (49)

γ = ψ0

(
−2

3
+

√
2

3κ

dϕ0

dU

)
U−4/3et/tc , (50)

where tc = √
3κ/8.

Then at the near-MPS, using the above results, we have

1

κ
− p0 = −ψ

(
1 + 1

2
ψ

)
U 2, (51)

1

κ
+ ρ0 =

(
1 + ψ + 1

2
ψ2

)
U 2, (52)

which give

z = 1 + κρ0

1 − κp0
= − 1

ψ

(
1 + ψ + ψ2/2

1 + ψ/2

)
 1

�⇒ ψ = −1 +
√
z − 1

z + 1
. (53)

Therefore, for the near-MPS approximation, we assume z 
1. From Eqs. (8) and (51)–(53), we have

b4 = (1 + κρ0)(1 − κp0)a
4 = κ2a4U 4z

(z + 1)2 . (54)

Using Eq. (54), h in Eq. (40) can be expressed as

h2 = a2(z − 3)

6κz

[
1 + 2κU 2√z

(z + 1)(z − 3)

]
, (55)

and X 2 in Eq. (41) can be approximated as

X 2 = 1

a2U 2

(z + 1)

(z − 1)
≈ 1

a2U 2 ≈ a

a3
0

⇒ X ′

X ≈ H
2

,

(56)
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where we used the relation a = a0U−2/3 in Eq. (46). Using
Eqs. (45) and (46), we get

Y = −m

√
ρ0 − p0

ρ0 + p0
= m2 ϕ0

ϕ̂2
0

= m

(
a

a0

)3/2

tan h(mt) ≈ −m

(
a

a0

)3/2

⇒ Y ′

Y ≈ 3

2
H. (57)

Differentiating Eq. (9) with respect to η and using Eq. (10),
we get

z′

z
= −4

b′

b
+ 2

a′

a

(
3

z
− 1

)

= −4h + 2H
(

3

z
− 1

)
≈ −4h − 2H. (58)

Plugging the approximations (56)–(58) into Eqs. (33)–
(36), and keeping the k-dependent term and the highest-order
terms in z (z0 terms), we get

f2 ≈ a2
(
k2

z
+ m2a2

)
−4a2

(Y
X

)2

−a4
(

6
H
a2 + 1

κh

) Y
X

− a6

4κ2h2 − 3a4

2κ

(H
h

− 1

)
. (59)

Using Y/X ≈ −ma from Eqs. (56) and (57), H = aH ≈
2ma/3 from Eq. (46), and h ≈ a/

√
6κ from Eq. (55), one

can show that the last four terms in Eq. (59) cancel, and f2
can be further approximated as

f2(a, z) ≈ a2
(
k2

z
+ m2a2

)
. (60)

Using the results of f1(a, z), f2(a, z), and ω(a, z), the pertur-
bation equation (37) is approximated at the near-MPS stage
as

σ 2
s k

2 = f1 f2
ω4 ≈ k2 + m2a2z

⇒ Q̈ +
(
k2 + m2a2z − ω̈

ω

)
Q ≈ 0. (61)

Now let us express this perturbation equation in terms of
τ . From Eqs. (46), (53), and (49), at the near-MPS stage, we
have

a(t) ≈ a0(2κ)1/3e2mt/3,

z(t) ≈ − 1

ψ
≈ − 1

ψ0(2κ)2/3 e
−(

√
8/3κ+4m/3)t . (62)

The time coordinates are transformed for z  1 as

dτ = ω2

f1
dη = ω2

a f1
dt ≈ dt

a
√
z

≈
√−ψ0

a0
e
√

2/3κtdt

⇒ τ ≈
√

−3κψ0

2a2
0

e
√

2/3κt , (63)

where we set τ = 0 for t → −∞. In terms of τ , we have

a(τ ) ≈ a0(2κ)1/3

(
− 2a2

0

3κψ0

)√
κm2/6

τ

√
2κm2/3, (64)

z(τ ) ≈ − 1

ψ0(2κ)2/3

(
− 2a2

0

3κψ0

)−(1+
√

2κm2/3)

τ−2(1+
√

2κm2/3).

(65)

With these results of a(τ ) and z(τ ), we get

σ 2
s k

2 ≈ k2 + m2a2z ≈ k2 + 3κm2

2τ 2 , (66)

and from Eq. (43) for z  1, we get

ω4 ≈ a4

z
⇒ ω̈

ω
≈

(
−1

4
+ 3

2
κm2

)
1

τ 2 . (67)

Finally, the perturbation equation (61) at the near-MPS stage
becomes

Q̈ +
(
k2 + 1

4τ 2

)
Q ≈ 0. (68)

The κ-dependent EiBI corrections in σ 2
s k

2 and ω̈/ω cancel
each other, and the resulting equation is in the same form with
the near-MPS equation for the tensor perturbation studied in
Ref. [4].

3.2 Near-MPS solution

Since the perturbation equation (68) is of the same form as
that for the tensor perturbation at the near-MPS stage, we
manipulate the solution here in the same way as in Ref. [4].
The solution to Eq. (68) is given by

Q(τ ) = √
τ [c1 J0(kτ) + c2Y0(kτ)]. (69)

Here, c1 and c1 are complex,

c1 = cRe
1 + icIm

1 ≡ c, c2 = cRe
2 + icIm

2 ≡ R − i
π

4c
,

(70)

where c and R are real. One arbitrariness was fixed by impos-
ing cIm

1 = 0, and cIm
2 was determined from by normalization

condition (39). R and c are to be determined by imposing
the initial condition at the moment of the production of the
perturbation. The initial condition is given by minimizing the
energy,

E = 1

2

[
|Q̇|2 +

(
k2 + 1

4τ 2

)
|Q|2

]
. (71)

The production moment τ∗ of the perturbation is determined
as follows. As was studied in Ref. [2], the curvature scale H
is finite at the beginning of the Universe at τ = 0 (t → −∞
and ϕ → −∞), so the quantum gravity is not necessary.
However, the wavelength scale of the perturbation becomes
smaller than the Planck scale. To treat the perturbation in a
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classical way, we consider the production of the perturbation
when the wavelength scale λphys is comparable to the Planck
scale l p,

λphys = a(τ∗)
k

� l p ⇒ τ∗ � a−1(klp)

≈
√

−3κψ0

2a2
0

[
klp

a0(2κ)1/3

]√
3/2κm2

. (72)

For high k-modes, the perturbation is produced after the
solution Q in Eq. (69) is relaxed to the oscillatory behavior
(kτ∗  1). Using the asymptotic formulas for kτ  1, it was
found in Ref. [4] that the energy E in Eq. (71) is minimized
when R = 0 and c2 = π/4. Then the perturbation solution
for high k-modes becomes

Q(τ ) = ± 1√
2k

eiπ/4e−ikτ , (73)

which is the plane-wave solution with only the positive
energy mode selected.

For low k-modes, the perturbation is produced before the
solution Q is relaxed to the oscillatory behavior (kτ∗ < 1).
(Please see Fig. 1 in Ref. [4].) In this case, the energy E in
Eq. (71) is minimized when

c2 = π

4

Y 2 + Y 2
0

|JY0 − J0Y | ,

R = ∓
√

π

4

JY + J0Y0√
|JY0 − J0Y |(Y 2 + Y 2

0 )

, (74)

where J ≡ (J0 − 2kτ∗ J1)/
√

1 + 4k2τ 2∗ , Y ≡ (Y0 − 2kτ∗
Y1)/

√
1 + 4k2τ 2∗ , J0,1 ≡ J0,1(kτ∗), and Y0,1 ≡ Y0,1(kτ∗).

(Please see Ref. [4] for detailed calculations.) With these c
and R, the solution (69) for low k-modes becomes

Q(τ ) = √
τ

[
cJ0(kτ) +

(
R − i

π

4c

)
Y0(kτ)

]
. (75)

As a whole, the near-MPS solutions were obtained as Eq.
(73) for high-k modes, and as Eq. (75) low-k modes. The
coefficients were fixed by imposing the minimum-energy
condition at the production moment τ∗. These two pertur-
bation modes, produced at the near-MPS stage, evolve to
the intermediate stage which is connected to the inflationary
attractor stage.

4 Power spectrum

The power spectrum PR is evaluated at the end of the infla-
tionary attractor stage, while the coefficients of the mode
solution at the attractor stage are determined from the ini-
tial perturbation produced at the near-MPS stage. In order
to determine the coefficients of the mode solution QATT at
the attractor stage from the near-MPS solution QMPS, we

assume that the perturbation evolves adiabatically from the
near-MPS stage through the intermediate stage till the attrac-
tor stage. The adiabatic period spans from the late near-MPS
stage to the early attractor stage, and it is described by the
WKB solution QWKB. In order to determine the coefficients,
we need the solution matching between QMPS and QWKB at
some moment τ1 at the late near-MPS stage, and between
QWKB and QATT at some moment τ2 at the early attractor
stage.

The tensor perturbations at all the stages were investigated
in Ref. [4]. In Ref. [5], the scalar perturbation at the attractor
stage was investigated, and the solution QATT was found.
Both of QATT and QMPS (obtained in this paper) are exactly
in the same form, respectively, with those of the tensor pertur-
bation obtained in Ref. [4]. In this section, therefore, we shall
follow the solution-matching technique exactly in the same
manner as for the tensor perturbation. (For details, please see
Ref. [4].) We shall focus on the low k-modes; then the result
is applied for the high k-modes simply by setting R = 0 and
c2 = π/4 in the end.

The near-MPS solution is

QMPS(τ ) = √
τ [c1 J0(kτ) + c2Y0(kτ)], (76)

where c1 and c2 are given by Eqs. (70) and (74). In the
adiabatic period, the solution to the perturbation equation
Q̈ + �2

k(τ )Q = 0 is given by the WKB approximation,

QWKB(τ ) = b1√
2�k(τ )

exp

[
i
∫ τ

�k(τ
′)dτ ′

]

+ b2√
2�k(τ )

exp

[
−i

∫ τ

�k(τ
′)dτ ′

]
, (77)

for which the adiabatic condition is �−3
k

∣∣d�2
k/dτ

∣∣ � 1. The
attractor solution was obtained in Ref. [5],

QATT(τ ) = A1

[
cos k(τ − τ0) − sin k(τ − τ0)

k(τ − τ0)

]

+ A2

[
sin k(τ − τ0) + cos k(τ − τ0)

k(τ − τ0)

]

= A′
1

[
1 + i

k(τ − τ0)

]
eik(τ−τ0)

+ A′
2

[
1 − i

k(τ − τ0)

]
e−ik(τ−τ0), (78)

where A′
1 = (A1 − i A2)/2, A′

2 = (A1 + i A2)/2, τ0 ≡
τi − √

6/ϕimai , and the subscript i stands for the values at
the beginning of the attractor stage.

Now we match the Q and the Q̇ at τ1 for MPS and WKB
and at τ2 for WKB and ATT. Then from the results in Ref.
[4], the coefficients are determined as
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b1,2 ≈ c1 ∓ ic2√
π

e±i(kτ1−π/4), (79)

A′
1,2 ≈ e∓ik(τ2−τ0)

2

[
QWKB(τ2; b1, b2)

∓ i

k
Q̇WKB(τ2; b1, b2)

]
. (80)

At the end of inflation, the perturbation is approximated as
QATT(τ ) ≈ i(A′

1 − A′
2)/k(τ − τ0), and with the aid of the

above equations (79) and (80), one can get

|QATT|2 ≈ |A′
1 − A′

2|2
k2(τ − τ0)2 = c2 + R2 + π2/16c2

πk3(τ − τ0)2 . (81)

Now let us discuss the power spectrum evaluated at the end
of inflation. The comoving curvature at the attractor stage is
given by

R = ψ2 + H

ϕ̂0
χATT ≈ −1 − κm2

2
ϕiχATT, (82)

where we used the approximations H ≈ −mϕi/
√

6 and
ψ2 ≈ κm2ϕiχATT/2, obtained in Ref. [5] for ψ2 in Eq. (30).
With χATT = QATT/ωATT where ω4

ATT ≈ (1 − 4κm2/3)a4

and a(τ ) = ai (τi−τ0)/(τ−τ0) at the attractor stage obtained
in Ref. [5], the power spectrum becomes

PR = k3

2π2 R2 ≈ k3

8π2 (1 − κm2)2ϕ2
i

∣∣∣∣QATT

ωATT

∣∣∣∣
2

(83)

≈ 2

π

(
c2 + R2 + π2

16c2

)
× (1 − κm2)2

(1 − 4κm2/3)1/2 × m2ϕ4
i

96π2

(84)

≡ Dk × ES
κ × PGR

R (85)

≡ Dk × PATT
R . (86)

Here, PGR
R ≡ m2ϕ4

i /96π2 is the power spectrum in GR, and
ES

κ ≡ (1 − κm2)2/(1 − 4κm2/3)1/2 is the EiBI correction
which is the same as that for the perturbation produced at
the attractor stage obtained in Ref. [5], PATT

R = ES
κ P

GR
R .

The coefficient Dk ≡ (2/π)(c2 + R2 + π2/16c2) is the k-
dependence factor which is of the same form as obtained
for the tensor perturbation in Ref. [4]. As seen in Fig. 1,
Dk exhibits a peculiar rise at low k, while it becomes unity,
Dk → 1, at high k. As a result, compared with the power
spectrum for the scalar perturbation produced at the attractor
stage, PR for the perturbation produced at the near-MPS
stage is the same for high k-modes, but it exhibits a peculiar
peak for low k-modes.

The tensor power spectrum in EiBI gravity was obtained
in Ref. [4] as

PT ≈ Dk × ET
κ × PGR

T , where ET
κ = 1

1 + κm2ϕ2
i /2

.

(87)

0 1 2 3 4 5
0.8

1.0

1.2

1.4

1.6

1.8

2.0

k

Dk = 2
π

c2 + R2 + π2

16c2

Fig. 1 Numerical plot of Dk for τ∗ = 1. Dk exhibits a peculiar rise for
kτ∗ < 1, while it approaches unity for kτ∗ > 1

Here, PGR
T is the spectrum for the chaotic inflation model

in GR, and ET
κ is the EiBI correction. Since the factor Dk

is common both for the tensor and the scalar perturbations,
the tensor-to-scalar ratio for the perturbation produced at the
near-MPS stage is given by

r = PT

PR
≈ ET

κ × PGR
T

ES
κ × PGR

R
= (1 − 4κm2/3)1/2

(1 − κm2)2(1 + κm2ϕ2
i /2)

rGR

≈ 1 + 4κm2/3

1 + κm2ϕ2
i /2

rGR, (88)

which is exactly the same as that for the perturbations
produced at the attractor stage obtained in Ref. [5]. Here,
rGR ∼ 0.131 for 60 e-foldings. As ϕi ∼ O(10), the EiBI
correction of the tensor spectrum is dominant and the value
of r is lowered. While the scalar perturbation has been inves-
tigated in the limit of κm2 � 1, the result of the tensor per-
turbation investigated in Ref. [4] does not restrict the value
of κm2ϕ2

i much. Therefore, within the accuracy of this work,
κm2 � O(10−2), and with ϕi ∼ O(10), the EiBI correction
can be considerably large and the value of r can be signifi-
cantly suppressed.

Although the EiBI correction to the tensor-to-scalar ratio
can be large, the correction to the power spectrum itself is
tiny. The EiBI corrections to each power spectrum PR and PT

lower their values because ES
κ < 1 and ET

κ < 1 from Eqs.
(85) and (87). However, it is still within the observational
bound for the total power spectrum because κm2 � 1 and
PT � PR.

The effect of the peculiar rise by the factor Dk for low
k-modes is cancelled in the tensor-to-scalar ratio. However,
it may appear in observational data for the power spectrum.
It will be observable in the current data only when the early
stage of the inflationary e-folding took place at the near-
MPS stage. Otherwise, the rise corresponds to the very long-
wavelength modes which are not observable today.
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5 Conclusions

In this paper, we investigated the scalar perturbation pro-
duced at the near-MPS (maximal pressure state) which arises
at the early stage of the Universe driven by a massive scalar
field in Eddington-inspired Born–Infeld gravity. This work
is a completion of a study of the scalar perturbation in this
model, combined with the work [5] for the scalar perturbation
produced at the inflationary attractor stage.

The scalar perturbation pattern is very similar to that [5]
at the attractor stage for high k-modes, which mimics the
standard chaotic inflation in GR, with a small EiBI correction.
The pattern for low k-modes is very similar to that [4] of the
tensor perturbation. The power spectrum exhibits a peculiar
rise, which can distinguish this EiBI model from the standard
chaotic inflation model in GR. It also possesses the same EiBI
correction as for the high k-modes.

Because of the similarity, we could use the results of Refs.
[4,5]. The tensor-to-scalar ratio r was obtained for all k-
modes. The result was the same as that obtained at the attrac-
tor stage. The scalar perturbation increases the value of r ,
while the tensor spectrum decreases it. The tensor contribu-
tion is dominant, so r can be lowered significantly. Recent
observational results of BICEP2 [28] and PLANCK [29,30]
for the tensor perturbation have attracted much attention, and
these are still in dispute. The direction is that the value of r is
to be lowered from the one that BICEP2 observed (the anal-
yses predict r0.05 < 0.12 in Ref. [29], and r0.002 < 0.09 in
Ref. [30]). In this sense, our result is very affirmative since
it can decrease r to a very low value.

In this work, we considered the perturbation in the limit
of κm2 � 1. From the star formation study in Refs. [11,
12,14], the theory parameter is very mildly constrained as
κ < 10−2 m5 kg−1 s−2 ∼ 1077 in Planck unit. Considering
the consistency of our model with inflation, the parameter is
constrained more strongly as κ � m−2 ∼ 1010.

After inflation ends, the Universe settles down to the
radiation-dominated era followed by the matter-dominated
era. At these stages after inflation, the Universe is in a very
low-energy state of which evolution is very similar to that
in GR as was investigated in Ref. [10]. Therefore, the post-
inflationary evolution of perturbations must be very similar
to that in GR.

As we observed in this work, EiBI gravity provides an
inflation model in a promising direction. Other than infla-
tion, EiBI gravity has presented interesting cosmological and
astrophysical results investigated in Refs. [10–27]. From the
gravity theory point of view, the unitarity problem related
with the ghost graviton mode of the theory is an important
issue. The existence of the ghost in EiBI theory is not clear
yet. Very recently in Ref. [31], the authors investigated the
ghost problem in bimetric theory, including EiBI gravity as
an example. According to their work, when matter is absent,

there is no ghost since EiBI gravity is equivalent to GR. When
matter is coupled to EiBI gravity, however, it is not entirely
clear whether or not the theory suffers from the ghost insta-
bility. In our investigation, we introduced eight gravitational
perturbation fields for two metrics and one matter perturba-
tion field. Eight gravitational perturbation fields can be solved
in terms of the matter perturbation field χ with our choice of
the gauge conditions. All the solutions for these fields look
regular. However, we cannot conclude that there is no ghost.
Even when there is a ghost, the related physical quantities
can behave regularly depending on the coupling to others.
As a whole, the ghost problem in EiBI gravity needs to be
investigated in a rigorous way in the action level in the pres-
ence of the matter coupling. We hope that this is resolved in
the future.
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