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Abstract

Disease similarity study provides new insights into disease taxonomy, pathogenesis, which plays a guiding
role in diagnosis and treatment. The early studies were limited to estimate disease similarities based on
clinical manifestations, disease-related genes, medical vocabulary concepts or registry data, which were
inevitably biased to well-studied diseases and offered small chance of discovering novel findings in disease
relationships. In other words, genome-scale expression data give us another angle to address this problem
since simultaneous measurement of the expression of thousands of genes allows for the exploration of
gene transcriptional regulation, which is believed to be crucial to biological functions. Although differential
expression analysis based methods have the potential to explore new disease relationships, it is difficult
to unravel the upstream dysregulation mechanisms of diseases. We therefore estimated disease similarities based on
gene expression data by using differential coexpression analysis, a recently emerging method, which has been proved
to be more potential to capture dysfunctional regulation mechanisms than differential expression analysis. A total
of 1,326 disease relationships among 108 diseases were identified, and the relevant information constituted the
human disease network database (DNetDB). Benefiting from the use of differential coexpression analysis, the potential
common dysfunctional regulation mechanisms shared by disease pairs (i.e. disease relationships) were extracted and
presented. Statistical indicators, common disease-related genes and drugs shared by disease pairs were also included
in DNetDB. In total, 1,326 disease relationships among 108 diseases, 5,598 pathways, 7,357 disease-related genes
and 342 disease drugs are recorded in DNetDB, among which 3,762 genes and 148 drugs are shared by
at least two diseases. DNetDB is the first database focusing on disease similarity from the viewpoint of
gene regulation mechanism. It provides an easy-to-use web interface to search and browse the disease relationships
and thus helps to systematically investigate etiology and pathogenesis, perform drug repositioning, and design novel
therapeutic interventions.
Database URL: http://app.scbit.org/DNetDB/#.
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Background
Disease similarity study has been attracting more and
more attention in recent years, because understanding
how the diseases are related to each other not only pro-
vides new insights into disease taxonomy, etiology, but
also helps to perform drug repositioning and drug target
identification [1]. Previous studies have been able to
explore disease similarity, i.e., disease relationship, from
clinical manifestations [2–6], electronic medical records
[7–10], disease-related genes [1, 11], miRNA [12], pro-
teins [13] or pathways [14], chemical fragments [15],
microbiota [16], disease-related metabolic reactions [17],
disease-related differentially expressed genes [18–20]
and multi-types of data [9, 19, 21]. Accordingly, there
have been several disease relationship databases, such as
1) the Human Phenotype Ontology (HPO) which shows
phenotypic similarities of diseases based on shared clin-
ical synopsis features extracted from OMIM [22]; 2) the
Comparative Toxicogenomics Database (CTD) which
includes a ‘DiseaseComps’ section to show similar disor-
ders via a) chemical or gene connections, and b)
marker/mechanism or therapeutic associations [23]; 3)
Malacards which presents disease relationships based on
similar medical vocabulary concepts and common
disease-related genes [24]; 4) DisGeNET which includes
gene-disease associations and disease-disease associa-
tions,they evaluate disease-disease associations on
shared genes [25]. The above databases heavily depend
on prior knowledge such as manifestations, disease re-
lated genes, and so on, therefore they provide limited
chance of discovering novel disease relationships. Fortu-
nately, the rapidly accumulated high-throughput data
such as transcriptomic data offer more possibilities of
extracting novel disease relationships. There have been
some works which estimated disease similarities through
differential expression analysis [18, 20]. However, it has
been widely accepted that differential expression analysis
have little power to find out dysfunctional regulatory
relationships underlying pheonotypes; at this point, dif-
ferential coexpression analysis method have been proved
to be more powerful [26].
In our previous study, we developed a series of differ-

ential coexpression analysis and differential regulation
analysis methods, which could identify differentially
coexpressed genes and links (DCGs and DCLs) in a
quantitative way, and furthermore extract differentially
regulated genes and links (DRGs and DRLs) via integrat-
ing transcriptional regulation knowledge [26–29]. In this
work, we explored disease similarities in terms of dys-
functional regulation mechanisms by using our differen-
tial coexpression analysis method. We first obtained 86
GSE (short for GEO series) datasets corresponding to
108 diseases, and then calculated differential coexpres-
sion value (dC value) of every genes for each disease by

using DCp algorithm [28, 29]. The dC value at gene level
was then converted into dC at pathway level. The dis-
ease similarity was finally estimated as the partial Spear-
men correlation coefficients of pathways’ dC values of
the two diseases. By applying a permutation test, a total
of 1,326 significant disease relationships at a p-value
threshold of 0.05 (FDR = 20.91 %) were identified among
108 diseases, which constructed the basic information of
our human disease network database (DNetDB). The de-
tailed procedure was reported in a companion paper
[30]. Meanwhile, in order to facilitate scientists in this
field to identify disease relationships with our strategy,
the computational method was developed into an R
package, DSviaDRM [31].
In DNetDB, 1,326 disease relationships among 108

diseases, 5,598 pathways, 7,357 disease-related genes and
342 disease drugs are recorded. The potential common
dysfunctional regulation mechanisms (i.e. shared DCGs,
DRGs), common disease-related genes and common
drugs shared by disease pairs are also included. All the
involved GSEs, genes, pathways or drugs can be linked
to their original databases, and all data in DNetDB can
be downloaded as well.

Construction
Gene expression dataset
We obtained 954 GSE datasets using a unique platform,
GPL96, from NCBI Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) [32] during the period
from 2003 to 2013. By setting the following three rules: 1)
more than five samples in health condition and disease
condition respectively 2) samples coming from fresh
organs (excluding cell lines) 3) samples in health condition
and disease condition coming from the same organs or
cells, 106 GSEs were remained. Then, we controlled the
quality of raw data (CEL files) of each sample and
removed low quality samples using affy [33] and affyQ-
CReport [34] packages in R. Subsequently, we maintained
86 GSEs for 89 disease states which involve 3,068 disease
samples and 1,335 health samples. In those GSEs, we
merged multi-GSEs if they studied on the same disease
and the same tissue. And we split single GSE if it con-
tained multi diseases or multi tissues. Finally, the disease
number was expanded from 89 to 108 because 11 out of
the original 89 diseases involved two or more tissues. The
108 diseases were written as “disease - tissue”, for
example, “Type 2 diabetes – liver”. Besides, a total of 24
sample types were involved.

Pathway data
Molecular signature database (MSigDB), a collection of
annotated gene sets, contains 7 major collections [35].
We selected 6,176 pathways from 2 collections of
MSigDB v4.0: 1) curated gene sets which collected from
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public pathway databases (such as BIOCARTA. REAC-
TOME, KEGG, etc.), publications in PubMed and know-
ledge of domain experts, 2) GO gene sets which
contained GO biological process, GO cellular compo-
nent and GO molecular function. We excluded some
pathways whose members were not detected by GPL96
platform significantly using the binomial probability
model to reduce the influence of missing data. Conse-
quently, we kept 5,598 pathways covering a total of
21,003 unique genes.

Disease-related gene and drug
We collected 7,357 genes which known to be associated
with 101 out of 108 diseases from Genetic Association
Database (GAD) [36], Online Mendelian Inheritance in
Man (OMIM) [37], Human Gene Mutation Database
(HGMD) [38] and human single amino acid variants
(SAV) of UniProt. We also collected 342 disease drugs
for 83 diseases, which downloaded from DrugBank [39].

Identification of disease similarity
Left part of Fig. 1 shows the workflow of disease similar-
ity algorithm. Firstly, for 108 datasets with disease sam-
ples and corresponding health samples, we normalized
the gene expression values using MAS5.0, respectively.
Then differential coexpression value (dC) of each gene
for each disease state was obtained by using Differential
Coexpression profile (DCp) method of DCGL v2
which quantified the degree of gene correlation
change [27–29]. Accordingly, we could obtain a dC
matrix in which row denotes gene, and column de-
notes disease. Then we assigned pathways’ dCs to be
the average dC of their component genes, resulting in
another dC matrix in which row denotes pathway and
column denotes disease. That is, a vector of pathways’
dCs for each disease was obtained (please see the
Additional file 1 for the details of differential coex-
pression analysis). Finally, we used the R package,
ppcor, to account the partial Spearman correlation co-
efficient of pathways’ dCs between any two diseases
as the disease similarity.
In order to evaluate the statistical significance of dis-

ease correlations, we performed a permutation test, in
which we randomly re-assigned the affiliation of gene to
pathway with three numbers unchanged: 1) the number
of pathways, 2) the number of pathways’ component
genes and 3) the number of pathways a given gene
belongs to, then accounted the pathways’ dCs and calcu-
lated the partial correlations coefficients using permuted
data. This procedure was repeated 500 times, and a large
number of partial correlation coefficient statistics form
an empirical null distribution. The p-value and FDR
value for each disease pair can then be estimated.
Following above processing, by the cutoff p < 0.05

(FDR < 20.91 %), we got 1,326 significant disease rela-
tionships among 108 diseases including 797 positive
disease relationships and 529 negative relationships. It
is noted that when disease A and A’ form a negative
link, the patient with disease A tends to be protected
from having disease A’ and vice versa, which is prob-
ably due to the inversely regulated biological pro-
cesses involved in the two negatively correlated
diseases [20]. We also propose that an anti-A drug
may have an undesired property of inducing disease
A’ when the drug is inversing its target processes
(Additional file 1) [30].
According to the basic understanding that similar dis-

eases tend to share similar pathogenesis, and thus have the
potential to be treated by common drugs, we tested
whether the 1,326 disease pairs significantly share disease-
related genes or drugs with Hypergeometric test [18]. A
total of 1,119 out of 1,326 disease pairs in the disease net-
work could be associated with known disease genes; simi-
larly, 745 out of 1,326 disease pairs correlated to known
drugs. The Hypergeometric tests for the 1,119 pairs and
745 pairs indicated that 910 of 1,119 disease pairs (81 %)
significantly shared known disease genes, and 348 of 745
disease pairs (47 %) significantly shared drugs, both at a p-
value threshold of 0.05. And the proportion, 81 % and
47 %, are also significantly higher than in random (p-values
were 0.009 for disease-related genes and 0.023 for disease
drugs with one-sided Fisher exact test) [30].
In order to study the consistency of 1,326 disease pairs

with previous knowledge on disease classification, we
compared the DNetDB with traditional disease classifi-
cation, including MeSH, ICD-10 or DO databases. If a
disease relationship is not located in an common disease
category in traditional disease classification, this rela-
tionship is marked as “Ture” in the feature of “novel
relationship” (Additional file 1).

Content
Since a total of 1,326 disease relationships are inferred
based on the similarity of differential coexpression fea-
tures of genes, it offers us the possibility to explore the
common dysfunctional regulation mechanisms under-
lying disease pairs by extracting common DCGs and
DRGs shared by disease pairs. Therefore, we sorted out
common DCGs and DRGs for each disease relationship.
The pathways significantly enriched by the shared DCGs
are termed as the shared pathways of disease pairs.
In total, our DNetDB database is composed of two

parts, basic descriptions of the 108 diseases and infor-
mation of the 1,326 disease relationships.

Basic information of diseases
The basic information of the 108 diseases includes dis-
ease definition, abbreviation for disease name, six types
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of disease IDs (including disease IDs in DO, MeSH,
ICD10, ICD9, OMIM and NCIt databases), GSE IDs,
disease sample tissue and its abbreviation, samples size
(the number of disease samples and health samples),
disease-related genes and drugs. Overall, DNetDB in-
volves 108 diseases, 5,598 pathways, 7,357 disease-
related genes and 342 disease drugs.

Information of disease relationships
DNetDB records all 1,326 disease relationships with
eleven items: 1) partial correlation coefficients, 2) p-values
of permutation test, 3) FDR values of permutation test, 4)
shared DCGs, 5) shared pathways, 6) shared DRGs, 7)
3,762 shared disease-related genes, 8) p-values of the
hypergeometric test for shared disease genes, 9) 148

Fig. 1 Overview of the DNetDB architecture
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shared drugs, 10) p-values of the hypergeometric test for
shared drugs, and 11) comparison with traditional disease
classification.
It is noted that we identified 529 negative disease rela-

tionships. When two diseases form a negative link, the
patient with one disease tends to be protected from the
other disease and vice versa. This is probably attributed
to the inversely regulated biological pathways involved
in the negatively correlated diseases [20]. For example,
in both Hu et al.’s work [20] and ours, Muscular dys-
trophy was negatively correlated to some cancers, which
is consistent with the observations that Muscular dys-
trophy inhibits cell overgrowth while cancer activates it.
We furthermore proposed that a drug targeting a certain
disease may have an undesired impact of inducing its
negatively correlated diseases when the drug is inversing
the relevant processes. Taking Crohn’s disease and its
drug, infliximab, as an example, Crohn’s disease proved
to be negatively connected with T-cell source of chronic
lymphocytic leukemia (correlation coefficient −0.15, at
top 5 %) and Melanoma (correlation coefficient −0.05, at
top 50 %) in our work [30]; infliximab, an antibody
against TNF-α, is used for treatment of inflammatory
bowel disease (IBD) such as Crohn’s disease [40]. In
2006, FDA issued a warning for infliximab consider-
ing its potential association with the development of
Hepatosplenic T-cell lymphoma, a subtype of T-cell
source of chronic lymphocytic leukemia [41]. More
details were provided by our companion research art-
icle [30]. We believe that the differential coexpression
inforamtion of these negatively correlated diseases
helps to explore the mechanisms and improve the
therapeutic applications.

Utility
A user-friendly web interface of DNetDB was developed.
All the data were stored and managed in MySQL data-
base. The interface provides six modules: Homepage,
About disease network, Search, Download, FAQ and
Contact us, which are illustrated as follows.

Homepage
Homepage module displays basic statistics about
DNetDB including disease number, disease relationship
number, sample source number and GSE number, the
workflow of disease similarity algorithm and the illus-
tration of the whole disease network involving all
1,326 disease relationships. In order to facilitate users
to obtain more information, the homepage provides
hyperlinks to the collections of source data, such as
disease databases (DO, Malacards), gene database
(Genecards), and pathway database (KEGG), and drug
database (Drugbank) (Fig. 1).

About disease network, FAQ and Contact us
The motivation, data collection, data processing, evalu-
ation method and application scope of DNetDB are pre-
sented in About disease network module. The FAQ
module addresses those frequently asked questions
about the database. If FAQ does not answer users’ ques-
tions, they can resort to Contact us module.

Search
In order to help users efficiently find out the disease
relationships surrounding one of the 108 diseases, we
provide five searching strategies, via disease name, dis-
ease gene, disease drug, tissue name and GSE ID,
respectively. In addition, users can search for several dis-
eases or GSE IDs or tissues by using unlimited batch,
that is, selecting multiple keywords.
Among the five searching strategies, searching by dis-

ease name is the core function. The query results con-
tain three parts including basic information of disease,
information of disease relationships and the diagram of
disease relationships (Fig. 2). The basic information of
disease includes abbreviate name, definition, related
GSE, sample source, number of samples, other IDs of
disease (including disease IDs in DO, MeSH, ICD10,
ICD9, OMIM and NCIt) which can be connected to cor-
responding databases, disease-related genes and drugs. If
only one disease is queried, DNetDB displays the rela-
tionships between the queried disease and its similar
diseases. If two or more diseases are queried, the rela-
tionships within queried diseases, as well as those be-
tween the queried diseases and the other diseases are
retrieved, which are displayed with different colors. For
each disease relationship, the DNetDB offers the eleven
items described above. Genes, pathways and drugs in the
result table can be linked to Genecards, MSigDB, Drug-
bank, respectively. Through above exhibitions, users can
capture the shared DCGs and the shared pathways of
any disease pair, which help to explore the common dys-
functional regulation mechanisms. Finally, the disease
relationships are shown in graph with nodes and lines
for facilitating observation. Red nodes represent queried
diseases; yellow nodes represent similar diseases of quer-
ied diseases. Red lines represent positively correlated dis-
ease relationships; green lines represent negatively
correlated relationships. Broad lines represent disease
relationships among queried diseases; fine lines repre-
sent disease relationships between queried diseases and
other diseases (Fig. 2).
Besides, searching via disease gene and disease drug,

are also implemented. The disease(s) associated with
queried gene or drug is marked firstly; then DNetDB
seeks and exports disease relationships around the
marked disease(s). This helps user perform drug reposi-
tioning and explore pathogenesis since pathogenesis and
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drug clinical application can be appropriated from one
disease to its similar ones.
In our companion work [30], we found both the type

of disease and the type of affected tissue influence dis-
ease similarity. We therefore supply a fourth searching
category, by sample tissue, to check the relationships be-
tween the diseases which originate from a certain tissue.
The searching results are also showed in the same man-
ner as the results of searching by disease names.
When searching via GSE IDs, the GSE IDs would be

converted into disease names. Besides the common re-
sults like directly searching via disease names, the basic
information of GSEs, including the titles, PMID of
PubMed, are also included.

Download
The Download module provides five comprehensive files
to be downloaded, including basic information of the 86
GSEs, basic information of the 108 diseases, the 1,326

disease pairs, and the dC value tables as well. And a spe-
cific searching result can also be downloaded.

Discussion
Disease similarity are of great interest because this know-
ledge enhances our understanding of disease etiology and
pathogenesis [1]. The currently available disease similarity
databases [22–24] collect disease relationships which were
estimated according to clinical information, phenotypic
characteristics, and known disease-related genes, therefore
have limited chance to contain novel disease relationships
or support discovering novel knowledge. In transcriptomic
domain, differential coexpression analysis has been proved
to be able to unravel dysfunctional regulation mechanism.
By using a differential coexpression analysis method previ-
ously developed in our DCGL v2 R package [26–29], we
identified 1,326 disease relationships among 108 diseases
based on gene expression data [30]. The 1,326 disease re-
lationships and their relevant information were collected

Fig. 2 An example of Search module
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in the human disease network database (DNetDB), which
can be visited at http://app.scbit.org/DNetDB/#.
The database provides abundant information including

not only disease definition, six types of IDs for disease
(including disease IDs in DO, MeSH, ICD10, ICD9,
OMIM and NCIt), GSE IDs, samples size (the number
of disease samples the health samples), but also common
DCGs, pathways, DRGs, disease-related genes and drugs
for each disease pair, as well as graphical display of dis-
ease relationships. The common DCGs and DRGs which
reflect the common dysfunctional regulation mechanism
are extracted and presented in our database. In addition,
the details of common DCGs and DRGs in the two dis-
eases of a disease pair could also be displayed, such as
the proportion of common DCGs, dC values of common
DCGs, and number of common DRGs.
By providing searching strategies via disease gene and

disease drug, DNetDB greatly supports drug reposi-
tioning and pathogenesis exploration, since user can ap-
propriate the pathogenesis and drug application from
one disease to its similar diseases. In our companion
paper [30], we have proved that if a drug is able to suc-
cessfully treat disease A in our disease network, it tends
to treat A-linked diseases too. For example, in DNetDB,
Psoriasis and T-cell polymphoytic leukaemia is a disease
pair with a p-value of 0.035, by the hypergeometric test
for shared drugs. Drugs for Psoriasis include Prednisone,
Methotrexate, Tazarotene and etc., a total of 19. Drugs
for T-cell polymphoytic leukaemia are Prednisone,
Methotrexate, Rituximab and etc., a total of 14. Their
common drugs are Prednisone and Methotrexate.
Methotrexate, an antimetabolite and antifolate drug, is
recorded in American Hospital Formulary Service
(ASHP) drug information 2004 for treatment of both
polymphoytic leukaemia and Psoriasis [42]. Accordingly,
we propose that the other drugs for Psoriasis maybe also
have the potential to treat polymphoytic leukaemia and
vice versa. Another interesting example is Parkinson’s
disease and Influenza A. Amantadine hydrochloride
(trade name Symmetrel, by Endo Pharmaceuticals) has
been approved for treatment of both Influenza A and
Parkinson’s disease [43]. Similarly, we propose that other
drugs for Parkinson, for example, Droxidopa and Ioflu-
pane I, and the other drugs for Influenza A, for example,
Zanamivir, Rimantadine and Thymalfasin, are also worth
for further exploration for their potential in drug
repositioning.
In conclusion, DNetDB is the first database which pre-

sents disease relationships from the viewpoint of gene
regulation mechanism. DNetDB records common dys-
functional regulation mechanism, common disease-
related genes and drugs of disease pairs. In this way,
DNetDB has the capability to support pathogenesis
exploration, drug repositioning and drug development.

Conclusion
DNetDB is the first disease similarity database from the
viewpoint of dysfunctional regulation mechanism. It pro-
vides an easy-to-use web interface to search and browse
disease relationships through disease name(s), disease
gene, drug, GSE ID(s), and tissue (s). DNetDB facilitates
the study of disease relationships and provides insightful
clues to investigate diseases’ etiology and pathogenesis,
perform drug repositioning, and design novel thera-
peutic interventions.

Availability and requirements
DNetDB is freely available for use at http://app.scbit.org/
DNetDB/#.
Operating Systems: DNetDB is accessed from a

browser; therefore, it is platform-independent.
Browsers: DNetDB is extensively tested with browsers

Internet Explorer, Google Chrome and Mozilla Firefox.

Additional file

Additional file 1: Additional analysis and concepts explanation. This file
contains 1) comparison of DNetDB and the results of differential expression
analysis (DEA-) based method ; 2) comparison of DNetDB and traditional
disease classification; 3) negative disease relationships and 4) DCp and DCe.
(DOCX 6926 kb)
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