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Abstract

Background: Accurate genotype imputation can greatly reduce costs and increase benefits by combining whole-genome
sequence data of varying read depth and array genotypes of varying densities. For large populations, an efficient strategy
chooses the two haplotypes most likely to form each genotype and updates posterior allele probabilities from prior
probabilities within those two haplotypes as each individual’s sequence is processed. Directly using allele read counts can
improve imputation accuracy and reduce computation compared with calling or computing genotype probabilities first
and then imputing.

Results: A new algorithm was implemented in findhap (version 4) software and tested using simulated bovine and
actual human sequence data with different combinations of reference population size, sequence read depth and error
rate. Read depths of ≥8× may be desired for direct investigation of sequenced individuals, but for a given total cost,
sequencing more individuals at read depths of 2× to 4× gave more accurate imputation from array genotypes.
Imputation accuracy improved further if reference individuals had both low-coverage sequence and high-density (HD)
microarray data, and remained high even with a read error rate of 16 %. With read depths of ≤4×, findhap (version 4) had
higher accuracy than Beagle (version 4); computing time was up to 400 times faster with findhap than with Beagle. For
10,000 sequenced individuals plus 250 with HD array genotypes to test imputation, findhap used 7 hours, 10 processors
and 50 GB of memory for 1 million loci on one chromosome. Computing times increased in proportion to population size
but less than proportional to number of variants.

Conclusions: Simultaneous genotype calling from low-coverage sequence data and imputation from array genotypes
of various densities is done very efficiently within findhap by updating allele probabilities within the two haplotypes for
each individual. Accuracy of genotype calling and imputation were high with both simulated bovine and actual human
genomes reduced to low-coverage sequence and HD microarray data. More efficient imputation allows geneticists to
locate and test effects of more DNA variants from more individuals and to include those in future prediction and selection.
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Background
Genotype imputation greatly reduces cost and increases
accuracy of estimating genetic effects by increasing the ra-
tio of output to input data, but algorithms must be effi-
cient because numbers of genotypes to impute may
increase faster than computer resources. International ex-
change of sequence data has provided whole genomes for
thousands of humans [1] and hundreds of bulls [2]. Array
genotypes are also available for hundreds of thousands of

both humans and cattle, and all of these could be imputed
to sequence with varying accuracy and difficulty depending
on the algorithms used. Especially for rare alleles, accurate
estimation of effects requires large numbers of individuals
with phenotypes and observed or imputed genotypes.
Genome sequencing directly interrogates the genetic vari-

ation that underlies quantitative traits and disease suscepti-
bility and thus enables a better understanding of biology.
However, deeply sequencing large numbers of individuals is
still not practical given current costs [3]. Instead, sequence
genotypes can be imputed accurately by combining infor-
mation from individuals sequenced at lower coverage and
from those genotyped with less expensive single nucleotide
polymorphism (SNP) arrays. Sequencing and genotyping
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projects always involve a tradeoff between number of indi-
viduals sequenced and read depth or SNP density. More ef-
ficient imputation will allow geneticists to locate and test
effects of more DNA variants from more individuals and to
include those in future prediction and selection.
In many livestock and some crop populations, most

DNA may be inherited from a small group of common an-
cestors a few generations in the past. If most ancestors are
sequenced and phased, their large segments of chromo-
some can be traced to descendants using HD SNP arrays
[4, 5]. Beagle (version 3) [6] and IMPUTE2 [7] provide
good results in cattle without using pedigree data, except
for single nucleotide variants (SNVs) with low frequency
[8, 9]. Beagle (version 4) can input genotype probabilities
instead of only known genotypes and is tested here for pro-
cessing low-coverage sequence data.
Animal breeders have developed imputation software

that runs many times faster than software from human ge-
neticists by using general pedigrees, long-range phasing
and the high degree of haplotypes shared across very large
populations [10–12]. For example, programs such as find-
hap and FImpute use genotypes from several low-density
arrays to impute >60,000 markers for >500,000 dairy cattle
in monthly or weekly national genomic evaluation systems
[13] and can impute >600,000 markers for >100,000 ani-
mals in 10 h using 6 processors [14]. These rapid methods
also can give higher imputation accuracy to sequence data
[15]. Similarly, plant breeders have developed fast and ac-
curate imputation algorithms for low-coverage sequence
data from inbred populations [16].
Human geneticists have not used general pedigrees in

imputation until very recently [17] and could benefit
from efficient algorithms already available for large, re-
lated populations. Use of pedigree can improve speed
and imputation accuracy, especially for recent muta-
tions, because the normal and mutated versions of a
haplotype are both present in the same population. Tra-
cing inheritance within families separates the normal
from the mutated haplotype. Animal breeding datasets
often have 10 consecutive generations of genotyped an-
cestors to track the occurrence and inheritance of such
mutations [18, 19]. Knowing the four haplotypes of the
two parents or the haplotypes of grandparents reduces
the search space from thousands to just a few haplo-
types plus potential crossovers.
Sequencing more individuals at lower coverage often pro-

vides more power for equivalent cost, which is proportional
to number of individuals times coverage depth [20–22].
However, imputation algorithms for sequence data with
low read depth or high error must account for less certain
knowledge of homozygotes and heterozygotes than in array
genotypes [23–26]. At each particular locus in diploids, ei-
ther of the two alleles may be read a different number of
times, not read at all or misread, which requires additional

probability calculations not needed in many previous algo-
rithms that assumed genotypes were known [27]. With low
read depth, matching to HD genotypes is less accurate, but
imputation can be improved by including HD genotypes
also for the sequenced individuals so that known genotypes
are available at corresponding loci [24].
Without imputation, achieving a sensitivity of 99 % for

detecting heterozygotes would require an average sequen-
cing depth of >21× after accounting for sequencing errors
[28]. Current sequence reads are mostly 100 to 200 bases
in length and contain only one or two variants per seg-
ment. The natural phasing that could occur when reading
linked alleles [27] does not occur often because the seg-
ments are too short to contain multiple heterozygous loci.
Genotypes can be imputed accurately from sequence data
with low read depth or high error, but new strategies are
needed to efficiently impute many thousands of whole ge-
nomes [29]. A simple strategy without imputation can
identify variants of interest, but their estimated effect sizes
are biased downward [30].
This study (1) adapts the fast imputation algorithms

of VanRaden et al. [14] to process sequence read depths
directly instead of first calling genotypes, (2) tests the
accuracy of genotype calling and imputation for differ-
ent reference population sizes, sequence read depths
and error rates and (3) compares including or excluding
SNP array data of different densities in the data for the
sequenced individuals. The tests used simulated bovine
and actual human sequences.

Results
Computing costs are low for version 4 of findhap [31] and
increase in linear proportion to population size but less
than proportionally to SNV density (Table 1). Computing
times for findhap ranged from 11 min with 500 individuals
(250 sequences plus 250 HD genotypes) to 7 h with
10,000 sequences. With 500 individuals, Beagle took al-
most 3 days (387 times longer than findhap) and was not
tested for larger populations. The timing tests for both
findhap and Beagle used 10 processors and one simulated
bovine chromosome. With SNV densities of 2000, 20,000
and 1 million evenly spaced SNVs across the chromo-
some, computing times for findhap increased with ratios
of only 1 to 4.25 to 105, respectively, compared with SNV
density ratios of 1 to 10 to 500. Efficiency of findhap im-
proves with higher SNV density because haplotype win-
dows contain more SNVs, but most haplotypes can be
excluded after checking only a few SNVs.
Compared with version 2 of findhap [11], version 4 re-

quires only slightly more time but almost twice as much
memory because of storing 2-byte probabilities instead of
1-byte haplotype codes. Processing one chromosome re-
quired about 5 Gigabytes of memory for 1000 sequenced
animals plus 250 animals with HD genotypes. The memory
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required depends on the maximum number of haplotypes
in any segment and may also scale less than linearly with
population size. Version 3 of findhap [31] has nearly the
same performance as version 2 for initial processing of data,
but can use prior haplotypes to speed processing when new
genotypes are added [32]. It inputs the previous list of hap-
lotypes sorted by descending frequency and the numeric
codes that specify which two haplotypes make up the geno-
type of each animal. Those features were retained in version
4 and improve speed, especially when the new genotypes
are from progeny of the previous population.
Beagle and findhap imputation accuracies are compared

in Table 2. When read depth for sequenced animals was
8×, both imputation methods were highly accurate for
genotype calling, and Beagle had 1 or 2 % more correct
calls when imputing from HD. However, when read depth
was ≤4×, findhap became much more accurate than Bea-
gle for both genotype calling from sequence and imput-
ation from HD. Beagle software first performs genotype
calling for the sequenced population and then imputation
for the HD population, whereas findhap processes the two
populations together. The combined data allows the HD
population to improve the accuracy of phasing the
sequenced population in findhap, but the HD popula-
tion makes no contribution with Beagle. Accuracy of

Beagle might be improved using more than the default
number of iterations [4] but at the expense of slower
computation. Accuracy of findhap might be improved
by including more family members with HD, but that
was not tested here.
Accuracies from findhap for both genotype calling and

imputation improved if the sequenced animals also had
array genotypes (Fig. 1). With 250 sequenced and 250
HD genotyped animals and a sequencing error rate of
1 %, the accuracy for sequenced animals was 82.3, 87.9,
93.9, 98.5 and 99.9 % for read depths of 1×, 2×, 4×, 8×
and 16×, respectively, when their data did not include
HD genotypes and 87.1, 91.3, 95.8, 98.7 and 99.9 % when
their data did include HD genotypes. For animals with
only HD data, corresponding imputation accuracy was
77.2, 83.3, 89.1, 94.3 and 95.4 % when data for se-
quenced animals did not include HD genotypes and
83.1, 89.2, 93.1, 95.0 and 95.3 % when they did. Includ-
ing HD data improved genotype calling and imputation
accuracy, especially when sequence read depth was
lower or sequencing error rate was higher. Even with an
error rate of 0 % for sequencing, higher coverage or in-
clusion of HD genotypes improves accuracy because
homozygous genotypes cannot be directly determined
from low-coverage sequence data.

Table 1 Computing times with 10 processors for different populations and SNV densities using one simulated bovine chromosome

Software Reference data Array genotypes Computing time
(minutes)Population size SNVs Population size SNVs

Beagle 250 1,000,000 250 20,000 4258

findhap 250 1,000,000 250 20,000 11

500 1,000,000 250 20,000 19

1000 1,000,000 250 20,000 37

10,000 1,000,000 250 20,000 420

10,000 20,000 250 2000 17

10,000 2000 250 200 4

884 394,274 218 39,440 17

Table 2 Accuracy and percentage correct for calling genotypes of sequenced animals and for imputation for 250 young animals
with simulated bovine data

Sequenced population Software Genotype calling (1 % error rate) Imputation from HD to sequence

Size Coverage Percentage correct Correlation Percentage correct Correlation

250 8× Findhap 98.7 0.981 95.0 0.926

Beagle 99.0 0.984 97.1 0.956

500 8× Findhap 99.1 0.988 98.1 0.974

Beagle 99.6 0.994 99.4 0.991

250 4× Findhap 95.8 0.939 93.1 0.897

Beagle 95.0 0.918 78.2 0.582

250 2× Findhap 91.3 0.879 89.2 0.837

Beagle 79.5 0.602 63.5 0.100
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Larger population size also improved accuracy of
genotype calling for sequenced animals (Table 3), as ex-
pected. Gains were largest for low read depth and high
error rate. With a read depth of 2× and error rate of
1 %, accuracy using findhap with 250, 500 and 1000 se-
quenced animals was 91.3, 94.1 and 95.9 %, respectively
(Tables 2 and 3). With an error rate of ≤1%, a larger
population improved genotype calling slightly for 8× but
not for 16× coverage, because calling accuracy was
already ≥99.9 % with populations of 250, 500 or 1000 an-
imals (Fig. 1 and Table 3). However, accuracy did im-
prove with population size if error rates were higher.
Table 4 shows the accuracy of imputation from HD

array to sequence for 250 animals with genotypes from a
simulated 600,000 (600 K) SNP array by reference popu-
lation size, sequence read depth and error rate. Using
500 animals with 16× coverage and 0 % error as the ref-
erence population, 98.4 % of imputed genotypes were
correct with the new algorithm compared to 97.8 % with
version 2 of findhap [14]. With 4× instead of 16× cover-
age, 96.8 % of imputed genotypes were correct. Using
1000 animals with 16× coverage and 0 % error, 99.3 % of
genotypes were imputed correctly from HD compared
with 98.4 % using 4 × .

Sequence reads with 1 or 4 % error rates reduced im-
putation success slightly, but 16 % error caused larger
reductions (Table 4). For example, with 500 sequenced
animals and 8× coverage in the reference population, the
HD animals had 98.2, 98.1, 98.0 and 96.9 % correct im-
putation if sequence error was 0, 1, 4 and 16 %, respect-
ively. With lower read depths, error rates caused larger
differences in imputation success, but with 1000 animals
and 16× coverage, 98.9 % of genotypes for HD animals
were imputed correctly even if the read error rate was
16 %. With 10,000 animals sequenced with 1 % error
and 2× or 1× coverage, the imputed genotypes for HD
animals were 97.5 and 95.8 % correct, respectively. Ac-
curacies were a little lower if measured by correlation of
imputed and true genotypes after centering for allele fre-
quency, but all conclusions were consistent.
Lower density arrays further reduced imputation ac-

curacy. When the reference population had 1000 ani-
mals sequenced with 8× coverage, 1 % error and HD
markers included, animals genotyped with only a simu-
lated 60,000 (60 K) SNP array had 96.8 % correct imput-
ation and those genotyped with a simulated 10,000
(10 K) SNP array had only 91.7 % correct imputation. In
these tests, maximum haplotype length in findhap was
extended to 100,000 variants from the 50,000 used for
imputing from 600 K SNPs so that sufficient markers
were included within each interval. If the animals used
to test imputation had low-coverage sequences instead
of low-density chips, animals had 99.1 % correct imput-
ation from 2× coverage or 99.0 % correct from 1× cover-
age with the same reference population (results not
shown). Figure 2 shows corresponding imputation accur-
acies that were somewhat lower when the reference
population had 500 animals sequenced at 8× coverage.
When older animals with 8× coverage and younger an-

imals with 2× or 1× coverage or 600 K, 60 K or 10 K
SNP genotypes were all included in one data set instead
of testing the young animal data types separately, imput-
ation accuracy decreased slightly in some cases because

Fig. 1 Correctly called or imputed genotypes by read depth, error rate, and HD inclusion. The percentage of correctly called genotypes is shown for 250
sequenced animals as well as the percentage of correctly imputed SNPs for 250 animals with HD genotypes. Genotype calling and imputation were done
simultaneously. The x-axis shows sequence read depth, error rate and inclusion (1) or exclusion (0) of HD data for sequenced animals (e.g. 2-4-1 indicates a
sequence read depth of 2×, error rate of 4 %, and the inclusion of HD data in the simulated sequence data)

Table 3 Percentages of genotypes called correctly by findhap
for simulated sequenced animals

Error rate
(%)

Population
size

Sequence read depth

1× 2× 4× 8× 16×

0 500 92.1 94.9 97.7 99.5 100.0

1000 94.6 96.4 98.3 99.7 100.0

1 500 91.2 94.1 97.0 99.2 99.9

1000 93.8 95.9 97.8 99.5 99.9

4 500 90.5 93.1 96.1 98.4 99.7

1000 93.6 95.2 97.2 98.9 99.8

16 500 87.3 89.2 91.6 95.2 98.1

1000 91.3 92.1 93.6 96.5 98.8
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haplotype lengths and other options were not optimal
for all data types. Further research is needed to improve
these strategies and the resulting accuracy of fast imput-
ation when combining low-density arrays with low-
coverage sequence data. Two-stage imputation strategies
[5, 14] could improve accuracy for that case.
For the same total cost of genotyping (number of animals

times coverage), higher read depth resulted in more accurate
genotype calling of sequenced animals, but imputation from
HD was more accurate with lower depth and a larger popu-
lation (Fig. 3). For sequenced animals, accuracy of genotype
calling was highest for 250 animals with 16× coverage and
declined for 500 with 8× or 1000 with 4× coverage. For im-
putation from HD, sequencing twice as many animals at half

the read depth often resulted in more correct calls (e.g.
95.3 % using 250 animals with 16×, 98.1 % using 500 animals
with 8× or 98.2 % using 1000 animals with 4× coverage).
However, coverage less than 4× did not further improve im-
putation. For example, with an error rate of 1 %, accuracy
for 1000 animals with 2× coverage was lower than for 500
animals with 4×, and accuracy for 10,000 animals with 2×
coverage was lower than for 1000 animals with 8× (Table 4).
After reducing coverage and introducing read errors,

human chromosome-22 sequences had a pattern for im-
putation accuracy (Table 5) that was similar to that for
simulated bovine sequences. However, the options in
findhap were set to a minimum length of 100 SNVs, a
maximum length of 20,000 SNVs and processing with 6
iterations per step. In all cases, error rates assumed in
the options file equaled the true error rates used in gen-
erating the data. After imputing the 90 % missing SNVs
from the 10 % observed HD SNVs, >97 % of the se-
quence genotypes were correct when read depth was
≥8×. For sequenced individuals with ≥8× coverage,
>99 % of genotypes were called correctly if error rate
was ≤4%. Similar results from both human and simu-
lated bovine data indicate that 500 to 1000 sequences
give excellent imputation if coverage is high (e.g. ≥8×).
As expected, correlations between imputed and true ge-
notypes (Fig. 4) were lower for variants with low minor
allele frequency (MAF) compared with high-MAF vari-
ants for both human and cattle data.

Discussion
Software design is becoming more important when process-
ing more data types and rapidly expanding datasets. The
new algorithm directly uses read depth counts for the

Table 4 Accuracy of imputation and percentages of correctly imputed genotypes for 250 animals with genotypes from a simulated
600 K array

Reference population
size

Sequence read
depth

Error rate (%)

0 1 4 16

Percentage
correct

Correlation Percentage
correct

Correlation Percentage
correct

Correlation Percentage
correct

Correlation

500 16× 98.4 0.978 98.4 0.977 98.3 0.976 97.8 0.969

8× 98.2 0.975 98.1 0.974 98.0 0.972 96.9 0.956

4× 96.8 0.956 96.7 0.954 96.8 0.955 95.4 0.934

2× 94.7 0.925 94.1 0.917 94.2 0.917 93.6 0.909

1× 90.9 0.869 89.8 0.853 90.0 0.855 90.0 0.855

1000 16× 99.3 0.990 99.2 0.989 99.2 0.989 98.9 0.984

8× 99.2 0.988 99.1 0.987 99.0 0.986 98.0 0.972

4× 98.4 0.978 98.2 0.975 98.1 0.973 96.9 0.956

2× 97.0 0.958 96.5 0.951 96.7 0.953 95.8 0.939

1× 94.8 0.925 93.8 0.911 93.9 0.912 93.4 0.903

10,000 2× 97.5 0.964

1× 95.8 0.939

Fig. 2 Imputation accuracy for low-density or low-coverage genotypes.
Correlations between imputed and true genotypes and proportions of
correctly imputed genotypes are shown for 250 animals with low-density
SNP or low-coverage sequence genotypes based on a reference
population of 500 animals sequenced with a simulated sequence read
depth of 8× and 1 % error
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reference and alternate alleles, array genotypes, and gen-
eral pedigrees to impute sequence genotypes. When read
depth was ≤4×, findhap was more accurate than Beagle
for both genotype calling and imputation, whereas Beagle
was somewhat more accurate when read depth was ≥8×.
Computing times were up to 400 times faster with findhap
than with Beagle for the pedigreed cattle population.
Advantages might be smaller for human populations with-

out pedigree data, but findhap computing times and imput-
ation accuracy were very similar with or without pedigree
for the cattle sequence data, which agrees with results from
FImpute that use of pedigree helps mainly at the lowest
densities [15]. Beagle has an option to process duos and
trios, but this further decreased its speed by about 5 times
and increased the memory required. The computing times
reported here include both phasing and imputing, and times
can be reduced if only imputation is done using a pre-
phased reference population in either findhap or Beagle.
However, if the quality of genotype calling is greatly reduced
in Beagle with low-coverage sequence, then the quality of its
phasing likely is also greatly reduced. Wang et al. [25] re-
ported that accuracies and speed of genotype calling with
SNPTools were similar to Beagle with 4× data and no pedi-
gree. The much faster speed of FImpute and findhap is
mainly because of direct searching for long haplotypes in

frequency order instead of using the hidden Markov process
of most other programs [33].
Sequencing studies can improve imputation and reduce

error rates by obtaining HD genotypes from the same DNA
with little added cost [34]. Our results confirmed that the
accuracy of genotype calling and imputation increased when
read depth was ≤4× and sequenced individuals also had HD
genotypes, which was consistent with results of Menelaou
and Marchini [24]. Including both HD and low-coverage
data for the same individual improved the probability of
selecting the two correct haplotypes before updating the al-
lele probabilities within the two selected haplotypes. When
animals with only low or medium-density array genotypes
were included, accuracy decreased slightly because findhap
parameter values were not optimal for all data inputs. Fur-
ther research is needed to improve imputation from low-
density chips as well as strategies to select optimal haplotype
lengths and other options in findhap automatically.
Two stages of imputation, first from low to medium dens-

ity and then from medium to high, can be more accurate
than imputing directly from low densities to high. Two
stages improved accuracy using findhap or FImpute to im-
pute from low to medium and then to high-density array ge-
notypes [14] or using Beagle to impute from medium to
high density and then to sequence data [5]. However, the

Fig. 3 Comparison of correctly called or imputed genotypes based on cost. The proportion of genotypes called correctly from sequence data (a)
or imputed correctly from HD SNP (b) is shown for a given total cost based on simulated reference population size times sequence read depth
(e.g. a population size of 250 animals and 2× coverage has the same cost as a population size of 500 animals and 1× coverage)

Table 5 Percentage of genotypes on human chromosome 22 correctly called from various sequence read depths and error rates or
imputed correctly from HD

Sequence read
depth

Error rate (%)

0 1 4 16

Sequence HD Sequence HD Sequence HD Sequence HD

16× 100.0 97.4 99.9 97.4 99.8 97.4 98.9 97.3

8× 99.6 97.3 99.4 97.3 99.0 97.2 98.1 97.2

4× 98.6 96.8 98.3 96.9 97.9 96.9 96.9 96.7

2× 97.0 96.2 96.9 96.3 96.4 96.0 95.1 95.5

1× 95.1 95.2 95.1 95.1 94.5 94.6 93.2 93.8
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choice of which medium density to choose is rapidly becom-
ing more difficult because genotypes from 18 different arrays
of varying densities are used routinely. The current focus
was mainly on HD to low-coverage sequence data.
Population size, sequence read depth and error rate all af-

fected the accuracy of genotype calling and imputation.
Druet et al. [9] also examined tradeoffs for a given total cost
of more coverage versus more individuals using simulated
bull sequences and Beagle. Loci with moderate frequency
were discovered and imputed accurately using only 50 bulls
sequenced at 12× coverage, but accuracy decreased dramat-
ically for loci with low to very low frequencies. Use of only
25 bulls with 24× coverage reduced accuracy because many
variants were not detected, and imputation was poor for loci
with very low minor allele frequency when too few haplo-
types were observed. When the sequencing effort was con-
stant at 600-fold, accuracy improved using more individuals
sequenced at lower coverage (e.g. 150 individuals with 4×
coverage instead of 75 individuals with 8× coverage). With
1200-fold total coverage, sequencing 200 individuals with 6×
coverage was better than 100 with 12×, and 400 with 3×
was better than 200 with 6 ×.
Our results are consistent with Druet et al. [9] but

also include lower coverage (<4×) and larger popula-
tions (≤10,000). For constant cost of sequencing, our re-
sults showed optimum read depth was only 1× with
500-fold total coverage, 2× with 1000-fold total cover-
age and 4× with 2000-fold total coverage for imputation
from HD arrays (Fig. 3). For a given total sequencing ef-
fort, higher read depths were desired if the goal was dir-
ect investigation of the sequenced individuals, but larger
populations with lower coverage of 2× to 4× were de-
sired for imputation from HD arrays.
For a newly discovered quantitative trait locus (QTL) to

explain more variance than the best markers already geno-
typed in the population, the QTL imputation accuracy must
be fairly high and exceed the correlation between the QTL
and the markers. For example, an observed marker with no
imputation loss and correlated by >0.90 to the QTL may
have larger estimated effect than the true QTL imputed with

<0.90 accuracy. However, if the true QTLs can be located,
they can be added to arrays to avoid imputation in the fu-
ture. Our accuracies from simulated data are higher than
those of Brøndum et al. [8] from real data, perhaps because
they computed correlations at each locus and then averaged,
which puts more emphasis on low-MAF markers that are
more difficult to impute [35]. Monomorphic loci do not
contribute to correlations after centering because such loci
add zero to both numerator and denominator.
Sequence analysis begins by detecting sites that exhibit

evidence of polymorphism and then calling or imputing
genotypes at the polymorphic sites [25]. We did not dir-
ectly examine variant detection, but findhap does estimate
allele frequencies iteratively beginning with simple allele
counts. As allele probabilities are updated within each
haplotype, allele frequencies can approach zero when the
observed number of minor alleles is less than or equals
the expected number based on the error rate. Thus, SNV
selection is somewhat automatic when imputing with
findhap if all of the original polymorphic sites are included
in the data. However, only two alleles per site are allowed,
and other observed alleles may be treated as errors.
The sequence genotypes of human chromosome 22 from

the 1000 Genomes Project [1] were converted to differing
read depths and error rates. Genotype calling and imput-
ation results were not as accurate with actual human as with
the simulated bovine sequences, probably because the simu-
lation was based on a real Holstein pedigree with much
higher average relationships than in most human studies.
Finding long, shared haplotypes is much easier when close
relatives appear in the reference population. In many human
datasets, the shared haplotypes are shorter and originate
from shared ancestors many generations ago. This probably
caused lower imputation accuracy from array to sequence
data in humans than in cattle even though a denser array
was simulated for humans. Because genotypes are imputed
from haplotypes in both findhap and Beagle, improved
imputation accuracy implies either that more alleles
within the haplotype are correct or that the correct hap-
lotypes are selected more often. Direct comparisons of

Fig. 4 Average correlations of true and imputed sequence variants for human or cattle simulated HD genotypes. Correlations are plotted by
minor allele frequency. The 884 humans and 500 cattle with sequence data had 16× coverage with 1 % read errors and included HD data
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the haplotypes could be helpful but were not examined
here.
Computation is a big challenge as numbers of genotyped

and sequenced animals both grow. For imputing genotypes
from low-density (3000 to 10 K SNPs) to medium-density
(50,000 SNPs) arrays using populations of >10,000 animals,
version 2 of findhap was about as accurate as version 3 of
Beagle but 50 times faster and with much less memory re-
quired [10, 36]. The current US dairy cattle database has
>3000 animals genotyped with HD, >150,000 with 50,000
SNPs, >500,000 with lower densities (3000 to 16,000 SNPs)
and >30 million phenotyped animals. Holstein reference
populations in Europe and North America already include
>25,000 bulls genotyped with ≥50,000 SNPs, and some also
include many more cows. Imputation of 30 million SNVs
on all 30 chromosomes for 25,000 reference bulls requires
about 9 days with 25 processors as tested using Intel
Nehalem-EX 2.27 GHz processors with version 4 of find-
hap but could take many months with Beagle. Therefore,
Beagle’s use is restricted to smaller populations or fewer
variants. Version 4 of findhap retains the efficient comput-
ing time and memory of previous versions and allows ac-
curate imputation using low-coverage sequence data.

Conclusions
The algorithm for simultaneous genotype calling from se-
quence data and imputation from array genotypes of vari-
ous densities in findhap (version 4) is very efficient. With
low read depths or high error rates, updating allele prob-
abilities within pairs of haplotypes for each individual is
more accurate than first calling genotypes or computing
genotype probabilities and then imputing. Accuracy of
genotype calling and imputation both improved if refer-
ence populations with low-coverage sequence data also
were genotyped with HD arrays, but accuracy decreased
slightly when lower-density array genotypes were com-
bined with low-coverage sequence data because haplotype
length options were not optimal for all data inputs. Use of

pedigree can greatly speed imputation by first examining
haplotypes of known ancestors and improves probability
of finding the correct haplotypes. More efficient imput-
ation allows geneticists to locate and test effects of more
DNA variants from more individuals and to include those
in future prediction and selection.

Methods
Tests of genotype calling and imputation used up to 10,000
simulated bovine sequences containing 1 million SNVs on a
chromosome of average length (100 cM) or 1092 actual hu-
man sequences containing 394,724 SNVs on the shortest
chromosome (HSA 22). Simulated array genotypes con-
tained 2 % of the simulated bovine SNVs or 10 % of the
total human SNVs. Imputation accuracy was measured as
the correlation of imputed with true genotypes or percent-
age of genotypes that were correctly called. The parameters
tested were read depth, error rate, reference population size,
and inclusion or exclusion of HD genotypes in the sequence
data as summarized in Table 6.

Simulated bovine sequences
The bovine pedigree and the number of SNVs are identical
to those in a previous test of sequence imputation [14], but
the simulated SNVs have reduced read depth and more er-
rors instead of directly observed genotypes. The pedigree
contained 250 randomly chosen US Holstein bulls born in
2010 and about 10 generations of their known ancestors for
a total of 23,656 animals. The top 250, 500, 1000 or 10,000
older bulls with the most US daughters were given sequence
data and used to test the accuracy of genotype calling as well
as serve as the reference population for imputation. The
younger 250 bulls were used to test imputation from geno-
types from different density arrays (600 K, 60 K and 10 K)
and low-coverage sequence data. The ancestor bulls were
highly selected, had an average birth year of 1987, and some-
times were separated from the younger bulls by several gen-
erations because the generation interval was about 5 years.

Table 6 Parameters tested for genotype calling and imputation from an HD array

Dataset Sequenced population Array genotypes

SNVs Population size Sequence read depth Error rate (%) HD information included SNPs/SNVs Population size

Bovine (simulated) 1,000,000 250 1×, 2×, 4×, 8×, 16× 0, 1, 4, 16 No 20,000 250

Yes 20,000 250

500 1×, 2×, 4×, 8×, 16× 0, 1, 4, 16 Yes 20,000 250

1000 1×, 2×, 4×, 8×, 16× 0, 1, 4, 16 Yes 20,000 250

10,000 1×, 2× 1 Yes 20,000 250

1000 8× 1 Yes 3333 250

1000 8× 1 Yes 1× sequence 250

2× sequence 250

Human
(chromosome 22)

394,724 884 1×, 2×, 4×, 8×, 16× 0, 1, 4, 16 Yes 39,440 218
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One simulated chromosome with 1 million polymorphic
loci and a length of 100 cM represented the bovine gen-
ome, which has 30 chromosome pairs and about 30 mil-
lion SNVs [3]. The simulated 600 K, 60 K and 10 K chips
contained subsets of 20,000, 2000 and 333 markers, re-
spectively. The markers placed on chips had allele fre-
quencies (p) that were uniformly distributed between zero
and one in the founding population, but the sequence var-
iants had lower minor allele frequencies and a quadratic
distribution generated from the uniform distribution by

0:5� 0:25
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uniform−0:5j jp

ffiffiffiffiffiffiffi
0:5

p

where the term after the ± sign was added if the uniform
was >0.5 or subtracted if ≤0.5. Haplotypes from each un-
known parent of the known ancestors were generated with
linkage disequilibrium and then inherited with recombin-
ation to descendants. All simulated markers and SNVs were
biallelic. Maternal or paternal alleles had equal likelihood to
be read.
The simulated read depths had Poisson distributions with

averages of 16, 8, 4, 2 or 1, representing medium to low-
coverage sequence data. Read depth for the sequenced ani-
mals was reduced either at all variants or at all variants ex-
cept the chip loci, which were given a read depth of 32.
This procedure tested if sequence reads and HD arrays
should be combined to improve imputation as recom-
mended by Menelaou and Marchini [24]. Lower accuracy
could be assumed for the array genotypes by either redu-
cing the read depth or increasing the read error assumed
for those loci, but simulated array genotypes had an error
rate of 0.001 in this study.
The individual sequence reads contained 0, 1, 4 or

16 % error to test sensitivity to data quality. Another
test included low-coverage sequence for young animals
as proposed by De Donato et al. [37] and Hickey [38],
but the sequence data for those animals also included
600 K array data. Imputation accuracy was measured as
the percentage of matching true and called genotypes
across all loci and also as the correlation between true
and called genotypes after centering both by subtracting
twice the frequency of the reference allele from the ge-
notypes originally coded as 0, 1, and 2. Many previous
studies with array data tested the percentage of correctly
imputed genotypes, but correlations or squared correla-
tions are better for testing low frequency SNVs [34].
Calus et al. [35] also recommended scaling the geno-
types to put more emphasis on low-MAF loci, but we
did not divide by the genotype standard deviation before
computing the correlations because the formula be-
comes undefined with monomorphic loci and because
standardization is not used when we estimate marker
effects.

Human genome sequences
The human dataset contained actual sequence genotypes
for 394,724 SNVs from the shortest human chromosome
(22). The full human genome from The 1000 Genomes
Project Consortium [1] contains approximately 30 mil-
lion SNVs. Available data for 1092 human genomes were
randomly divided into 884 for reference and 218 with
simulated chip genotypes to test imputation. The HD
genotypes contained 39,440 (10 %) of the total variants.
The selected SNPs were those with highest minor allele
frequency (>0.12) after first eliminating redundant SNPs
(those with an absolute correlation of >0.90), removing
SNPs closer than 100 bp and inserting other SNPs to
close gaps of >500 bp. The result was roughly equivalent
to a chip with approximately 3 million SNPs across all
chromosomes, which was constructed with higher dens-
ity than the 777,000-SNP Illumina BovineHD BeadChip
to partially compensate for the much lower linkage dis-
equilibrium in human populations.

Haplotype probabilities
Imputation software can store allele probabilities within
haplotypes to account for reduced read depth and high
error rates, whereas previous software often stored only
“known” alleles. New computer algorithms introduced in
version 4 of findhap compute and store such probabilities
to impute genotypes from sequence data and maintain
many of the strategies and efficiencies from previous ver-
sions of findhap [31]. Phasing of known genotypes into
haplotypes can be simple if parents and progeny are geno-
typed, but it is somewhat more difficult if the individuals
are less related or their genotypes are known less precisely.
In findhap, individuals are processed from oldest to

youngest, and known haplotypes of close ancestors are
checked first to improve speed and accuracy. If ancestor
haplotypes are not available or do not match the genotype,
the most frequent haplotype that does not conflict with
the genotype is selected from a list of all haplotypes sorted
in descending frequency order. Alleles in the selected
haplotype are removed from the genotype to obtain the
complement haplotype. For example, if the genotype is
AB and the selected haplotype is known to contain a B at
that locus, the complement must contain an A. Then the
next most frequent haplotype that agrees with the com-
plement is located, and information from the genotype is
used to update the two selected haplotypes. In previous
versions of findhap, missing alleles were filled in the two
haplotypes if the genotype was homozygous or if the
genotype was heterozygous and the other haplotype allele
was known. Version 4 uses probabilities instead of known
alleles to select and compare haplotypes.
Probabilities within the two haplotypes of each individual

are updated by applying conditional probability rules (Bayes
theorem) to include the new information provided by that
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individual’s sequence data (S). The most likely haplotype
(H1) and its complement (H2) are selected from a list, or a
new haplotype is added if none in the list has a likelihood ra-
tio higher than a minimum value determined from the
number of loci. Prior probabilities for new haplotypes are
set to allele frequency. Then posterior probabilities that the
alleles h1 and h2 at a particular locus within H1 and H2, re-
spectively, contain allele A are calculated from their prior
probabilities (p1 and p2) and S at that locus. This updating
process is repeated for each individual using the posterior
probabilities in H1 and H2 as prior probabilities for the next
individual with either of those same haplotypes. This pro-
cedure accumulates linkage information into the haplotype
list instead of using multi-locus math to account for linkage
as in Duitama et al. [27].
The sequence observations are coded simply as the num-

bers of A (nA) and B (nB) alleles observed; the three main
categories of observed data are only nA, only nB or both nA
and nB positive. With no sequencing error, the third cat-
egory always indicates a heterozygote; however, the first two
categories do not always indicate homozygotes because het-
erozygotes also produce only nA or only nB observations at a
rate of 0.5(nA + nB) each. For example, nA = 4 and nB = 0
could result from an AA homozygote that produced A al-
leles every time or an AB heterozygote that produced only
A alleles with frequency of 0.54 = 0.0625. With low-coverage
sequence, nA and nB may be zero at many loci, and those
are treated as missing observations. Storage of nA and nB is
more efficient than storing the three genotype probabilities
used in other software. Either strategy assumes that one ref-
erence and one alternate nucleotide are valid; reads of the
other two nucleotides are considered errors and are treated
as unknown.
Prior probabilities that the two haplotypes contain an A

at a particular locus are P(h1 =A) and P(h2 =A), and both
initially are set to allele frequencies before processing the
first individual. Posterior probabilities P(h1 =A|nA, nB) and
P(h2 =A|nA, nB) are then obtained by jointly accounting for
the two prior probabilities and using the standard condi-
tional probability rule such as in Duitama et al. [27]:

P h1 ¼ AjnA; nBð Þ ¼ P nA; nBjh1 ¼ Að ÞP h1 ¼ Að Þ
P nA; nBð Þ ;

P h2 ¼ AjnA; nBð Þ ¼ P nA; nBjh2 ¼ Að ÞP h2 ¼ Að Þ
P nA; nBð Þ :

Posterior probabilities account for the error in indi-
vidual sequence reads (errate) using math similar to that
of Druet et al. [9], except that the probabilities are ap-
plied directly to haplotypes instead of first calling geno-
types. For efficiency, probabilities of observing nA and
nB given the three genotypes are calculated and stored
for later use when processing each potential haplotype.
Factorial terms in the binomial distribution are not

stored because they always cancel when computing like-
lihood ratios:

P nA; nBjAAð Þ ¼ errratenB 1−erratenAð Þ nA þ nBð Þ!
nA!nB !

;

P nA; nBjBBð Þ ¼ errratenA 1−erratenBð Þ nA þ nBð Þ!
nA!nB !

;

P nA; nBjABð Þ ¼ 0:5 nAþ nBð Þ nA þ nBð Þ!
nA!nB !

:

The two prior probabilities P(h1 =A) and P(h2 =A) are la-
beled p1 and p2, respectively, for simplicity. From these, the
conditional probability of observing nA and nB given that h1
contains A or that h2 contains A are calculated from

P nA; nBjh1 ¼ Að Þ ¼ p2P nA; nBjAAð Þ
þ 1−p2ð ÞP nA; nBjABð Þ;

P nA; nBjh2 ¼ Að Þ ¼ p1P nA; nBjAAð Þ
þ 1−p1ð ÞP nA; nBjABð Þ:

The unconditional probability of observing nA and nB
is computed by summing probabilities that the true
genotype was AA, BB or AB multiplied by the probabil-
ity of observing nA and nB given each genotype. The
overall probability for the population uses the same
formula except that the population frequency p is
substituted for the haplotype prior probabilities p1
and p2:

P nA; nBð Þ ¼ p1p2P nA; nBjAAð Þ þ 1−p1ð Þ 1−p2ð ÞP nA; nBjBBð Þ
þ p1 þ p2−2p1p2ð ÞP nA; nBjABð Þ:

The H1 and H2 mostly likely to form the genotype are
selected using likelihood ratio tests from a haplotype list
that is sorted by descending frequency. The probability
of observing s at each locus is divided by the probability
that s would be observed if alleles were chosen ran-
domly from the population (p2 = p), and these ratios at
each locus in a potential H1 are multiplied to obtain the

joint likelihood ratio P SjH1ð Þ
P Sð Þ : A particular haplotype H1

is selected if the joint likelihood ratio is >1/n, where n is
the number of loci with observed data in the haplotype.
The H2 is selected based on the joint likelihood of S
given H2 and H1 divided by the likelihood given H1; i.e.

P SjH1;H2ð Þ
P SjH1ð Þ >

1
n 1þ n=100ð Þ½ � :

If the likelihood ratio is <1/n at any individual locus, the
haplotype is discarded immediately to save computation.
The two selected H1 and H2 are updated by combin-

ing the formulas above to obtain their posterior prob-
abilities of containing allele A given the sequence data
and the two haplotype prior probabilities at each locus:
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Genotype probabilities
To compare findhap with Beagle, genotype probabilities for
sequenced animals were calculated because the input file
for Beagle requires genotypes or genotype probabilities:

P AAjnA; nBð Þ ¼ P nA; nBjAAð ÞP AAð Þ
P nA; nBð Þ ;

P ABjnA; nBð Þ ¼ P nA; nBjABð ÞP ABð Þ
P nA; nBð Þ ;

P BBjnA; nBð Þ ¼ P nA; nBjBBð ÞP BBð Þ
P nA; nBð Þ

where the genotype probabilities P(AA), P(AB) and P(BB)
were set to (1 − p)2, 2p(1 − p) and p2, respectively, with
Hardy-Weinberg equilibrium assumed.

Availability of supporting data
Example files of simulated bovine data and the pro-
grams used for simulating true genotypes, converting
genotypes to sequence read depths, and imputing geno-
types are freely available from the Animal Improvement
Program web site (http://aipl.arsusda.gov/software/soft-
ware.html). The genotypes from human chromosome
22 are available from the 1000 genomes sequence
imputation panel at http://csg.sph.umich.edu/abecasis/
MACH/download/1000G.2012-03-14.html.
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