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Abstract

A complete dynamic wideband channel model for industrial wireless sensor network is presented. The model takes
into account the noise, interferences, and heavy multipath propagation effects present in harsh industrial
environments. A first-order two-state Markov process is adopted to describe the typical bursty nature of the impulsive
noise usually present in industrial environments. The interference effects are modeled as multiple narrowband signals
operating on the same frequency band as the desired signal. The multipath propagation is described by assuming the
scatterers to be uniformly distributed in space within an elliptical region where the transmitting and receiving nodes
are located at the foci of the ellipse. Furthermore, performance evaluations of IEEE 802.15.4 in terms of bit error rate
using the developed channel model are presented. The results show that in addition to spread spectrum techniques,
link diversity can further improve the link quality in harsh industrial environments.
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Introduction
In recent years, wireless sensor networks (WSNs) have
gained worldwide attention for use in different applica-
tions. Sensor nodes are spatially distributed across a large
area of interest to sense, measure, and gather information
and transmit the data to the user. The nodes are typi-
cally equipped with radio transceivers, micro-controllers,
and batteries. They are small in size, inexpensive, and
could be deployed in large numbers. They can be used in
applications such as military target tracking and surveil-
lance [1,2], natural disaster relief [3], biomedical health
monitoring [4,5], and industrial automation [6,7].
The uses of WSN for industrial applications are

expected to open large opportunities for collecting data,
enabling remote control, and automation to improve the
safety and productivity of facilities. Unlike wire-based sys-
tems, WSNs can be deployed in bearings of motors, oil
pumps, whirring engines, or other inaccessible or haz-
ardous environments [8]. In general, wireless solutions are
considered to be cheaper compared to wire-based sys-
tems. This is due to the cost associated in shielding wires
to prevent severe conditions which are usually present
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in these harsh environments (high humidity, high tem-
perature, strong vibration, etc.) [9]. Short-range wireless
technologies such as IEEE 802.15.4 [10] in mesh network
configuration are widely considered to be cost effective
solution for use in industrial settings.
In harsh industrial environments, noise is significant

due to the wide operating temperatures, strong vibrations,
excessive electromagnetic noise caused by large motors,
etc. [8]. Interferences from other wireless systems operat-
ing on the same frequency band might also be present. In
addition, the signal might be subject to heavy multipath
propagation effects caused by multiple reflections from
mainly metallic structures in the surrounding environ-
ment. The random/periodic movement of people, robots,
trucks, and other objects may also cause time varying
channel conditions. Effects of the aforementioned prop-
agation impairments to mission-critical signals in indus-
trial settings can result in costly disasters in terms of
money, manpower, time, and even human lives. Thus,
knowledge of the propagation channel is needed to suc-
cessfully design and evaluate robust WSNs for industrial
applications.
Discussions on challenges, design principles, and tech-

nical approaches of WSNs for industrial applications are
presented in [11]. Radio frequency (RF) measurement
results of industrial WSNs are reported in [6,12-14]. In
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[15], the path loss and the root mean square delay spread
of the signal in industrial environment were investigated.
Based on measurement results, analyses of the connectiv-
ity capabilities of the IEEE 802.15.4/ZigBee technologies
for mobile sensing applications in industrial environ-
ment, and their use in collision avoidance applications are
reported in [16]. A framework that addresses the qual-
ity of service assessment and management of industrial
WSNs is given in [17]. To the best of author’s knowl-
edge, there exist no complete dynamic wideband channel
models which take into account the noise, interferences,
and heavy multipath propagation effects present in harsh
industrial environments. In this article, a novel com-
plete dynamic wideband channel model which takes into
account the aforementioned propagation effects usually
present in harsh industrial environments is presented.
In addition, performance evaluations of industrial WSN
based on IEEE 802.15.4 physical layer standard are car-
ried out using the developed channel model. In general,
the proposed model can be used for generating time
series which can be used for simulating and successfully
designing robust WSNs for industrial applications.
The rest of the article is organized as follows.

“Propagation channel characteristics of industrial WSN ’’
section presents the proposed dynamic wideband channel
model for industrial WSNs. Performance evaluations of
WSN in industrial settings are presented in “Performance
evaluation” section. Finally, conclusions are given in last
section.

Propagation channel characteristics of industrial
WSN
Noise and interference
Noise
Usually the noise affecting a given wireless communi-
cation system is modeled as additive white Gaussian
noise (AWGN). However, in harsh industrial environ-
ments, wireless communication systems are also sub-
ject to impulsive noise [8-18]. The major sources of
impulse noise in industrial environments are motors,
heavy machineries, ignition systems, inverters, voltage
regulators, electric switch contacts, welding equipments,
etc. The noise in industrial environment might then be
modeled as the superposition of two terms (i.e., AWGN
and impulse noise), expressed as

n(t) = w(t) + b(t) · k(t), for t ∈ {1, 2, . . . ,T} (1)

where w(t) and k(t) are zero-mean Gaussian distributed
processes, b(t) is a {0, 1}-random variable which describes
the state of the channel and t is the time index. Parameter
n(t) describes the AWGN plus impulse noise, the former
state is referred to us good state [ s(t) = G ⇔ b(t) = 0],
and the latter as bad state [ s(t) = B ⇔ b(t) = 1].
Assuming n(t) is a complex circularly-symmetric

Gaussian random variable with variance depending on
s(t), the probability density functions of n(t) conditioned
to s(t) are given by [19]

P [n(t) | s(t) = G] = 1
2πσ 2 exp

{
−|n(t)|2

2σ 2

}
(2)

P [n(t) | s(t) = B] = 1
2πRσ 2 exp

{
−|n(t)|2

2Rσ 2

}
(3)

where R ≥ 1 is the ratio between the average noise power
in the bad and good channels. When the channel is in
a good state, the signal is impaired only by background
AWGN with variance equal to σ 2, whereas, when in bad
state, it is also impaired by impulsive noise.
The state process, s(t), can be modeled as first-order

two-state Markov process which describes the typical
bursty nature of the impulse noise [20]

P [s(t)] = P[ s(1)]
T−1∏
t=1

P [s(t + 1) | s(t)] (4)

where the evolution of the channel state is described by
the transition probabilities, expressed as

Pi,j = P
[
s(t + 1) = i | s(t) = j

]
, for i, j ∈ {G,B} (5)

The state transitions of the first-order two-state Markov
process which leads to aMarkov–Gaussian channel model
are shown in Figure 1. In the model, PG is the probabil-
ity of good state (G), whereas PB is the probability of bad
state (B). The channel state changes from good to bad and
from bad to good with PGB and PBG probabilities, respec-
tively. The occurrence frequency of impulses and their
burstiness can be controlled using parameters PGB and
PBG, respectively. High value of PGB gives increased num-
ber of impulsive events while small values of PBG results
in increasing burstiness of each impulse. The amplitude of
the impulse noise is controlled by parameter R (defined in

Figure 1 Two-state Markov process for modeling the typical
bursty nature of the impulse noise. Parameters G and B are the
good and bad states of the channel, respectively. Parameters PGB and
PBG are the probability the channel changes from good to bad and
from bad to good state, respectively.
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(3)) where large value of R results in increased impulsive
amplitude values. These model parameters need to be
estimated from measurements for the considered prop-
agation environment. Figure 2 shows examples of simu-
lated noise time series when the channel is modeled as an
AWGN (top plot) and as an AWGN plus impulse noise
(bottom figure). From Figure 2, we can clearly observe
that if not considered properly, impulsive noises present in
harsh industrial environments could significantly degrade
the performance of wireless communication systems.

Interference
Industrial WSNs can be affected by interference from
other communication systems operating in the same
industrial scientific medical band. The interference might
be from multiple narrowband signals. The baseband
expression of the interfering signals is given by

J(t) =
N−1∑
n=0

√
2αn exp

{
jφn(t)

}
(6)

where αn is independent and identically distributed (i.i.d.)
with E[α2

n]= J/N where J is the total interference power
andN is the total number of interfering signals. Parameter
φn(t) is the phase of the nth interfering signal uniformly
distributed within the range [0, 2π ).
The IEEE 802.15.4 uses spread spectrum techniques

such as direct sequence spread spectrum (DSSS) and fre-
quency hopping spread spectrum to reduce the effect
of interference. However, for mission-critical signals in
industrial settings, other strategies such as link diver-
sity should be incorporated with the radio modulation
technique to improve the link quality in these harsh envi-
ronments.
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Figure 2 Simulated time series when the channel is modeled as
AWGN,w(t) (top plot) and as an AWGN plus impulse noise, n(t)
(bottom plot). The simulation parameters are PGB = 0.005,
PBG = 0.1, σ 2 = 1 and R = 100.

Multipath propagation
The multipath property of a channel depends on the
type of the environment and the properties of the anten-
nas involved. In industrial environments, reflection from
mainly metallic structures such as machineries, pipes,
etc., may result in heavy multipath propagation. In these
environments, the objects reflecting the signal (scatterers)
might be assumed to be uniformly distributed in space
within an elliptical region with maximum delay of τmax
such that τ0 ≤ τm < τmax for all τm. Parameter τ0 = d0/c
is the delay of the line-of-sight component where d0 is
the separation distance between the transmitter and the
receiver, and c = 3 × 108 m/s is the speed of light. Param-
eter τm is the delay of the mth multipath component for
m = 0, 2, . . . ,M where M is the total number of multi-
path components. The transmitting and receiving nodes
are located at the foci of the ellipse (see Figure 3).
The strength of the reflected signals depend on the link

configurations and material properties of the reflecting
surfaces. The reflection coefficient can be calculated using
[21]

RN = cos θref −
√

η − sin2 θref

cos θref +
√

η − sin2 θref
(7)

RP =
cos θref −

√(
η − sin2 θref

)
/η2

cos θref +
√(

η − sin2 θref
)
/η2

(8)

where RN and RP are the reflection coefficients when
the electric field component is normal and parallel to
the reflection plane, respectively. Parameter θref is the
angle between the incident ray and the normal to the
reflecting surface. Parameter η is the complex permittiv-
ity of the reflecting material. Furthermore, the envelopes
of the multipath components are assumed to follow a Rice
distribution.
In addition, the random/periodic movement of peo-

ple, robots, trucks, and other objects in the propaga-
tion environment create time varying channel conditions.
Characterization of the Doppler spectra is thus important
for the determination of the time variance of the wireless

Figure 3 Uniformly distributed scatterers (represented as circles
in the figure). Tx and Rx are the transmitting and receiving nodes.
τmax is the maximummultipath delay.
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channel. The situation where the antenna is moving in a
random environment (e.g., mobile sensor nodes) leads to
the classical Jakes spectrum (with bathtub-like shape) for
scatters uniformly distributed in azimuth [22].

S(f ) = 1.5

π fd

√
1 −

(
f
fd

)2 for |f | < fd (9)

where fd is themaximumDoppler shift. For the case where
the antenna is stationary (i.e., static sensory nodes), mov-
ing scatterers in the channel such as people, robots, and
trucks will lead to a different Doppler spectrum which
peaks at 0Hz and falls off rapidly [23,24]. A simplified
empirical model is reported in [25], and is given by

S(f ) = 1
f + e

(10)

where e is a model constant with value equal to 0.02
chosen to match the measured Doppler spectrum [25].

Composite dynamic wideband channel model
The time varying channel impulse response for the com-
bined effect of noise, interferences, and multipath propa-
gation can be expressed as

h(t, τ , θAoD, θAoA) =
M−1∑
m=0

Am(t)δ[ τ − τm(t)]

δ[θAoD−θAoD,m(t)] δ[θAoA−θAoA,m(t)]

· exp
{
j
(

φm − 2π
λ
dm

)}

+ n(t) + J(t)
(11)

where λ is the wavelength. For each tap number m, τm(t)
is the tap delay, φm is the phase uniformly distributed
within the range [0, 2π ), δ is delta function, θAoD(t) is the
angle-of-departure (AoD), θAoA(t) is the angle-of-arrival
(AoA), Am(t) is the complex amplitude, and dm is the
path-length. Parameter n(t) is the AWGN plus impulse
noise as defined in (1), and J(t) is the interference from
multiple narrowband signals (see Equation (6)).
The path-length, delay, AoD, and AoA of eachmultipath

component can be calculated using geometrical relation
for each scatter in the elliptical region defined by the max-
imum tap delay, τmax (see Figure 3). An elliptical region
offers the opportunity to limit the considered maximum
delay of the multipath components [26]. Note that as
defined in (7) and (8), the strength of the reflected mul-
tipath components depends on the reflection coefficients
of the reflecting surfaces which in turn depend on the
link configurations and material properties of the reflect-
ing surfaces. Schematic representation of the proposed
composite dynamic wideband channel model for simulat-
ing the combined propagation effects in harsh industrial
environments is illustrated in Figure 4. In the model, each
delayed version of the input signal, u(t), is multiplied
by Am(t) exp

{
j(φm − 2πdm/λ)

}
to account for the ampli-

tude and phase of the multipath component. The output
signal, y(t), is obtained by summing all multipath compo-
nents and then adding the time varying noise, n(t), and
interference, J(t) effects. Depending on the environment,
the components of the model can be added or omitted
to describe a given propagation condition. For example,
all the model components are used in cases where the
signal is affected by noise, interferences, and multipath
propagation. While, in conditions where there is no RF
interference, parameter J(t) could be set to zero, etc.
Simulated time series of the signal-to-noise-plus-

interference ratio (SNIR) for the combined effect of noise,
interferences, and multipath propagation is shown in
Figure 5. Isotropic antennas are used at the transmitter
and the receiver. The simulation parameters are given in

Figure 4 Dynamic wideband channel simulator for WSNs in harsh industrial environments. Parameters u(t) and y(t) are the input and output
signals, respectively. Parameters A(t), τ , and φ are the amplitude, delay, and phase of each multipath component, respectively. Parameter λ is the
wavelength, and d is the path-length of each multipath component. Parameter n(t) is the AWGN plus impulse noise, and J(t) is the interference
from multiple narrowband signals.
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Figure 5 Simulated time series of the received SNIR for the
combined effect of noise, interferences, andmultipath
propagation. The simulation parameters are given in Table 1.

Table 1. The multipath components are combined using
a maximum-ratio-combiner (MRC) at the output of the
receiver. The bursty fading events in the time series (see
Figure 5) are impulsive noise effects usually present in
harsh industrial environments. In addition, Figures 6, 7,
and 8 show the simulated cumulative distribution func-
tions (CDFs), level crossing rates (LCRs), and average fade
durations (AFDs) of the received SNIRs at 2.4GHz for
the composite effects of noise, interferences, and multi-
path propagation. The solid curves in the figures are for
the cases where the noise is modeled as an AWGN (w(t))
while the dashed curves are for the cases when the noise

Table 1 Simulation parameters

Frequency, f 2.4 GHz

Sampling frequency, fs 10 Hz

Simulation time, t 300 s

Transmit power, pt 0 dBm

Distance between the Tx and the Rx, d0 80m

Receiver noise figure, F 11 dB

Receiver noise bandwidth, B 5MHz

Noise temperature, Tn 290 K

Channel state probability from good to bad, PGB 0.005

Channel state probability from bad to good, PBG 0.1

Ratio of noise power in the bad and good channel, R 100

Number of interfering signals, N 5

Total interference power, J 4 dBm

Maximummultipath delay, τmax 334 ns

Number of multipath components,M 25

Ricean K-factor of the multipath components, K 25 dB

Relative permittivity of the reflecting surfaces at 2.4 GHz, η 1-j802 [21]
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Figure 6 Simulated CDFs of the received SNIR for the combined
effect of noise, interferences, andmultipath propagation.
Parameters w(t), n(t), and J(t) are as defined in (1) and (6). The
simulation parameters are given in Table 1.

is modeled as an AWGN plus impulse noise (n(t)). From
Figures 6, 7, and 8, we can clearly observe the effect of
impulsive noise on the first- and second-order statistics
of the channel. These results illustrate the importance of
considering the impulsive behavior of the channel when
modeling the noise in harsh industrial environments.
In general, the proposed channel model can be used

for generating time series which can be used for suc-
cessfully designing robust industrial WSNs, and for sim-
ulating the performance of WSNs in harsh industrial
environments. This enables simulation of for example
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Figure 7 Simulated AFDs of the received SNIR for the combined
effect of noise, interferences, andmultipath propagation.
Parameters w(t), n(t), and J(t) are as defined in (1) and (6). The
simulation parameters are given in Table 1.
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Figure 8 Simulated LCRs of the received SNIR for the combined
effect of noise, interferences, andmultipath propagation.
Parameters w(t), n(t), and J(t) are as defined in (1) and (6). The
simulation parameters are given in Table 1.

capacity-enhancing techniques such as route diversity and
adaptive coding and modulation.

Performance evaluation
In this section, performance evaluations of IEEE 802.15.4
physical layer in harsh industrial environments using the
developed dynamic wideband channel model are pre-
sented. In addition to using spread spectrum techniques
for reducing the effect of interference, other strategies
such as link diversity are investigated to improve the link
quality in these harsh environments.

Physical layer overview of IEEE 802.15.4 standard
Short-range wireless technologies such as IEEE 802.15.4
in mesh network configuration are widely considered to
be cost effective solution for use in industrial settings. The
nodes consume extremely low energy and support several
different topologies which makes them a good candidate
for several sensor network applications.

The physical layer specification of the IEEE 802.15.4
standard is reported in [10]. It defines the characteris-
tics of the physical layer such as spreading, despreading,
modulation, and demodulation of the signal. It uses the
DSSS as a spreading technique to reduce the effect of noise
and interference from other networks. The IEEE 802.15.4
operates in three different frequency bands: 868MHz in
Europe, 915MHz in the USA, and 2.4GHz globally. In the
868- and 915-MHz bands, there are three optional mod-
ulation schemes: binary phase shift keying (BPSK), offset
quadrature phase shift keying (O-QPSK), and parallel
sequence spread spectrum. Depending on the modulation
scheme, a data rate of 250 kbps at 2.4GHz, from 20 to
250 kbps at 868MHz, and from 40 to 250 kbps at 915MHz
can be supported.
In the 2.4-GHz band, O-QPSK modulation and DSSS

technique are used. Each 4-bit symbol is mapped to a 32-
chip pseudo-random noise (PN) sequence. In the 915 and
868-MHz bands, each one-bit symbol is mapped into a
15- or 16-chip PN sequence and uses BPSK or O-QPSK
for modulation, respectively. The IEEE 802.15.4 standard
specifies a receiver sensitivity of −92 dBm in the 868/915-
MHz band and −85 dBm in the 2.4-GHz band. More
information can be found in [10].

Bit error rate
The composite dynamic wideband channel model
presented in “Propagation channel characteristics of
industrial WSN” section is used to simulate the bit error
rate (BER) ofWSNs in harsh industrial environments. The
approach used for calculating the BER of IEEE 802.15.4
physical layer is shown in Figure 9. For the 2.4-GHz sig-
nal, integers in the range 0–15 are drawn using a random
number generator. The integers are converted to binary
representations (4-bit symbols) and then sent to the
spreading block which spreads them into 32 bits according
to ([10], Table 20). The bit streams are taken as an input
to the O-QPSK modulator and then pass thought the
wireless channel (presented in “Propagation channel
characteristics of industrial WSN” section) to reach the
demodulator. After demodulation, the bit streams are

Figure 9 BER calculation for the IEEE 802.15.4 physical layer.
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passed to the despreader which converts them to 4-bit
symbols. Finally, the 4-bit symbols are compared with the
original one to calculate the BER.
The spread spectrum technique discussed above is used

to reduce the effect of noise and interferences. However,
for mission-critical signals in industrial settings, other
strategies such as link diversity should be incorporated
with the radio modulation technique to improve the link
quality in these harsh environments. Link diversity takes
advantage of the existing multipath signals in the wire-
less channel. In industrial environments, reflection from
mainlymetallic structures such asmachineries, pipes, etc.,
may result in heavy multipath propagation which could be
exploited using diversity techniques. The received SNIR
can be increased by properly combining the multiple ver-
sions of the transmitted signal using, e.g., MRC. The SNIR
at the output of an MRC is given by [27]

SNIRMRC =
M−1∑
m=0

SNIRm (12)

where SNIRm is the SNIR of themth diversity branch and
M is as defined in (11).
The complementary CDFs (CCDFs) of the BERs for

the combined effect of noise, interferences, and multi-
path propagation for single and diversity links are shown
in Figure 10. The simulation parameters given in Table 1
are used. We can observe from Figure 10 that signifi-
cant increase in performance can be achieved using link
diversity. For example, BER of 10−6 is exceeded for about
25 and 3% of the time for the single and diversity links,
respectively. Furthermore, the BER for the composite
effects of noise, interferences, and multipath propagation
at the output of an MRC for different burstiness of the
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Figure 10 CCDFs of BERs for the combined effect of noise,
interferences, andmultipath propagation for single and
diversity links. The simulation parameters are given in Table 1.

impulsive noise, i.e., when PBG = 0.1, PBG = 0.05, and
PBG = 0.01 (in practice, these parameters need to be esti-
mated from measurements) are shown in Figure 11. We
can clearly observe from Figure 11 that how the bursty
nature of the impulsive noise can affect the performance
of industrial WSNs.

Conclusion
In this article, a complete dynamic wideband channel
model for industrial WSN is presented. The model takes
into account the noise, interferences, and heavy multipath
propagation effects present in harsh industrial environ-
ments. A first-order two-state Markov process is adopted
to describe the typical bursty nature of the impulsive noise
usually present in industrial environments. The interfer-
ence effects are modeled as multiple narrowband signals
operating on the same frequency band as the desired sig-
nal. The multipath propagation in industrial environment
is described by assuming the scatterers to be uniformly
distributed in space within an elliptical region where the
transmitting and receiving nodes are located at the foci of
the ellipse.
Short-range wireless technologies such as IEEE 802.15.4

in mesh network configuration are widely considered to
be cost-effective solution for use in industrial settings.
A performance evaluations of the physical layer of IEEE
802.15.4 in terms of BER using the developed dynamic
wideband channel model are presented. The results show
the combined effect of noise, interferences, and multipath
propagation on the BER of industrial WSN. They also
demonstrate the advantage of using link diversity (in addi-
tion to spread spectrum techniques) to improve the link
quality in harsh industrial environments.
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Figure 11 CCDFs of BERs for the combined effect of noise,
interferences, andmultipath propagation at the output of an
MRC when PBG = 0.1, PBG = 0.05, and PBG = 0.01. The
simulation parameters are given in Table 1.
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In general, the proposed channel model can be used
for generating time series which can be used for success-
fully designing robust industrialWSNs, and for simulating
the performance of WSNs in harsh industrial environ-
ments. This enables simulation of for example capacity-
enhancing techniques such as route diversity, power con-
trol, and adaptive coding and modulation.
Future work includes validating the developed dynamic

wideband channel model for industrial WSN using RF
measurements.
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