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Abstract
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1 Introduction andmain result
Consider the following semilinear Schrödinger-Maxwell equations:

⎧⎨
⎩–�u +V (x)u + φu = f (x,u), in R,

–�φ = u, lim|x|→∞ φ(x) = , in R.
()

Such a system, also known as the nonlinear Schrödinger-Poisson system, arises in an
interesting physical context. Indeed, according to a classical model, the interaction of a
charge particle with an electromagnetic field can be described by coupling the nonlinear
Schrödinger and the Maxwell equations (we refer to [, ] for more details on the physical
aspects and on the qualitative properties of the solutions). In particular, if we are looking
for electrostatic-type solutions, we just have to solve ().
In recent years, system (), with V (x) ≡  or being radially symmetric, has been widely

studied under various conditions on f ; see, for example, [–]. Since () is set on R, it is
well known that the Sobolev embeddingH(R) ↪→ Ls(R) (≤ s≤ ∗ = ) is not compact,
and then it is usually difficult to prove that a minimizing sequence or a sequence that
satisfies the (PS) condition, briefly a Palais-Smale sequence, is strongly convergent if we
seek solutions of () by variational methods. If V (x) is radial (for example, V (x) ≡ ), we
can avoid the lack of compactness of Sobolev embedding by looking for solutions of () in
the subspace of radial functions of H(R), which is usually denoted by H

r (R), since the
embeddingH

r (R) ↪→ Ls(R) ( < s < ) is compact. Specially, Ruiz [] dealt with () under
the assumption that V (x) ≡  and f (u) = up ( < p < ) and got some general existence,
nonexistence and multiplicity results.
Moreover, in [] the authors considered system () with periodic potentialV (x), and the

existence of infinitely many geometrically distinct solutions was proved by the nonlinear
superposition principle established in [].
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There are also some papers treating the case with nonradial potential V (x). More pre-
cisely, Wang and Zhou [] got the existence and nonexistence results of () when f (u) is
asymptotically linear at infinity. Chen and Tang [] proved that () has infinitely many
high energy solutions under the condition that f (x,u) is superlinear at infinity in u by the
fountain theorem. Soon after, Li, Su and Wei [] improved their results.
Up to now, there have been few works concerning the case that V (x) is nonradial poten-

tial and f (x,u) is sublinear at infinity in u. Very recently, Sun [] treated the above case
based on the variant fountain theorem established in Zou [].

Theorem . [] Assume that the following conditions hold:

(V ′
) V ∈ C(R,R) satisfies infx∈R V (x) ≥ a > , where a >  is a constant. For every M > ,

meas{x ∈ R : v(x)≤ M} <∞.
(H) F(x,u) = a(x)|u|r , where F(x,u) = ∫ u

 f (x, y)dy, a : R → R+ is a positive function such
that a ∈ L 

–r (R) and  < r < .

Then problem () has infinitely many nontrivial solutions {(uk ,φk)} satisfying




∫
R

(|∇uk| +V (x)uk
)
dx –




∫
R

|∇φk| dx + 


∫
R

φkuk dx –
∫
R
F(x,uk)dx → –

as k → ∞.

In the present paper, based on the dual fountain theorem, we can prove the same result
under a more generic condition, which generalizes the result in []. Our first result can
be stated as follows.

Theorem . Assume that V satisfies

(V) V ∈ C(R,R) and infx∈R V (x) > ;

and f satisfies the following conditions.

(W) There exist constants δ > , r ∈ (, ) and a function a ∈ L


–r (R, [, +∞)) such that

∣∣f (x,u)∣∣ ≤ a(x)|u|r–

for all x ∈ R and |u| ≤ δ;
(W) There exist constants M > , r ∈ (, ) and a function a ∈ L


–r (R, [, +∞)) such

that

∣∣f (x,u)∣∣ ≤ a(x)|u|r–

for all x ∈ R and |u| ≥ M;
(W) For every m > δ, there exist a constant r ∈ (, ) and a function bm ∈ L


–r (R,

[, +∞)) such that

∣∣f (x,u)∣∣ ≤ bm(x)

for all x ∈ R and |u| ≤ m;

http://www.boundaryvalueproblems.com/content/2013/1/177
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(W) There exist constants r ∈ (, ), η >  and ζ >  such that

F(x,u) ≥ η|u|r

for all x ∈ � and |u| ≤ ζ , where meas{�} > , F(x,u) :=
∫ u
 f (x, y)dy;

(W) F(x, –u) = F(x,u) for all x ∈ R and u ∈ R.

Then problem () has infinitely many nontrivial solutions {(uk ,φk)} satisfying



∫
R

(|∇uk| +V (x)uk
)
dx –




∫
R

|∇φk| dx + 


∫
R

φkuk dx –
∫
R
F(x,uk)dx → –

as k → ∞.

By Theorem ., we obtain the following corollary.

Corollary . Assume that L satisfies (V) and W satisfies

(W) F(x,u) = a(x)|u|r , where F(x,u) = ∫ u
 f (x, y)dy,  < r <  is a constant and a : R → R

is a function such that a ∈ L 
–r (R) and a(x) >  for x ∈ �, where meas{�} > .

Then problem () has infinitely many nontrivial solutions {(uk ,φk)} satisfying



∫
R

(|∇uk| +V (x)uk
)
dx –




∫
R

|∇φk| dx + 


∫
R

φkuk dx –
∫
R
F(x,uk)dx → –

as k → ∞.

Remark . In Theorem ., infinitely many solutions for problem () are obtained under
the symmetry condition (W) by using the dual fountain theorem. As a special case of
Theorem ., Corollary . generalizes and improves Theorem .. To show this, it suffices
to compare (V ′

) and (V), (H) and (W). Firstly, it is clear that (V) is really weaker than
(V ′

). Secondly, in (H) a is assumed to be positive, while in (W) we assume that a is
indefinite.

Moreover, under all the conditions of Theorem . except (W) we obtain an existence
result.

Theorem . Assume that L satisfies (V) and W satisfies (W), (W), (W), (W). Then
problem () possesses a nontrivial solution.

Remark . In Theorem . we obtain the existence of solutions for problem () under
the assumption that f (x,u) is indefinite and without any coercive assumptions respect to
V such as (V ′

). There are functions V and f which satisfy Theorem ., but do not satisfy
the corresponding results in [–]. For example,

V (x) ≡ , f (x,u) = ã(x)|u|  ()

and

ã(x) =

⎧⎨
⎩(–)nn(|x| – n) for n≤ |x| ≤ n + 

n ,

 else,
()

http://www.boundaryvalueproblems.com/content/2013/1/177
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in which n ≥ . It is clear that ã ∈ C(R,R) is indefinite. Denoting by π the area of the unit
ball in R, we obtain

∫
R
ã(x)dx =

∞∑
n=

(∫ n+ 
n

n
nr(r – n) dr +

∫ n+ 
n

n+ 
n

nr
(
n +


n

– r
)

dr
)

π

= π

∞∑
n=

n
∫ 

n


r dx

=
π


∞∑
n=

n–

< ∞, ()

which means that ã ∈ L


– 
 (R). So, () satisfies our results, but does not satisfy the results

in [–].

2 Preliminary results
In order to establish our results via critical point theory, we firstly describe someproperties
of the space H(R), on which the variational functional associated with problem () is
defined. Define the function space

H(R) := {
u ∈ L

(
R) :∇u ∈ (

L
(
R))}

equipped with the norm

‖u‖H :=
(∫

R

(|∇u| + u
)
dx

)/

and the function space

D,(R) := {
u ∈ L

∗
:∇u ∈ (

L
(
R))}

with the norm

‖u‖D, =
(∫

R
|∇u| dx

)/

.

Let

E :=
{
u ∈H(R) : ∫

R
V (x)u dx < +∞

}

equipped with the inner product

(u, v) =
∫
R

(∇u · ∇v +V (x)uv
)
dx

and the corresponding norm

‖u‖ = (u,u).

http://www.boundaryvalueproblems.com/content/2013/1/177
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Note that the following embeddings

E ↪→ Ls
(
R),  ≤ s≤ ∗, D,(R) ↪→ L

∗(
R)

are continuous, where ∗ =  is the critical exponent for the Sobolev embeddings in di-
mension . Therefore, there exist constants Cp and C∗ such that

‖u‖Lp ≤ Cp‖u‖, ‖u‖L∗ ≤ C∗‖u‖D, ()

for all u ∈ E. Here Lp(R) (≤ p≤ ∗) denotes the Banach spaces of a function on R with
values in R under the norm

‖u‖Lp =
(∫

R

∣∣u(x)∣∣p dx)/p

.

Let

Lra
(
R) := {

u : R → R :
∫
R
a(x)|u|r dx < +∞

}
,

where a(x) >  for a.e. x ∈ R. Then Lra(R) is a Banach space with the norm

‖u‖Lra =
(∫

R
a(x)|u|r dx

)/r

.

Lemma . Suppose that assumption (V) holds. Then the embedding of E in Lra(R) is
compact, where r ∈ (, ), a ∈ L 

–r (R) is positive for a.e. x ∈ R.

Proof For any bounded set K ⊂ E, there exists a positive constantM such that ‖u‖ ≤ M

for all u ∈ K . We claim that K is precompact in Lra(R). In fact, since a ∈ L 
–r (R), for any

ε > , there exists Tε >  such that

(∫
|x|≥Tε

a(x)


–r dx
)(–r)/

< ε.

For any u, v ∈ K , applying the Hölder inequality for r such that r
 + –r

 =  and the first
inequality in (), we have

∫
|x|≥Tε

a(x)|u – v|r dx ≤
(∫

|x|≥Tε

a(x)


–r dx
)(–r)/(∫

|x|≥Tε

|u – v| dx
)r/

≤ ‖u – v‖rL
(∫

|x|≥Tε

a(x)


–r dx
)(–r)/

≤ Cr
‖u – v‖rε

≤ Cr
M

r
ε. ()

Besides, since E(BTε ()) ⊂ H(BTε ()) is compactly embedded in Lra(BTε ()), where
BTε () = {x ∈ R : |x| ≤ Tε}, there are u,u, . . . ,um ∈ K such that for any u ∈ K ,

∫
|x|≤Tε

a(x)|u – ui|r dx < ε. ()

http://www.boundaryvalueproblems.com/content/2013/1/177
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Now it follows from () and () that K is precompact in Lra(R). Obviously, we have E
is compact embedded in Lra(R), where r ∈ (, ), a ∈ L 

–r (R) is positive for a.e. x ∈ R.
�

Lemma . Assume that assumptions (V), (W), (W) and (W) hold and un ⇀ u in E.
Then

f (x,un) → f (x,u)

in L(R).

Proof Assume that un ⇀ u in E. Then, by Lemma .,

un → u

in Lra(R), where r ∈ (, ), a ∈ L 
–r (R) is positive for a.e. x ∈ R. Passing to a subsequence

if necessary, it can be assumed that

∞∑
n=

‖un – u‖Lra < +∞.

It is clear that

hk(x) :=
k∑

n=

∣∣un(x) – u(x)
∣∣ ∈ Lra

(
R) ()

and

‖hg – hl‖Lra ≤
g∑
n=l

‖un – u‖Lra ()

for all g > l ∈ N+. Since {un} is a Cauchy sequence in Lra(R), so by () we know that {hk} is
also a Cauchy sequence in Lra(R). Therefore, by the completeness of Lra(R), there exists
h ∈ Lra(R) such that hk → h in Lra(R). Now we show that

hk(x)≤ h(x) ()

for all k ∈ N+ and almost every x ∈ R. If not, there exist k ∈ N+ and S ⊂ R, with
meas{S} > , such that

hk (x) > h(x)

for all x ∈ S. Then there exist a constant c >  and S ⊂ S, with meas{S} > , such that

hk (x) ≥ h(x) + c

http://www.boundaryvalueproblems.com/content/2013/1/177
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for all x ∈ S. By the definition of hk , we have

hk(x)≥ hk (x)≥ h(x) + c

for all k ≥ k and x ∈ S. Therefore, one has

∫
R
a(x)|hk – h|r dx ≥

∫
S
a(x)|hk – h|r dx

≥ cr
∫
S
a(x)dx.

Letting k → ∞, we get

 ≥ cr
∫
S
a(x)dx,

which contradicts the fact that a(x) >  for a.e. x ∈ R. Now we have proved (). It follows
from (W) that there existsM >  such that

∣∣f (x,u)∣∣ ≤ a(x)|u|r– ()

for all x ∈ R and |u| ≥ M. By (W), there exists δ >  such that

∣∣f (x,u)∣∣ ≤ a(x)|u|r– ()

for all x ∈ R and |u| ≤ δ, which together with (W) shows there exists bM ∈ L


–r (R) such
that

∣∣f (x,u)∣∣ ≤ a(x)|u|r– + bM(x)
δr–

|u|r– ()

for all x ∈ R and |u| ≤ M. Combining () and (), we have

∣∣f (x,u)∣∣ ≤ a(x)|u|r– + a(x)|u|r– + bM
δr–

|u|r– ()

for all x ∈ R and u ∈ R. Hence, by () one has

∣∣f (x,un) – f (x,u)
∣∣ ≤ a(x)

(|un|r– + |u|r–) + a(x)
(|un|r– + |u|r–)

+
bM(x)
δr–

(|un|r– + |u|r–)
≤ a(x)

(|un – u|r– + 
∣∣u(x)∣∣r–) + a(x)

(|un – u|r– + |u|r–)
+
bM(x)
δr–

(|un – u|r– + |u|r–)
≤ a(x)

(|h|r– + |u|r–) + a(x)
(|h|r– + |u|r–)

+
bM(x)
δr–

(|h|r– + |u|r–)

http://www.boundaryvalueproblems.com/content/2013/1/177
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for all n ∈N and x ∈ R. It follows that

∣∣f (x,un) – f (x,u)
∣∣ dx ≤ a (x)

(|h|(r–) + |u|(r–))dx
+ a(x)

(|h|(r–) + |u|(r–))dx
+
bM(x)
δ(r–)

(|h|(r–) + |u|(r–))dx
=: �(x) ()

for all n ∈N . By the Hölder inequality, we have

∫
R
a (x)|h|(r–) dx ≤

(∫
R
a(x)


–r dx

) –r
r

(∫
R
a(x)|h|r dx

) (r–)
r

= ‖a‖

r

L


–r
‖h‖(r–)

Lra

< ∞. ()

Similarly, we can prove
∫
R
a (x)|u|(r–) dx < ∞,

∫
R
a(x)|h|(r–) dx < ∞,

∫
R
a(x)|u|(r–) dx <∞,

()

also ∫
R
bM(x)|h|(r–) dx < ∞,

∫
R
bM(x)|u|(r–) dx <∞. ()

It follows from (), (), () and () that

� ∈ L
(
R),

which together with Lebesgue’s convergence theorem shows
∫
R

∣∣f (x,un) – f (x,u)
∣∣ dx →  ()

as n→ ∞. Now we have proved the lemma. �

In the proof of Theorem ., the following lemma is needed.

Lemma . Assume that G ⊂ R is an open set. Then, for any closed set H ⊂ G, there
exists a function ϕ ∈ C∞

 (R) such that ϕ(x) =  for all x ∈ R \G, ϕ(x) =  for all x ∈H and
 ≤ φ(x)≤  for all x ∈ G \H .

Proof Letting

α̃(x) =

⎧⎨
⎩e


|x|– , |x| < ,

, |x| ≥ ,

http://www.boundaryvalueproblems.com/content/2013/1/177


Lv Boundary Value Problems 2013, 2013:177 Page 9 of 22
http://www.boundaryvalueproblems.com/content/2013/1/177

then α̃ ∈ C∞
 (R) and supp α̃ = B(). For any given ε > , defining α and αε as follows,

α(x) =
α̃(x)∫

R α̃(x)dx
, αε(x) =


ε

α

(
x
ε

)
,

one has αε ∈ C∞
 (R), suppαε = {x : |x| ≤ ε} and ∫

R αε(x)dx = . Denoting

d = inf
x∈H,y∈∂G

d(x, y)

and

Gθ :=
{
x ∈G,d(x, ∂G) ≥ θ

}
,

it is clear that d >  and H ⊂Gd . Lastly, we define

ψ(x) =

⎧⎨
⎩
, x ∈Gd


,

, x ∈ R \Gd


and

ϕ(x) =
∫
R

ψ(x – y)α d

(y)dy,

then ϕ(x) =  for all x ∈ H and ϕ(x) =  for all x ∈ Gd

. Moreover, by the definition of αε ,

we have ϕ ∈ C∞
 (R) and  ≤ ϕ(x)≤ . �

Since E is a Hilbert space, then there exists a basis {vn} ⊂ X such that X =
⊕

j≥Xj, where
Xj = span{vj}. Letting Yk =

⊕k
j=Xj, Zk =

⊕
j≥k Xj, now we show the following lemma,

which will be used in the proof of Theorem ..

Lemma . Suppose r ∈ (, ) and a ∈ L 
–r (R), then we have

βk(a, r) := sup
u∈Zk ,‖u‖=

‖u‖Lra → 

as k → ∞.

Proof It is clear that  < βk+(a, r)≤ βk(a, r), so there exists β(a, r)≥  such that

βk(a, r)→ β(a, r) ()

as k → ∞. By the definition of βk(a, r), there exists uk ∈ Zk with ‖uk‖ =  such that

‖uk‖Lra >
βk(a, r)


. ()

Since {uk}k∈N is bounded, then there exists u ∈ E such that

uk ⇀ u

http://www.boundaryvalueproblems.com/content/2013/1/177
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as k → ∞. Now, since {vj} is a basis of E, it follows that for all j ∈ N ,

 = (uk , vj) ∀k > j

→ (u, vj)

as k → ∞, which shows that u = . By Lemma . we have

uk → 

in Lra(R) for all r ∈ (, ) and a ∈ L 
–r (R), which together with () and () implies that

β(a, r) =  for all r ∈ (, ) and a ∈ L 
–r (R). �

We obtain the existence of a solution for problem () by using the following standard
minimizing argument.

Lemma . [] Let E be a real Banach space and � ∈ C(E,R) satisfying the (PS) condi-
tion. If � is bounded from below,

c := inf
E

�

is a critical value of �.

In order to prove the multiplicity of solutions, we will use the dual fountain theorem.
Firstly, we introduce the definition of the (PS)∗c condition.

Definition . Let � ∈ C(E,R) and c ∈ R. The function � satisfies the (PS)∗c condition if
any sequence {unj} ∈ E, such that

�(unj ) → c, �|′Ynj (unj ) →  as nj → ∞,

contains a subsequence converging to a critical point of �.

Now we show the following dual fountain theorem.

Lemma . [] If �(–u) = �(u) and for every k ≥ k, there exists ρk > γk >  such that
(i) ak := infu∈Zk ,‖u‖=ρk �(u)≥ ,
(ii) bk :=maxu∈Yk ,‖u‖=γk �(u) < ,
(iii) dk := infu∈Zk ,‖u‖=ρk �(u) →  as k → ∞.
Moreover, if � ∈ C(X,R) satisfies the (PS)∗c condition for all c ∈ [dk , ), then � has a

sequence of critical points {uk} such that �(uk)→ – as k → ∞.

3 Proof of theorems
Define the functional I : E ×D,(R) → R by

I(u,φ) =


‖u‖ – 



∫
R

|∇φ| dx + 


∫
R

φu dx –
∫
R
F(x,u)dx. ()

http://www.boundaryvalueproblems.com/content/2013/1/177
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It is easy to know that I exhibits a strong indefiniteness, namely it is unbounded both
from below and from above on an infinitely dimensional subspace. This indefiniteness can
be removed using the reduction method described in [], by which we are led to study a
variable functional that does not present such a strong indefinite nature.
Now we recall this method. For any u ∈ E, consider the linear functional Tu :D,(R) →

R defined as

Tu(v) =
∫
R
uvdx.

By the Hölder inequality and using the second inequality in (), we have

∫
R
uvdx ≤ ∥∥u∥∥L/‖v‖L

≤ ‖u‖L/‖v‖L
≤ C/C∗‖u‖‖v‖D, .

So, Tu is continuous on D,(R). Set

μ(u, v) =
∫
R

∇u · ∇vdx

for all u, v ∈D,(R). Obviously, μ(u, v) is bilinear, bounded and coercive. Hence, the Lax-
Milgram theorem implies that for every u ∈ E, there exists a unique φu ∈ D,(R) such
that

Tu(v) = μ(φu, v)

for any v ∈D,(R), that is,

∫
R
uvdx =

∫
R

∇φu · ∇vdx

for any v ∈D,(R). Using integration by parts, we get

∫
R

∇φu · ∇vdx = –
∫
R
v�φu dx

for any v ∈D,(R), therefore

–�φu = u ()

in a weak sense. We can write an integral expression for φu in the form

φu =

π

∫
R

u(y)
|x – y| dy

for any u ∈ C∞
 (R) (see [], Theorem ); by density it can be extended for any u ∈ E (see

Lemma . of []). Clearly, φu ≥  and φ–u = φu for all u ∈ E.

http://www.boundaryvalueproblems.com/content/2013/1/177
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It follows from () that
∫
R

φuu dx =
∫
R

φu(–�φu)dx =
∫
R

|∇φu| dx, ()

and by the Hölder inequality, we have

‖φu‖D, =
∫
R

φuu dx

≤
(∫

R
φ
u dx

)/(∫
R

|u| 
)/

= C∗‖φu‖D,‖u‖L/ ,

and it follows that

‖φu‖D, ≤ C∗‖u‖L/ . ()

Hence,∫
R

φuu dx ≤ C∗‖u‖L/ ≤ C∗C
/‖u‖ := C‖u‖. ()

So, we can consider the functional � : E → R defined by �(u) = I(u,φu). By (), the
reduced functional takes the form

�(u) =


‖u‖ + 



∫
R

φuu dx –
∫
R
F(x,u)dx. ()

By (), we have

∣∣F(x,u)∣∣ ≤ a(x)
r

|u|r ()

for all x ∈ R and |u| ≤ δ, where r ∈ (, ) and a ∈ L


–r (R). Let u ∈ E, then u ∈ C(R),
the space of continuous function u on R, such that u(x)→  as |x| → ∞. Therefore there
exists T >  such that

∣∣u(x)∣∣ ≤ δ ()

for all |x| > T. Hence, one has
∫

|x|>T

∣∣F(x,u)∣∣dx ≤
∫

|x|>T

a(x)
r

∣∣u(x)∣∣r dx
≤ 

r

(∫
|x|≥T

a(x)


–r dx
)(–r)/(∫

|x|≥T

∣∣u(x)∣∣ dx)r/

≤ 
r

(∫
|x|≥T

a(x)


–r dx
)(–r)/

‖u‖rL

≤ 
r
Cr
 ‖u‖r‖a‖

L


–r

< ∞,
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which together with () shows that � is well defined. Furthermore, it is well known that
� is a C functional with derivative given by

〈
�′(u), v

〉
=

∫
R

[
(∇u · ∇v) +V (x)uv + φuuv – f (x,u)v

]
dx.

It can be proved that (u,φ) ∈ E × D,(R) is a solution of problem () if and only if u ∈ E
is a critical point of the functional � and φ = φu; see, for instance, [].

Lemma . Under conditions (V), (W), (W), (W), � satisfies the (PS)∗c condition.

Proof Assume that {unj} ⊂ E is a sequence such that

�(unj ) → c, �|′Ynj (unj ) →  as nj → ∞.

Then there exists σ >  such that

∣∣�(unj )
∣∣ ≤ σ ,

∥∥�|′Ynj (unj )
∥∥∗
E ≤ σ

for all nj ∈N .
Firstly, we show that {unj} is bounded. By (), we have

∣∣F(x,u)∣∣ ≤ a(x)
r

|u|r + a(x)
r

|u|r + bM(x)
rδr–

|u|r ()

for all u ∈ R and x ∈ R, which together with
∫
R φunj u


nj dx ≥  implies

‖unj‖ = �(unj ) –



∫
R

φunj u

nj dx + 

∫
R
F(x,unj )dx

≤ σ +

r

∫
R
a(x)|unj |r dx +


r

∫
R
a(x)|unj |r dx

+


rδr–

∫
R
bM(x)|unj |r dx

≤ σ +

r

(∫
R
a(x)


–r dx

)(–r)/(∫
R

|unj | dx
)r/

+

r

(∫
R
a(x)


–r dx

)(–r)/(∫
R

|unj | dx
)r/

+


rδr–

(∫
R
bM(x)


–r dx

)(–r)/(∫
R

|unj | dx
)r/

≤ σ +

r
Cr
 ‖a‖

L


–r
‖unj‖r +


r
Cr
 ‖a‖

L


–r
‖unj‖r

+


rδr–
Cr
 ‖bM‖

L


–r
‖unj‖r . ()

Noting that ri <  for all i = , , , so ‖unj‖ is bounded.
By the fact that {unj} is bounded in E, there exists u ∈ E and a constant d >  such that

sup
nj∈N

‖unj‖ ≤ d, ‖u‖ ≤ d ()
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and

unj ⇀ u

in E as nj → ∞. It is obvious that

〈
�′(unj ) –�′(u),u

〉 →  ()

and

φuu(unj – u) →  ()

as nj → ∞. On the other hand, by (V), () and Lemma ., one has

∣∣∣∣
∫
R

(
f (x,unj ) – f (x,u)

)
unj dx

∣∣∣∣ ≤ ∥∥f (x,unj ) – f (x,u)
∥∥
L‖unj‖L

≤ C
∥∥f (x,unj ) – f (x,u)

∥∥
L‖unj‖

≤ Cd
∥∥f (x,unj ) – f (x,u)

∥∥
L

→  ()

as nj → ∞, which implies

〈
�′(unj ) –�′(u),unj

〉 →  ()

as nj → ∞. Summing up () and (), we have

〈
�′(unj ) –�′(u),unj – u

〉 →  ()

as nj → ∞. By the Hölder inequality and (), one gets

∫
R

φunj unj (unj – u)dx ≤ ‖φunj unj‖L‖unj – u‖L
≤ ‖φunj ‖L‖unj‖L‖unj – u‖L
≤ C∗‖φunj ‖D,‖unj‖L‖unj – u‖L
≤ C∗‖unj‖L/‖unj‖L‖unj – u‖L
≤ C∗C

/CC‖unj‖‖unj – u‖
≤ C∗C

/CCd

< ∞.

Then by Lebesgue’s convergence theorem, we have

∫
R

φunj unj (unj – u)dx → 

http://www.boundaryvalueproblems.com/content/2013/1/177
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as nj → ∞, which together with () implies

∫
R
(φunj unj – φuu)(unj – u)dx →  ()

as nj → ∞. By Lemma . and (), we get

∣∣∣∣
∫
R

(
f (x,unj ) – f (x,u)

)
(unj – u)dx

∣∣∣∣ ≤ ∥∥f (x,unj ) – f
(
x,u(x)

)∥∥
L‖unj – u‖L

≤ C
∥∥f (x,unj ) – f (x,u)

∥∥
L‖unj – u‖

≤ Cd
∥∥f (x,unj ) – f (x,u)

∥∥
L

→ 

as nj → ∞. Moreover, an easy computation shows that

〈
�′(unj ) –�′(u),unj – u

〉
= ‖unj – u‖ +

∫
R
(φunj unj – φuu)(unj – u)dx

–
∫
R

(
f (x,unj ) – f (x,u)

)
(unj – u)dx.

Consequently, ‖unj – u‖ →  as nj → ∞. � satisfies the (PS)∗c condition. �

Remark . Under conditions (V), (W), (W), (W), � satisfies the (PS) condition. As-
sume that {un} ⊂ E is a sequence such that I(un) is bounded and

I ′(un) → 

as n→ ∞. Then there exists σ >  such that

∣∣I(un)∣∣ ≤ σ ,
∥∥I ′(un)∥∥∗

E ≤ σ

for all n ∈N . The rest of the proof is the same as that of Lemma ..

Proof of Theorem . For any k ∈N , we take k disjoint open sets {�i|i = , . . . ,k} such that

k⋃
i=

�i ⊂ �.

For any ε >  and �i, there exist a closed set Hi and an open set Gi such that Hi ⊂ �i ⊂Gi

and

meas{Gi \ �i} < ε, meas{�i \Hi} < ε.

For every Gi (i = , . . . ,k), by Lemma . there exists ϕi ∈ C∞
 (Gi,R) such that ϕi|Hi =  and

 ≤ ϕi ≤ . Letting vi = ϕi
‖ϕi‖ , can be extended to be a basis {vn} ⊂ X. ThereforeX =

⊕
j≥Xj,

where Xj = span{vj}. Now we define Yk :=
⊕k

j=Xj, Zk :=
⊕

j≥k Xj.
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By Lemma ., � ∈ C(E,R) satisfies the (PS)∗c condition and �(u) = �(–u). Hence, to
prove Theorem ., we should just show that � has the geometric property (i), (ii) and (iii)
in Lemma ..
(i) By Lemma .

βk(a, r) = sup
u∈Zk ,‖u‖=

‖u‖Lra → 

as k → ∞ for r ∈ (, ) and a ∈ L 
–r (R). In view of () and the fact that

∫
R φuu dx ≥ ,

we have

�(u) =


‖u‖ + 



∫
R

φuu dx –
∫
R
F(x,u)dx

≥ 

|u| –

∫
R
F(x,u)dx

≥ 

‖u‖ – 

r

∫
R
a(x)|u|r dx – 

r

∫
R
a(x)|u|r dx

–


rδr–

∫
R
bM(x)|u|r dx

≥ 

‖u‖ –

‖u‖r
Lra

r
–
‖u‖r

Lra
r

–
‖u‖r

Lra
rδr–

≥ 

‖u‖ – βk(a, r)r

r
‖u‖r – βk(a, r)r

r
‖u‖r – βk(bM, r)r

rδr–
‖u‖r . ()

Let r := min{r, r, r}, βk := max{βk(a, r),βk(a, r),βk(bM, r)}, C′ := max{ 
r
, 
r
, 
rδr–

},
then βk →  as k → ∞. Hence, we have

�(u) ≥ 

‖u‖ – C′βr

k‖u‖r ()

when ‖u‖ ≤  and βk ≤ . Now we can choose ρk = (βr
kC′)/(–r), then ρk →  as k → ∞.

When k is large enough, we have ρk ≤ , βk ≤ , which together with () shows

ak := inf
u∈Zk ,‖u‖=ρk

�(u) ≥ 


ρ
k > .

(ii) For any u ∈ Yk , there exists λi = , , . . . ,k such that

u =
k∑
i=

λivi.

Then we have

‖u‖rLr =
∫
R

∣∣u(x)∣∣r dx
=

k∑
i=

|λi|r
∫

�i

∣∣vi(x)∣∣r dx + k∑
i=

|λi|r
∫
Gi\�i

∣∣vi(x)∣∣r dx

=
k∑
i=

|λi|r
∫

�i

∣∣vi(x)∣∣r dx + k∑
i=

|λi|r
∫
Gi\�i

|ϕi(x)|r
‖ϕi‖r dx
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≤
k∑
i=

|λi|r
∫

�i

∣∣vi(x)∣∣r dx + k∑
i=

|λi|r
‖ϕi‖r meas{Gi \ �i}

≤
k∑
i=

|λi|r
∫

�i

∣∣vi(x)∣∣r + k∑
i=

|λi|r
‖ϕi‖r ε ()

and also

‖u‖ =
∫
R

[|∇u| +V (x)u
]
dx

=
k∑
i=

λ
i

∫
Gi

[|∇vi| +V (x)vi
]
dx

=
k∑
i=

λ
i ‖vi‖

=
k∑
i=

λ
i . ()

Since all the norms of a finite dimensional space are equivalent, there is a constant C̃ such
that

C̃‖u‖ ≤ ‖u‖Lr

for all u ∈ Yk . By (), one has

F(x,λivi) ≥ –
a(x)
r

|λivi|r – a(x)
r

|λivi|r – bM(x)
rδr–

|λivi|r .

Therefore, we have

k∑
i=

∫
Gi\�i

F(x,λivi)dx

≥ –
k∑
i=

∫
Gi\�i

|λi|r
r

a(x)|vi|r dx –
k∑
i=

∫
Gi\�i

|λi|r
r

a(x)|vi|r dx

–
k∑
i=

∫
Gi\�i

|λi|r
rδr–

bM(x)|vi|r dx

≥ –
k∑
i=

|λi|r
r

‖a‖
L


–r

(∫
Gi\�i

|vi| dx
)r/

–
k∑
i=

|λi|r
r

‖a‖
L


–r

(∫
Gi\�i

|vi| dx
)r/

–
k∑
i=

|λi|r
rδr–

‖bM‖
L


–r

(∫
Gi\�i

|vi| dx
)r/

≥ –
k∑
i=

|λi|r
r

‖a‖
L


–r

(∫
Gi\�i

|ϕi|
‖ϕi‖ dx

)r/
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–
k∑
i=

|λi|r
r

‖a‖
L


–r

(∫
Gi\�i

|ϕi|
‖ϕi‖ dx

)r/

–
k∑
i=

|λi|r
rδr–

‖bM‖
L


–r

(∫
Gi\�i

|ϕi|
‖ϕi‖ dx

)r/

= –

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r

(
meas{Gi \ �i}

)r/

–

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r

(
meas{Gi \ �i}

)r/

–


rδr–
‖bM‖

L


–r

k∑
i=

|λi|r
‖ϕi‖r

(
meas{Gi \ �i}

)r/

≥ –

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/ –

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/

–


rδr–
‖bM‖

L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/. ()

For any u ∈ Yk with ‖u‖ = ∑k
i= λ


i = γk , we can choose γk small enough such that |λivi(x)| <

ζ for all x ∈ R and i = , . . . ,k, which together with (W) implies

F(x,λivi) ≥ η|λivi|r ()

for all x ∈ �i and i = , . . . ,k. Combining (), (), (), () and (), we have

�(u) =


‖u‖ + 



∫
R

φuu dx –
∫
R
F(x,u)dx

=


‖u‖ + C


‖u‖ –

k∑
i=

∫
Gi

F(x,λivi)dx

≤ 

‖u‖ –

k∑
i=

[∫
Gi\�i

F(x,λivi)dx +
∫

�i

F(x,λivi)dx
]

≤ 

‖u‖ + C


‖u‖ + 

r
‖a‖

L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/ +


rδr–

‖bM‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/

– η

k∑
i=

|λi|r
∫

�i

|vi|r dx

=


‖u‖ + C


‖u‖ + 

r
‖a‖

L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/ +


rδr–

‖bM‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/
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– η

(
‖u‖rLr –

k∑
i=

|λi|r
‖ϕi‖r ε

)

≤ 

‖u‖ + C


‖u‖ – ηC̃r‖u‖r + 

r
‖a‖

L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/ +


rδr–

‖bM‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/

+ η

k∑
i=

|λi|r
‖ϕi‖r ε

=



k∑
i=

λ
i +

C


( k∑
i=

λ
i

)

– ηC̃r

( k∑
i=

λ
i

)r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/ +


rδr–

‖bM‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/

+ η

k∑
i=

|λi|r
‖ϕi‖r ε

=


γ 
k +

C


γ 
k – η(C̃γk)r +


r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r ε

r/

+

r

‖a‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/ +


rδr–

‖bM‖
L


–r

k∑
i=

|λi|r
‖ϕi‖r εr/

+ η

k∑
i=

|λi|r
‖ϕi‖r ε

≤ γ 
k +

C


γ 
k – η(C̃γk)r

for all u ∈ Yk with ‖u‖ = γk , when ε and γk are both small enough. Since r < , we can
choose γk < ρk small enough such that

bk := max
u∈Yk ,‖u‖=γk

�(u) < .

(iii) By (), for any u ∈ Zk with ‖u‖ = ρk , we have

�(u) ≥ –C′βr
k‖u‖r .

Therefore

 ≥ inf
u∈Zk ,‖u‖≤ρk

�(u) ≥ –C′βr
kρ

r
k .

Since βk ,ρk →  as k → ∞, we have

dk := inf
u∈Zk ,‖u‖≤ρk

�(u)→ 

as k → ∞.
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Hence, by Lemma ., we obtain that problem () has infinitely many solutions {(uk ,φk)}
satisfying




∫
R

(|∇uk| +V (x)uk
)
dx –




∫
R

|∇φk| dx + 


∫
R

φkuk dx –
∫
R
F(x,uk)dx → –

as k → ∞. �

Proof of Theorem . Similar to (), there exist constants ki > , i = , , , such that

�(u) ≥ 

‖u‖ –

∑
i=

ki‖u‖ri ()

for all u ∈ E. Since  < ri < , it follows from () that the functional � is bounded from
below. By Lemma . and Remark ., � possesses a critical point u satisfying

�(u) = inf
E

�, �′(u) = .

It remains to show that u is nontrivial. For every ε > , there exist an open set G and a
closed set H such that H ⊂ � ⊂G and

meas{G \ �} < ε, meas{� \H} < ε.

By Lemma ., there exists a function ϕ ∈ C∞
 (R) such that  ≤ ϕ(x) ≤  and ϕ|H (x) = ,

ϕ|R\G(x) = , then ϕ ∈ E. Choosing  < λ <min{δ, ζ }, then |λϕ(x)| < δ for all x ∈ R, which
together with () shows

F
(
x,λϕ(x)

) ≥ –
a(x)
r

∣∣λϕ(x)
∣∣r

for all x ∈ R. Therefore, one has

∫
G\H

F(x,λϕ)dx ≥ –
∫
G\H

λr

r
a(x)ϕr dx

≥ –
λr

r

(∫
G\H

a(x)


–r dx
)(–r)/(∫

G\H
ϕ dx

)r/

≥ –
λr

r
‖a‖

L


–r

(∫
G\H

dx
)r/

≥ –
λr

r
‖a‖

L


–r

(
meas{G \H})r/

≥ –
λr

r
‖a‖

L


–r
(ε)r/. ()

In view of λ < ζ , we have |λϕ(x)| < ζ for all x ∈ R, which together with (W) implies

F(x,λϕ)≥ η|λϕ|r ()
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for all x ∈ �. It follows from (), (), () that

�(λϕ) =
λ


‖ϕ‖ + 



∫
R

φλϕ(λϕ) dx –
∫
R
F(x,λϕ)dx

≤ λ


‖ϕ‖ +Cλ‖ϕ‖ –

∫
R
F(x,λϕ)dx

≤ λ


‖ϕ‖ +Cλ‖ϕ‖ –

∫
G
F(x,λϕ)dx

=
λ


‖ϕ‖ +Cλ‖ϕ‖ –

[∫
H
F(x,λϕ)dx +

∫
G\H

F(x,λϕ)dx
]

≤ λ


‖ϕ‖ +Cλ‖ϕ‖ – λr

∫
H

η|ϕ|r dx + λr

r
‖a‖

L


–r
(ε)r/

≤ λ‖ϕ‖ +Cλ‖ϕ‖ – λrηmeas{H}
< 

when ε and λ are both small enough. Since �() = , then u �= . Hence, (u,φu) is a non-
trivial solution of problem (). �
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