
Xing et al. EURASIP Journal onWireless Communications and
Networking  (2017) 2017:18 
DOI 10.1186/s13638-017-0805-7

RESEARCH Open Access

Self-interference suppression with
imperfect channel estimation in a
shared-antenna full-duplex massive MU-MIMO
system
Pengbo Xing, Ju Liu*, Chao Zhai and Zhiyuan Yu

Abstract

In this paper, we consider a shared-antenna full-duplex massive MU-MIMO system and prove that the self-interference
(SI) at the base station (BS) can be suppressed, though the direct-path SI exists and the signal/SI channel is imperfectly
estimated. The BS is assumed to employ zero-forcing (ZF) or maximal-ratio transmission/maximal-ratio combining
(MRT/MRC) method to linearly process signals. We propose a precoded SI channel training scheme by employing
orthogonal sequences and downlink precoding, so the SI channel can be estimated like the signal channel with a
much lower dimension. Based on the channel estimation, we further analyze the SI suppression by combining the SI
removal and the large-scale antenna linear processing (LALP) method. Numerical results show that an additional 36
dB SI can be suppressed by combining the SI removal and the LALP suppression. We derive the tight closed-form
lower bounds of the achievable rates for the combined suppression. Finally, we maximize the system spectral
efficiency and energy efficiency based on the simulation and closed-form approximations.
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1 Introduction
Massive multiple-input multiple-output (MIMO) and in-
band full-duplex (IBFD) techniques have attracted inten-
sive research interest because they can be used for
broadband green communications [1–8]. IBFD can realize
simultaneous bi-directional (uplink and downlink) data
transmissions using the same time-frequency resource.
Massive MIMO system exploits a large number of anten-
nas at the transmitter to focus the energy into a narrow
beam to improve the signal strength and mitigate inter-
ference. Both techniques are promising to meet the ever-
growing requirements of wireless data transmissions, but
bring some design variations over the physical or higher
layers [9–17].
ThemassiveMIMO technique can significantly improve

the spectral efficiency (SE) and energy efficiency (EE)
while keeping a lower transmit power for both uplink and
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downlink [15, 18–20] bymitigating the detrimental effects
of small-scale fading, noise, and interference [4]. With
more antennas equipped, the signal processing becomes
much easier than the traditional MIMO system [4, 19].
The massive MIMO system usually operates with time-
division duplexing (TDD) rather than frequency-division
duplexing (FDD). In the FDD system, channel state infor-
mation (CSI) should be acquired by the feedback, and
much overhead will be introduced with the increase of
antenna-array scale [15], thus the antenna grouping and
CSI compression techniques were studied to reduce the
estimation overhead [16, 17]. While in the TDD system,
channel reciprocity can be considered to reduce the over-
head, as the downlink CSI can be acquired by the base
station (BS) through the uplink training [18, 21].
The full-duplex (FD) technique can potentially double

the spectral efficiency, but it faces the problem of self-
interference (SI), which refers to transmitted signals that
can be directly or indirectly received by its own receivers.
Recently, much effort has been made to suppress SI
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[22–25]. Riihonen et al. designed natural isolation, time-
domain cancellation, and spatial SI suppression schemes
[22]. Everett et al. proposed to exploit the antenna direc-
tional isolation and cross-polarization to suppress the SI
in the wireless propagation domain [23]. Bharadia et al.
proposed analog circuit domain cancellationmethods that
can keep a copy of the transmitted signal and subtract
it from the received signal [24]. An analog-and-digital
hybrid SI cancellation method has been developed by
Duarte et al. and can provide approximately 85 dB inter-
ference suppression [25]. Recently, Ngo et al. proposed
the loop interference cancellation technique in a separate-
antenna relay system, where the SI can be suppressed with
a large-scale antenna linear processing (LALP) method in
a random reflected-path SI environment [26].
Sabharwal et al. discussed two methods of interfacing

antennas to an IBFD wireless system: (i) separate-antenna
FD and (ii) shared-antenna FD [1]. In the shared-antenna
model, a bidirection circulator is used to transmit and
receive signals without modifying many architecture stan-
dards, thus the RF hardwares such as antenna, RF cable
and filters can be saved [2]. At the same time, the non-
linearities of the RF hardware, for example the circulators
and amplifiers, introduce weak nonlinear distortions in
such systems.
In this paper, we consider a shared-antenna FD mas-

sive multiuser MIMO (MU-MIMO) system. In our sys-
tem, a BS is equipped with a single antenna array, and
it serves multiple users, each with a single antenna. Like
[2], we ignore the nonlinearities introduced by the RF
hardware, and focus on the linear processing in this
model. A linear processing method, such as zero-forcing
(ZF) or maximal-ratio transmission/maximal-ratio com-
bining (MRT/MRC), is adopted for the signal precoding
and decoding over the FD links. Unlike [26], we dis-
cuss a Rician SI channel rather than Rayleigh channel
model, the uplink and downlink channels in our model
are completely dependent on each other, because the
same antenna array is employed for the signal receive
and transmission. The perfect channel reciprocity can
be used to reduce the estimation overhead. Unlike [27],
we consider the channel estimation for both the sig-
nal and SI channels in this paper. A precode SI channel
training scheme is adopted to estimate the SI chan-
nel using the minimum mean-square-error (MMSE)
technique. The main contributions of our work are
summarized as:

• We consider both the non-random direct-path and
the random reflected-path SI channels in this model.
We prove that the Rician SI channel changes into
Rayleigh channel when the downlink channel/SI
channel is precoded. We also prove that the SI at BS
with imperfect channel estimation can be

asymptotically suppressed, though the uplink-
downlink channels are totally dependent and the line
of sight (LOS) SI exists. It is shown that the capability
of LALP suppression is proportional to the square
root of the antenna array scale M, which is different
from the separate-antenna massive MIMO system.
Because of the channel reciprocity, the signal channel
estimation of the shared-antenna array is reduced by
half compared with the separate-antenna arrays.

• We estimate the SI through the precoded SI channel
with MMSE method, which is different from the
traditional SI acquisition method. The estimation
overhead and the dimension of pilots can be greatly
suppressed compared with the direct estimation of
the unprecoded SI channel. With the estimated SI,
we can further analyze the SI suppression by
combining the SI removal and the LALP method. It is
shown that an additional 36 dB suppression
capability can be achieved through combining the
two methods. We also derive the closed-form lower
bounds of the uplink achievable rates with imperfect
CSI. The optimal SE and EE are further studied based
on the rate lower bounds.

The rest of this paper is organized as follows. The
system model is described in Section 2. Section 3 stud-
ies the SI suppression and the uplink achievable rates.
Section 4 analyzes the SE and EE. Numerical results and
conclusions are presented in Section 5 and Section 6,
respectively.
Notations: The boldface upper and lower-case letters

represent matrices and vectors, respectively. The super-
scripts [ ·] ∗, [ ·]T , and [ ·]H stand for conjugate, transpose,
and Hermitian transpose of matrices or vectors, respec-
tively. The mathematical expectation is denoted as E{·}.
‖·‖ and represents the Euclidean norm. The (i, j)th entry
of a matrix is denoted as [ ·]ij. The trace of a square matrix
is denoted as tr(·) . The a.s.−→ represents almost sure con-
vergence. un = o(vn) and un = O(vn) denote that there
exists a constant C, such that un = Cvn and un ≤ Cvn, ∀n,
respectively.

2 Systemmodel
As shown in Fig. 1, we consider the uplink of a shared-
antenna FD massive MU-MIMO system, where a BS is
equipped withM antennas and servesK users, each with a
single antenna. Like the separate-antenna full-duplex sys-
tem [23, 25], physical isolation can be adopted between
the BS antennas to avoid front-end saturation at the
receiver, and active analog SI cancellation is used to sup-
press the SI before the baseband signal processing. We
assume that M is much larger than K, i.e., M � K . Both
the BS and the users are working in the FD mode, i.e.,
they can transmit and receive signals using the same time-
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Fig. 1 Data transmission and reception with SI at the BS in the shared-antenna FD massive MU-MIMO system

frequency resource. Therefore, theM × 1 uplink received
signal at the BS is given as

yBS = √puGxu + √pdGss + n, (1)

where the first term represents the desired signal, and the
second term represents the SI from the downlink trans-
mission. G is the M × K channel matrix between the K
users and the BS; xu denotes the symbols transmitted by
the K users with unit power E{xuxHu } = IK , pu is the
transmit power of each user; Gs is the M × M SI channel
matrix between the BS transceivers; s is the downlink pre-
coded signal transmitted to the K users with unit power
E{sHs} = 1; pd is the downlink transmit power; and n
represents the additive noise with zero mean and unit
variance.

2.1 Channel model
The channel matrix G models the small-scale Rayleigh
fading and the large-scale path-loss, so we have

G = HD1/2, (2)

where H is the M × K matrix with i.i.d entries [4], rep-
resenting the small-scale fading between the K users and
the BS, and the entry hmk is a circular symmetric complex
Gaussian (CSCG) random variable with zero mean and
unit variance, i.e., hmk ∼ CN (0, 1); D is a K × K diagonal
matrix of the large-scale path-loss with [D]kk = βk .
Since the physical isolation and active analog SI can-

cellation are performed preliminarily, it is reasonable to
assume that the SI can be suppressed greatly [26, 28]. The

magnitude of the SI channel can be modeled as Rician
distribution with LOS SI [29]. Therefore, we can write
the matrix Gs as the direct-path plus the reflected-path
coefficients, i.e.,

Gs = Ḡs + G̃s, (3)

where Ḡs is a complex deterministic matrix with [ Ḡs]mj =
cmj, which represents the antenna intra-leakage and inter-
coupling coefficients related to the direct path, and G̃s
is a complex random matrix that represents the reflec-
tion coefficients related to the reflected path. Similar to
channel matrix G, random matrix G̃s can be expressed as

G̃s = H̃sD̃1/2
s , (4)

where H̃s is an M × M matrix with i.i.d. entries repre-
senting the small-scale fading.We suppose [ H̃s]mj = hs,mj,
where hs,mj is a CSCG random variable with zero mean
and unit variance, and D̃s is anM × M diagonal matrix of
the large-scale path-loss, where [ D̃s]mm = β , namely, all
of the SI large-scale path-loss coefficients are assumed to
be identical. This assumption is reasonable, as the antenna
array size is much smaller than the distance to the scatters.
If these coefficients are not identical, we can set all the ele-
ments of SI channel matrix G̃s to be the maximum value
βmax, which represents the worst case, then G̃s becomes a
matrix with identical large-scale fading.
For the shared-antenna FDmassive MU-MIMO system,

if the array scale is large enough and greatly exceeds the
number of users, that isM � K , the column vectors of the
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signal channel matrix are mutually orthogonal [4], and so
do the vectors of the SI channel matrix. We then have

GHG
M

= D1/2HHH
M

D1/2 ≈ D, (5)

GH
s Gs
M

≈ ḠH
s Ḡs
M

+ G̃H
s G̃s
M

≈ D̄s + D̃s, (6)

tr(GH
s Gs) ≈ tr(ḠH

s Ḡs) + tr(G̃H
s G̃s) = O(M2), (7)

where D̄s is an M × M deterministic matrix and D̃s is an
M × M diagonal matrix with [ D̃s]mm = β . The proofs of
(6) and (7) are given in Appendix.

2.2 Channel estimation
Channel estimation is a prerequisite for SI suppression.
Commonly, a series of orthogonal training sequences is
sent within a period 2τ , which is a small part of the chan-
nel coherence time T. The channel training/estimation is
performed in half-duplex. Therefore, the M × τ received
pilot matrix for the uplink channel and SI channel at the
BS can be written as

Y u = √
PuG�u + N , (8)

and

Y s = √
PdGsA�d + N s, (9)

where Pu and Pd are the transmit powers of pilot
sequences for the uplink and downlink, respectively. Sup-
pose that the power of each pilot symbol equals the aver-
age power of data transmission, then we have Pu = τpu
and Pd = τpd; �u = �d are K × τ matrices whose
rows are the pilot sequences for the estimation of the
signal channel and SI channel. The pilot matrices satisfy
�u�H

u = �d�
H
d = IK and τ ≥ K ; A is anM × K precod-

ing matrix, which is used for downlink beamforming and
updated from the uplink channel estimation;N andN s are
M × τ AWGNmatrices with i.i.d CN (0, 1) entries.

2.2.1 Signal channel estimation
The signal channel is estimated in the first training period
τ . Given Y u, the MMSE estimate of G can be written
as [26]

Ĝ = 1√
Pu

Y u�
H
u Ď =

(
G + 1√

τpu
Nu

)
Ď, (10)

where Nu � N�H
u and Ď � ( 1

τpuD
−1 + IK )−1. Because

�u�H
u = IK , the entries of Nu are i.i.d random variables

distributed as CN (0, 1). Let� denote the estimation error
of G, then we have

G = Ĝ + �. (11)

According to the property of statistician’s Pythagorean
theorem of the MMSE estimation [30], the estimation
error � is independent of Ĝ. Therefore, the kth columns

of Ĝ and � are mutually independent, and the elements of
the kth vector are distributed as CN (0, β̂k) and CN (0, β̃k),
respectively, with β̂k �

τpuβ2
k

τpuβk+1 and β̃k � βk
τpuβk+1 .

Note that the shared-antenna array massive MIMO sys-
tem has a single array, so the transmit and receive CSI are
the same during the coherent time. We only need to esti-
mate the uplink channel, and thus the estimation overhead
is reduced by half. This is different from the separate-
antenna arrays system, where the CSI of the receive and
transmit arrays are different, the uplink and downlink CSI
have to be estimated separately.

2.2.2 SI channel estimation
The SI channel is estimated in the second training period
τ . In fact, it is not necessary to estimate Gs, we can esti-
mate the equivalent or precoded SI channel Gsa instead,
which represents the product of Gs and A. The new
precoding matrix A can be updated for the SI channel
estimation after Ĝ is acquired. Because Gsa has the same
dimension as the uplink channel G, the training pilot
length and pilot amount depend on the user number K
rather than the number of BS antennas M. Therefore, the
dimension of the SI channel estimation can be decreased
from M × M to M × K , and thus fewer orthogonal pilot
sequences are needed. Note that the proposed training
and estimation method is different from the traditional
SI acquisition method where the SI is directly estimated
with/without pilots [22].
The precoding matrix A is derived from Ĝ. For a linear

precoding scheme such as ZF or MRT, A is given as

A =
⎧
⎨

⎩
αZFĜ

∗
(ĜT Ĝ∗

)−1, for ZF,

αMRTĜ
∗, for MRT,

(12)

where αZF �
√

M−K∑K
k=1 β̂−1

k
and αMRT �

√
1

M
∑K

k=1 β̂k
are the

normalization factors [26] satisfying E{sHs} = 1.

Proposition 1 In the shared-antenna FD massive MU-
MIMO system, the SI equivalent channel Gsa = GsA is an
M × K complex Gaussian matrix if K is fixed and M →
∞. The (m, i)th entry follows the distribution CN

(
0, ρm,i

)
,

where ρm,i = 1
M2 α

2
ZFβ̂

−1
i

∑M
j=1

(∣∣cmj
∣∣2+β

)
for ZF pre-

coding and ρm,i = α2
MRTβ̂i

∑M
j=1

(∣∣cmj
∣∣2+β

)
for MRT

precoding, β̂i � τpuβ2
i

τpuβi+1 , i = 1, . . . ,K.

Proof. Please see Appendix.

From Proposition 1, we can see that the equivalent SI
channel is a zero-mean complex Gaussian channel, i.e., the
Rayleigh channel, even though the SI channel is a Rician
channel. Therefore, the precoded SI channel can still be
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treated as Rayleigh channel. Like the signal channelG,Gsa
can be estimated byMMSE if Y s is given. Let E denote the
estimation error matrix of Gsa, we then have

Gsa = Ĝsa + E , (13)

the (m, i)th entry of Ĝsa and E are distributed as
CN (0, ρ̂m,i) and CN (0, ρ̃m,i), respectively, with ρ̂m,i �

τpdρ2
m,i

τpdρm,i+1 , ρ̃m,i � ρm,i
τpdρm,i+1 ,m = 1, ...,M, i = 1, ...,K .

2.3 Uplink decoding under precoded SI
Precoding can be used in the training phase for the SI
channel estimation, and it can also be used in the data
transmission phase for beamforming, which can help
enhance the strength of the desired signal and reduce
the interference to others. During the data transmission
period, the ZF orMRT scheme is adopted by the BS for the
downlink beamforming. Correspondingly, the BS receives
the precoded SI from the transmitters, and it uses the ZF
orMRC linear processingmethod for the uplink decoding.
Suppose xd is a K × 1 data vector transmitted from the

BS to the users with unit power E{xdxHd } = IK , and s =
Axd. (1) can be rewritten as

yBS = √puGxu + √pdGsAxd + n. (14)

To decode the uplink data of K users, the BS receiver
will multiply a linear matrix WT before yBS, which is a
function of the signal channel estimation, i.e.,

WT =

⎧
⎪⎨

⎪⎩

(
ĜHĜ

)−1
ĜH , for ZF;

1
M

ĜH , for MRC.
(15)

With the uplink linear receiver at the BS, the user data
can be decoded as

r = WTyBS = √puWTGxu + √pdWTGsAxd + WTn,
(16)

where √puWTGxu is the desired signal, √pdWTGsAxd
is the SI between the BS transceivers, and WTn is the
additive noise.
Further, from (11) and (13), we have

r =√puWT Ĝxu + √puWT�xu
+ √pdWT Ĝsaxd + √pdWTExd + WTn, (17)

where √puWT Ĝxu is the estimated signal, √pdWT Ĝsaxd
is the SI from the estimation, √puWT�xu and√pdWTExd are the estimation errors of the desired
signal and SI, respectively.

3 SI suppression and achievable rate
In the massive MIMO system, the white noise and the
inter-user interference can be eliminated by an LALP
method [15, 19, 31]. In this section, we consider the

shared-antenna FD massive MU-MIMO system and dis-
cuss the combined SI suppression based on the estimated
channels of signal and SI. We also derive the closed-form
lower bounds of the uplink achievable rates, which can be
used as a system performance metric.

3.1 SI suppression with LALP
In the TDD half-duplex (HD) system, the interferences
are asymptotically orthogonal to the subspace spanned
by the desired signals when the antenna-array scale M
approaches infinity. The desired signal can be recovered
by projecting the received signal in a desired subspace
with linear processing [19, 26]. In the shared-antenna FD
massive MU-MIMO system, the asymptotic orthogonal-
ity property still holds true. Unlike the separate-antenna
array system [26], the SI in our model includes the non-
random direct-path interference, and the uplink channel
is totally dependent on the downlink channel, as the same
antenna array is employed to transmit and receive signals
simultaneously.

Theorem 1 In the shared-antenna FD massive MU-
MIMO system, when the signal and SI channels are not
perfectly estimated and ZF or MRT/MRC linear process-
ing is adopted, the SI at the BS will vanish if K is fixed and
M → ∞.

Proof. We consider the SI term √pdWTGsAxd of (16).
From (5) and (7), we have GHG

M = D and tr
(
GsGH

s
) =

O(M2) when M → ∞. According to the properties of
MMSE estimation, we know that the estimated channels
Ĝ and Ĝsa are independent on the estimation errors� and
E , respectively, and they are zero-mean complex Gaussian
matrices as well. Substituting (12) and (15) into WTGsA,
we have

WTGsA=
⎧
⎨

⎩
αZF

(
ĜHĜ

)−1
ĜHGsĜ

∗ (
ĜTĜ∗)−1

, for ZF;

αMRT
1
M ĜHGsĜ, for MRT/MRC.

(18)

Note that tr(ĜHĜ) = tr(ĜT Ĝ∗
) = o(M), αZF = o(

√
M)

and αMRT = o( 1√
M ), by using Lemma 13 and 14 in [32],

we obtain

1
M

ĝi
HGsĝi −

1
M

trGs
a.s.−→ 0, i = 1, . . . ,K , (19)

1
M

ĝi
HGsĝj

a.s.−→ 0, i, j = 1, . . . ,K , i = j, (20)

and

1
M2/3 Ĝ

HGsĜ
a.s.−→ 0K×K , (21)
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where ĝi and ĝj are the ith and jth column of G, respec-
tively. Thus, we have the SI term of (17)

√pdWT Ĝsaxd
a.s.−→ 0K×1, (22)

and
√pdWTExd

a.s.−→ 0K×1, (23)

for ZF and MRT/MRC linear processing schemes.

Remark: In the shared-antenna FD massive MU-MIMO
system, the decoding matrix WT and the precoding
matrix A in the SI term are totally dependent because
of the channel reciprocity between uplink and downlink.
This is different from the FD relay massive MIMO sys-
temwhere the source-relay and relay-destination channels
are independent. According to Lemma 13 in [32] and
Theorem 3.7 in [33], the LALP suppression capability is
O(1/M1/2), and it is different from [26] where the LALP
suppression capability isO(1/M) for the separate-antenna
arrays.

Proposition 2 In the shared-antenna FD massive MU-
MIMO system with imperfect channel estimation, if K is
fixed and M → ∞, the decoded uplink signal vector at the
BS is

r a.s.−→ √puxu, (24)

for the ZF precoding and decoding and

D̂−1r a.s.−→ √puxu, (25)

for the MRT/MRC precoding and decoding, where [ D̂]kk =
β̂k and β̂k �

τpuβ2
k

τpuβk+1 , k = 1, . . . ,K.

Proof. According to (5), (11), (16), and Theorem 1, the
results can be obtained.

3.2 Combined SI suppression
Practically, the number of antennas cannot be infinite, the
LALP method cannot ideally suppress the SI, especially
for the dependent shared-antenna array. As mentioned
above, the SI in the FDmassive MU-MIMO system can be
estimated by the MMSE through a precoded SI channel
training process, thus the known SI can be removed before
the LALP suppression. After the SI removal, the remain-
ing interference becomes much weaker, and the LALP can
be further adopted to suppress the remaining SI. There-
fore, the suppression capability is greatly improved by
combining the two suppression methods.
As shown in (17), the term √pdWT Ĝsaxd is known by

the BS. We can subtract it from the received signal r, so
that (17) can be rewritten as

r̂ = √puWT Ĝxu + √puWT�xu + √pdWTExd + WTn,
(26)

where r̂ = r − √pdWT Ĝsaxd. The kth decoded signal can
then be expressed as

r̂k =√puwT
k ĝkxk + √pu

K∑

i=1,i=k
wT
k ĝixi

+ √pu
K∑

i=1
wT
k δixi + √pd

K∑

i=1
wT
k εixdi + wT

k n,

(27)

where wk , ĝk , δi, and εi are the kth or ith column ofW , Ĝ,
�, and E , respectively; xk and xdi are the kth and ith ele-
ment of xu and xd, respectively;

√puwT
k ĝkxk is the desired

signal from the kth user; √pu
∑K

i=1,i=k wT
k ĝixi is the inter-

user interference;√pu
∑K

i=1 wT
k δixi is the estimation error

from the signal channel G; √pd
∑K

i=1 wT
k εixdi is the esti-

mation error from the SI equivalent channel Gsa and wT
k n

is the additive noise.
Theoretically, the SI and other interferences and noise

can be suppressed as much as possible, and the achiev-
able rate of users can approach infinity with the increase
of the antenna array scale. Practically, tens or hundreds of
antennas can be a good approximation of infinity [4, 34].

3.3 Achievable rate
In this subsection, we will discuss the uplink achievable
rate of the shared-antenna FD massive MIMO system for
the LALP and the combined suppression.

3.3.1 Combinedmethod
From (27), the kth user uplink achievable rate is given as

Rk = E{log2(1 + γk)}, (28)

where γk is given as

γk = pu
∣∣wT

k ĝk
∣∣2

pu
K∑

i=1,i=k

∣∣wT
k ĝi

∣∣2+pu
K∑

i=1

∣∣wT
kδi

∣∣2+pd
K∑

i=1

∣∣wT
kεi

∣∣2+∥∥wT
k
∥∥2

.

(29)

3.3.2 LALP only
If we estimate the signal channel and suppress the SI by
the LALP method only, we have

r′k =√puwT
k ĝkxk + √pu

K∑

i=1,i=k
wT
k ĝixi

+√pu
K∑

i=1
wT
kδixi+

√pd
K∑

i=1
wT
kgsa,ix

d
i +wT

k n, (30)
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where gsa,i is the ith column of Gsa, i = 1, ...,K ;√pd
∑K

i=1 wT
k gsa,ix

d
i is the SI. The kth user achievable rate

with imperfect estimation and the LALP method only can
be expressed as

R′
k = E{log2(1 + γ ′

k)}, (31)

where γ ′
k is given as

γ ′
k = pu

∣∣wT
k ĝk

∣∣2

pu
K∑

i=1,i=k

∣∣wT
k ĝi

∣∣2+pu
K∑

i=1

∣∣wT
kδi

∣∣2+pd
K∑

i=1

∣∣wT
kgsa,i

∣∣2+∥∥wT
k
∥∥2

.

(32)

3.3.3 Perfect channel estimation
We compare the achievable rate of the imperfect case with
the perfect case and verify the accuracy of the channel
estimation. If the perfect CSI can be obtained, the signal
channel estimation error and the SI terms can be removed
from (32). By setting the estimation error as zero in (27),
the uplink decoded signal of the kth user with perfect
estimation can be obtained as

r′′k =√puwT
k gkxk + √pu

K∑

i=1,i=k
wT
k gixi + wT

k n, (33)

where r′′k = rk − √pd
∑K

i=1 wT
k gsa,ix

d
i , and wk , gk , and

gsa,i are the kth or ith column of W , G, and Gsa, respec-
tively; √puwT

k gkxk is the desired signal from the kth
user; √pu

∑K
i=1,i=k wT

k gixi is the inter-user interference;
and √pd

∑K
i=1 wT

k gsa,ix
d
i is the SI. Therefore, the kth user

achievable rate with perfect CSI can be given as

R′′
k = E

{
log2

(
1 + γ ′′

k
)}

, (34)

where γ ′′
k is given as

γ ′′
k = pu

∣∣wT
k gk

∣∣2

pu
∑K

i=1,i=k
∣∣wT

k gi
∣∣2 + ∥∥wT

k
∥∥2

. (35)

3.4 Achievable rate lower bounds of the combined
method

From (28), we can derive the lower bounds of the
achievable rates for the combined method with ZF and
MRT/MRC linear processing.

Lemma 1 In the shared-antenna FD massive MU-
MIMO system, the random variable g̃i = wT

k ĝi∥∥∥wT
k

∥∥∥
is a

zero-mean complex Gaussian variable with variance β̂i,
which is independent on wT

k if K is fixed and M → ∞,

where β̂i = τpuβ2
i

τpuβ i+1 , i = 1, ...,K, i = k.

Proof. Please see Appendix A of [19].

Lemma 2 In the shared-antenna FD massive MU-
MIMO system, the random variable δ̃i = wT

k δi∥∥∥wT
k

∥∥∥
is a

zero-mean complex Gaussian variable with variance β̃i,
which is independent on wT

k if K is fixed and M → ∞,
where β̃i = β i

τpuβ i+1 , i = 1, ...,K.

Proof. According to the optimum MMSE estimation
property, δi is independent of ĝi for i = 1, ...,K . Similarly,
as the proof of Lemma 1, we can obtain the result.

Lemma 3 In the shared-antenna FD massive MU-
MIMO system, the random variable ε̃i = wT

k εi∥∥∥wT
k

∥∥∥
is a

zero-mean complex Gaussian variable with variance ρ̃i,
which is independent on wT

k if K is fixed and M → ∞,
where ρ̃i = 1

M
∑M

m=1
ρm,i

τpdρm,i+1 , i = 1, ...,K.

Proof. Please see Appendix.

Proposition 3 With the combined scheme of SI removal
and ZF large-scale antenna linear processing, the kth
uplink achievable rate in the shared-antenna FD massive
MU-MIMO system is lower-bounded by

RZ
k = log2

(
1 + pu(M − K)β̂k

pu
∑K

i=1 β̃i + pd
∑K

i=1 ρ̃i + 1

)
, (36)

where β̂i = τpuβ2
i

τpuβ i+1 , β̃i = β i
τpuβ i+1 , and ρ̃i =

1
M

∑M
m=1

ρm,i
τpdρm,i+1 .

Proof. From (15), we have WT Ĝ = IK and WTW ∗ =
[ (ĜHĜ)−1]H for the ZF linear processing, so we can get
wT
k ĝk = 1, wT

k ĝi = 0, and
∥∥wT

k
∥∥2 =[ (ĜHĜ)−1]kk . Simi-

larly, as [19], using the convexity of ϕ(x) = log2(1 + x−1)
and Jensen’s inequality, from (28), we can obtain

Rk ≥ log2

⎛

⎜⎜⎜
⎝
1 + pu

E

{
pu

K∑

i=1

∣∣wT
kδi

∣∣2+pd
K∑

i=1

∣∣wT
kεi

∣∣2+∥∥wT
k
∥∥2

}

⎞

⎟⎟⎟
⎠

= log2

⎛

⎜⎜⎜
⎝
1 + pu

E

{(
pu

K∑

i=1
|δ̃i|2+pd

K∑

i=1
|ε̃i|2+1

) ∥∥wT
k
∥∥2

}

⎞

⎟⎟⎟
⎠
.

(37)

From Lemma 2 and Lemma 3, we know that the new
variables δ̃i = wT

k δi∥∥∥wT
k

∥∥∥
and ε̃i = wT

k εi∥∥∥wT
k

∥∥∥
are both zero-mean
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Gaussian variables with variances of β̃i and ρ̃i, respec-
tively, so we have

Rk ≥ log2

⎛

⎜⎜⎜
⎝
1 + pu

(
pu

K∑

i=1
β̃i + pd

K∑

i=1
ρ̃i + 1

)
E

{ ∥∥wT
k
∥∥2 }

⎞

⎟⎟⎟
⎠
.

(38)
Then, by using the property of Wishart matrices

E{tr(M−1)} = K/(M − K) (Lemma 2.10) in [34], we have

E
{ ∥∥∥wT

k

∥∥∥
2 } = E

{
[ (ĜHĜ)−1]kk

}

= β̂−1
k E

{
[ (ĤHĤ)−1] kk

}

= 1
K β̂k

E
{
tr((ĤHĤ)−1)

}

= 1
(M − K)β̂k

, for M ≥ K + 1. (39)

Substitute (39) into (38), we can obtain the result.

Proposition 4 With the combined scheme of SI removal
and MRT/MRC large-scale antenna linear processing, the
kth uplink achievable rate in the shared-antenna FD mas-
sive MU-MIMO system is lower-bounded by

RM
k = log2

⎛

⎝1 + pu(M − 1)β̂k

pu
(∑K

i=1 βi − β̂k
)

+ pd
∑K

i=1 ρ̃i + 1

⎞

⎠ ,

(40)

where β̂i = τpuβ2
i

τpuβ i+1 and ρ̃i = 1
M

∑M
m=1

ρm,i
τpdρm,i+1 .

Proof. From (15), we have wT
k ĝk = 1

M
∥∥ĝk

∥∥2 and
∥∥wT

k
∥∥2 = 1

M2

∥∥ĝk
∥∥2for the MRT/MRC linear processing.

Similarly, from (28) and by using Jensen’s inequality, we
have

Rk ≥ log2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+ pu

E

⎧
⎪⎨

⎪⎩

pu
K∑

i=1,i=k
|g̃i|2+pu

K∑

i=1
|δ̃i|2+pd

K∑

i=1
|ε̃i|2+1

‖ĝk‖2

⎫
⎪⎬

⎪⎭

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(41)
Then, by using the property of the Wishart matrix

(Lemma 2.10) in [34], we get

E

{∥∥ĝk
∥∥−2

}
= E

{
(ĝHk ĝk)

−1} = 1
(M−1)β̂k

, for M≥2.

(42)
From Lemma 1, Lemma 2, and Lemma 3, by substituting

(42) into (41), we obtain the result.

4 Spectral efficiency and energy efficiency
The SE and EE are important performance metrics for
next-generation mobile communication systems. In this
section, we discuss the SE and EE of a shared-antenna
FD massive MU-MIMO system with the combined SI
suppression method.

4.1 SE and EE
4.1.1 SE and EE for the FD
Generally, the system SE can be defined as the sum-rate
per site or sum-rate per cell. According to (28), the SE of
the SI suppression and channel estimation in the shared-
antenna FD massive MU-MIMO can be given as

Sf = T − 2τ
T

K∑

k=1
Rk . (43)

The EE is defined as the SE divided by the total transmit
power, so we have

Ef = Sf
Kpu

= T − 2τ
TKpu

K∑

k=1
Rk . (44)

4.1.2 SE and EE for the HD
In comparison, the SE and EE of the HD system can be
given as

Sh = T − τ

2T

K∑

k=1
E

{
log2

(
1 + γ h

k

)}
, (45)

Eh = T − τ

KpuT

K∑

k=1
E

{
log2

(
1 + γ h

k

)}
, (46)

where γ h
k is given as

γ h
k = pu

∣∣wT
k ĝk

∣∣2

pu
∑K

i=1,i=k
∣∣wT

k ĝi
∣∣2 + pu

∑K
i=1

∣∣wT
k δi

∣∣2 + ∥∥wT
k
∥∥2

.

(47)

We can see that the SE of the HD system is smaller
than that of the FD system when the antenna scale is large
enough, because it transmits data only half of the time. In
contrast, the EE is slightly higher because there is no SI
and fewer training overhead in the HD system.

4.1.3 Lower bounds of SE and EE
Replacing Rk by RZ

k and RM
k , we can obtain the lower

bounds of the SE and EE for the shared-antenna FD mas-
sive MU-MIMO system with imperfect estimation. By
substituting (36) and (40) into (43) and (44), we have

SAf = T − 2τ
T

K∑

k=1
RA
k , (48)
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and

EAf = T − 2τ
TKpu

K∑

k=1
RA
k , (49)

where the superscript A is “Z” or “M”, which represents
ZF or MRT/MRC. The lower bounds are in the closed
form, so they can be easily used to show the system
performance.

4.2 Maximizing SE and EE
4.2.1 Maximizing SE
The SE monotonically grows with the antenna array scale
M and the uplink transmit power pu. We suppose that M
and pu are fixed andM is large. In this case, only the train-
ing length τ affects the SE, and the optimization problem
can be formulated as

max
τ

Sf(τ )

s. t. K ≤ τ ≤ T/2,
(50)

This problem is neither linear nor convex, and it is even
difficult to solve using the linear search because of the
expectation operation and the large dimensions of the
channels. Fortunately, the SE can be approximated by
the lower bounds of (48), because they are very close after
the further SI suppression with the combined method,
which can be seen in the subsequent simulations in next
section. Then, the maximization problem can be approxi-
mated as

max
τ

SAf (τ )

s. t. K ≤ τ ≤ T/2.
(51)

This problem can be numerically solved by the linear
search, the simulation in the next section shows that this
solution is global optimal when the antenna scale M is
large enough.

4.2.2 Maximizing the EE
The EE of the FD massive MU-MIMO system monotoni-
cally increases withM, but not with pu. Because it has the
same solution as the SE for τ , here we only focus on pu.
The antenna-scaleM is large and fixed, so the problem of
maximizing the EE can be expressed as

max
pu

Ef( pu)

s. t. 0 < pu ≤ p0.
(52)

Similarly, the EE can be approximated by the lower
bound in (49) when the antenna-array scale M is large
enough. The maximization problem can be modified as

max
pu

EAf ( pu)

s. t. 0 < pu ≤ p0.
(53)

It can be numerically solved by the linear search, the
simulation in the next section shows that this solution is
also global optimal.

4.2.3 Tradeoff of EE versus SE
The maximal EE can be obtained at the point (τ ∗, p∗

u).
However, the SE decreases monotonically with the
decreasing pu. To keep a reasonable uplink throughput,
the SE is lower constrained. Therefore, the optimal p∗

u
should be constrained by the SE requirement. The opti-
mal value p∗

u is adopted if the minimum SE is satisfied;
otherwise, the tradeoff value p′∗

u ,which meets the SE
requirement, is used.

5 Numerical and simulation results
In this section, we present the performance results of
the shared-antenna FD massive MU-MIMO system. All
the users work in FD mode with a single antenna, and the
insertion loss of the circulators is neglected. The number
of users is given as K = 4. Unless stated otherwise, the
system parameters are set as follows: The coherent time
T of the uplink data transmission is 400 (symbol length),
and the training length τ of each channel is 8. The nor-
malized uplink power pu and the downlink power pd are
set as 10 dB and 13 dB, respectively. Similarly, as [26], the
large-scale path-loss βk (k = 1, 2, 3, 4) of the signal chan-
nel is set as 0.749, 0.246, 0.125, and 0.635, respectively;
The large-scale path-loss β of the SI channel is set as 0.6,
and the direct-path SI coefficient cmj is set as arbitrary but
deterministic values in a circle on the complex plane with
radius 0.33.

5.1 Achievable rate and lower bounds
We obtain the numerical results according to (28), (31),
(34), (36), and (40). The SI suppression and the achiev-
able rate for the 2nd user are shown in Fig. 2 and Fig. 3,
respectively. We can see that both the large-scale antenna
linear processing method and the combined method can
suppress the SI as well as the inter-user interferences
and noise like [4, 15, 19, 26]. Our combined suppression

Fig. 2 SI at BS vs. antenna array scaleM for the 2nd user



Xing et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:18 Page 10 of 13

Fig. 3 Achievable rate of the 2nd user with perfect/imperfect
estimation vs. the antenna array scaleM

method significantly outperforms the LALP method. As
shown in Fig. 2, at the scale of M = 300, the SI level is -
14 dB by using the ZF linear processing only. In contrast,
the SI is -50 dB by using the combined method, provid-
ing an additional 36 dB suppression. Hence, the achievable
rates for the imperfect estimation are close to the perfect
cases. For example, there are small gaps of approximately
1 bits/s/Hz for the ZF and 0.2 bits/s/Hz for theMRT/MRC
with M = 50 in Fig. 3. Therefore, a higher data rate
can be achieved at the same scale of the antenna array,
or fewer antennas are required at the same data rate. For
instance, the achievable rate increases from 5.3 bits/s/Hz
to 8.5 bits/s/Hz at the antenna scale M = 300 for the ZF,
while the scale M decreases from about 450 to 200 at the
achievable rate of 5.1 bits/s/Hz for the MRT/MRC linear
processing.
Figure 4 also shows the achievable rates and their lower

bounds for the 2nd and 4th users. We can see that the
lower bounds are very close to the simulation results
when M is large enough. For example, there is a small
gap of approximately 0.2 bits/s/Hz when M is 50 for
theMRT/MRC, and the gap is even smaller for the ZF (the
2nd user). Therefore, it is reasonable to approximate the
SE with the lower bounds.

5.2 SE and EE with SI suppression
Figure 5 and Fig. 6 show the SE and EE of the FD and HD
systems versus the antenna array scale according to (43),
(44), (45), and (46). We can see that the SE gets larger with
the increase of the antenna array scaleM for both the HD
system and the FD system. The SE of the FD system is
almost twice as high as that of the HD, as shown in Fig. 5,
when employing our combined suppression method.
The EE of the FD system is slightly lower than that of the

HD system because of the residual SI in the FD system, but

Fig. 4 Achievable rate lower bounds of the 2nd and 4th users with
imperfect estimation vs. antenna array scaleM

the gaps are very small, so it is worth acquiring twice the
SE by losing some EE. Furthermore, the EE grows with the
increase of the antenna array scaleM, so the performance
is much better than that of the traditional FD systemwhen
M is large enough.

5.3 Maximizing SE and EE
Figures 7 and 8 show the SE and EE of the FD system based
on (51) and (53). The scale M is supposed to be fixed and
large enough. As shown in Fig. 7 and Fig. 8, both the SE
and EE get higher at first and then turn lower. The approx-
imate SE and EE are very close to the real values for large
M, for example, M = 500. Since it is inefficient and time-
consuming to search the optimal values with the Monte
Carlo simulations, a good choice is to search the optimal
values using the approximation. Simulations show that the
SE increases when τ is small (τ < 10), and decreases when

Fig. 5 SE vs. antenna array scaleM for the FD and HD systems
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Fig. 6 EE vs. antenna array scaleM for the FD and HD systems

τ is large, this is because the channels can be trained and
estimated more sufficiently with the increase of τ . How-
ever, the data transmission time will be shortened if τ

is too big. The similar results can be seen for the EE in
Fig. 8, because the SE increases quadratically with pu when
pu is small, while it increases logarithmically when pu is
big. The SE or EE increases with the antenna array scale
M, because more SI can be suppressed and less training
time/uplink transmit power is required whenM is larger.

6 Conclusion
We introduced and analyzed a full-duplex massive MU-
MIMO system with a single shared-antenna array at the
BS. Either the ZF or MRT/MRC method can be adopted
to linearly process signals, and a novel training scheme
via the precoded SI channel is proposed to estimate the
SI with a much lower dimension. We proved that the SI

Fig. 7 SE vs. training length τ for the FD system

Fig. 8 EE versus uplink transmit power pu for the FD system

can vanish by using the large-scale antenna linear process-
ing method even if the SI/signal channels are not perfectly
estimated and the uplink/downlink channels completely
depend on each other. By combining the SI removal and
the LALP method, we show that the SI can be suffi-
ciently suppressed.We also derived the closed-form lower
bounds of the achievable rates and showed that they are
very close to the simulation results. With the combination
of the SI suppression, the “large enough” number of anten-
nas can be scaled down, and the FD massive MU-MIMO
system significantly outperforms the half-duplex system
in terms of SE.

Appendix
Derivations of (6) and (7)
From (3), we have

GH
s Gs
M

= (ḠH
s + G̃H

s )(Ḡs + G̃s)

M

= (ḠH
s Ḡs + G̃H

s Ḡs + ḠH
s G̃s + G̃H

s G̃s)

M
. (54)

Since the direct-path interference is suppressed by
the physical isolation and analog domain cancelation,
the direct-path channel coefficients cmj are not infinity.
Because all of the entries cmj of Ḡs are bounded and all
of the entries of G̃s are i.i.d. Gaussian random variables
with zero mean, we obtain [ḠH

s G̃s]mj
M ≈ 0 when M is large

enough, so we have

GH
s Gs
M

≈ (ḠH
s Ḡs + G̃H

s G̃s)

M
≈ D̄s + D̃s. (55)
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From (6), we have

1
M

tr(GH
s Gs) ≈ tr(D̄s + D̃s) = 1

M

M∑

m=1

M∑

j=1

∣∣cmj
∣∣2 + βM

≤ |cmax|2M + βM = O(M), (56)

so we have

tr(GH
s Gs) = O(M2). (57)

Hence, we can obtain (6) and (7) whenM is large enough.

Proof of Proposition 1
The ith column gsa,i of matrix Gsa can be written as

gsa,i = Gsai, (58)

where ai is the ith column of A, so the mth entry of gsa,i
can be given as

gsa,mi = gs,mai, (59)

where gs,m is themth row of Gs.

For the ZF precoding, ai = 1
MαZFβ

− 1
2

i h∗
i , so we have

gsa,mi = 1
M

αZFβ
− 1

2
i

M∑

j=1

(
cmj +

√
βhs,mj

)
h∗
ij. (60)

Hence, the variance ofmth entry of gsa,i can be given as

E

{∣∣gsa,mi
∣∣2

}
= 1

M2 α2
ZFβ

−1
i

× E

⎧
⎨

⎩

M∑

j=1

(
cmj+

√
βhs,mj

)
h∗
ij

M∑

j=1

(
c∗mj+

√
βh∗

s,mj

)
hij

⎫
⎬

⎭

= 1
M2 α2

ZFβ
−1
i

M∑

j=1

(∣∣cmj
∣∣2+β

)
. (61)

Similarly, we can obtain

E

{∣∣gsa,mi
∣∣2

}
= α2

MRTβi

M∑

j=1

(∣∣cmj
∣∣2+β

)
, (62)

for the MRT precoding.

Proof of Lemma 3
The ith column εi of matrix E can be written as

εi = gsa,i − ĝsa,i. (63)

Note that the correlation between wk and εi is zero
because wk and gsa,i are independent for i = k, and the
correlation disappears for i = k when M → ∞. Accord-
ing to the optimum estimation of MMSE, εi is a Gaussian
random vector, and the variance of the mth entry for εi
is ρm,i

τpdρm,i+1 . Similarly, from the Lyapunov central limit
theorem [35] and Proposition 1, we can derive that the

variable ε̃i = wT
k εi∥∥∥wT
k

∥∥∥
is a zero-mean complex Gaussian

variable, and the variance is

E

{
|ε̃i|2

}
= 1

M

M∑

j=1

ρm,i
τpdρm,i + 1

. (64)
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