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Abstract

Background: Batch effects are a persistent and pervasive form of measurement noise which undermine the
scientific utility of high-throughput genomic datasets. At their most benign, they reduce the power of statistical
tests resulting in actual effects going unidentified. At their worst, they constitute confounds and render datasets
useless. Attempting to remove batch effects will result in some of the biologically meaningful component of the
measurement (i.e. signal) being lost. We present and benchmark a novel technique, called Harman. Harman
maximises the removal of batch noise with the constraint that the risk of also losing biologically meaningful
component of the measurement is kept to a fraction which is set by the user.

Results: Analyses of three independent publically available datasets reveal that Harman removes more batch noise
and preserves more signal at the same time, than the current leading technique. Results also show that Harman is
able to identify and remove batch effects no matter what their relative size compared to other sources of variation
in the dataset. Of particular advantage for meta-analyses and data integration is Harman’s superior consistency in
achieving comparable noise suppression - signal preservation trade-offs across multiple datasets, with differing
number of treatments, replicates and processing batches.

Conclusion: Harman’s ability to better remove batch noise, and better preserve biologically meaningful signal
simultaneously within a single study, and maintain the user-set trade-off between batch noise rejection and
signal preservation across different studies makes it an effective alternative method to deal with batch effects
in high-throughput genomic datasets. Harman is flexible in terms of the data types it can process. It is available
publically as an R package (https://bioconductor.org/packages/release/bioc/html/Harman.html), as well as a
compiled Matlab package (http://www.bioinformatics.csiro.au/harman/) which does not require a Matlab license
to run.
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Background
Modern high-throughput genomic datasets are exquisite in
their detail. The comprehensive range of measurements
contained therein not only ameliorates, at least to a degree,
reliance on narrow and specific a priori hypotheses, but
also makes possible an appreciation of genetic behaviour at
its fullest – i.e. at the level of interconnected gene networks.
In this sense, modern genomics opens the door to forms of
biological knowledge and thinking which would be difficult
to attain with traditional methods of experimental biology.
There are challenges to be met in going from the rich

detail in the datasets to a systemic understanding of
genes. In our view, these can be separated into two main
stages – first the establishment of reliable units of evi-
dence, second the discovery of what these might mean
at a global, systemic level. To illustrate via an example,
suppose a genome-wide gene expression dataset result-
ing from an experiment comparing cellular response to
a particular treatment against a control group. The first
stage is to establish a reliable and exhaustive list of genes
that are differentially expressed under the two condi-
tions. The second is to go from the list of individual
genes to a functional understanding of gene pathways,
activated as a result of the treatment. Batch effects, the
topic of this manuscript, belong to the first stage of chal-
lenges. They are a pervasive form of technical noise,
which compromise individual measurements to varying
degrees, and affects significantly the ability of analytical
means used to identify those that vary between experi-
mental conditions. Batch effects are found in gene expres-
sion microarray [1], sequencing [2], DNA methylation
(e.g. [2–4]), copy number variation (e.g. [2, 5, 6]) and
proteomic (e.g. [7]) datasets.

Batch effects are structured patterns of distortion
High-throughput technologies in biology typically require a
sequence of delicate and labour intensive procedures,
involving a combination of reagents and specialist machi-
nery, conducted under strictly controlled conditions.
Frequently, the volume and nature of the work means that
the laboratory process is broken into ‘batches’ – each batch
consisting of a certain number of replicates to process –
performed over a number of days. Batch effects consist of a
series of structured patterns of measurement noise each of
which permeates all replicates in a given processing batch,
and which vary markedly from batch to batch. We describe
batch distortion as being structured, because it has a spatial
character – in the case of microarrays for example, it
imprints upon the expression values of probesets depen-
ding on the location of their constituent probes [1]. A large
number of probesets can have their values altered signifi-
cantly by this kind of distortion, without it being reflected
in measures that are not spatially sensitive. To illustrate the
point, it is possible to distort the expression value of all

probesets completely (by misallocating them the value of
their preceding probeset) without at all changing, say, the
quantile distribution of probeset values. As such, quantile
normalisation techniques such as RMA [8] would be of
limited use in correcting batch effects [2, 9, 10]. A helpful
visual metaphor may be to think of a dried watermark,
formed by an unintended splash of brush water on a fresh
painting. Or rather, a printing machine with a software
virus, which makes prints of paintings, produces a certain
number of copies at a time, each set with the same ‘water-
mark’, and that watermark changes randomly from set to
set. These ‘watermarks’ cannot be removed from a digital
poster, simply by adjusting its mean or quantile intensities
of red, green and blue. They can be altered, along with the
unaffected parts of the painting and hence causing a
‘smearing’ effect, but not removed.

Result of a stochastic interaction of process variables?
Batches being processed in different laboratories, by diffe-
rent personnel, subtle ambient differences (in temperature
or humidity) in the same laboratory from one processing
day to the next, and changes in reagents have been sug-
gested and explored as the cause of batch effects [1, 2].
Evidence suggests batch effects are pervasive and per-
sistent under best practice. Indeed, in the studies we
conducted [11, 12], all the above mentioned factors were
well controlled – the same laboratory (with controlled
temperature and humidity), the same operator, and the
same re-agents. Yet the data revealed significant batch
effects, accounting for as high as 40 % of the variance in
the data. Leek et al. [2] make the insightful observation
that structured measurement noise such as batch effects
are in fact not unique to high-dimensional genomic
datasets (e.g. microarray or RNA-seq), or other types of
high-dimensional data (e.g., mass spectroscopy), but also
affect traditional ‘low-dimensional’ data where just a few
measurements are involved. The distinction, they propose,
is that batch effects are identifiable in high-dimensional
datasets, but not so in traditional datasets and as such go
unnoticed. If so, it may be useful to think of batch effects
as stemming from a stochastic combination of many of
the factors at play during laboratory processing of data
capture equipment, which is not readily controllable or
avoidable. A more achievable way of managing batch
noise may be to dissociate it from the genuine biological
signal component of the dataset, and remove it in an
effective manner.

Batch effects have a detrimental effect on the utility of
datasets
In terms of scientific inference, batch effects are most prob-
lematic when they are aligned (i.e. strongly correlated) with
treatment effects. Table 1A depicts one such example, an
extreme yet not uncommon one, where each processing
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batch contains one type of treatment or experimental
condition. The difference between a pair of treatments will
be completely confounded by the typically larger difference
between the two distinct patterns of batch distortion. An
entire group of genes, invariant across the two experimental
conditions yet with probesets altered differentially by batch
distortion will appear to be differentially expressed [2, 13].
Moreover, these false positives may dominate those genes
that are differentially expressed across the two experimental
conditions, because they are likely to appear to have a
larger difference in their expression levels. The common
practice of selecting top differentially expressed genes for
further analysis and exploration, as ranked by magnitude,
may further exacerbate this problem – resulting in the
exclusion of differentially expressed genes, in favour of false
positives.
It is possible to avoid this issue by making batch and

treatment effects orthogonal to one another via modified
experimental and procedural design. Table 1B depicts
the optimal case, where the replicates of each and every
treatment are distributed equally across the batches,
avoiding any confounding between batch and treatment
effects. The closer we come to this ideal design, the less
the confounding effect. However, even with ideal experi-
mental design and no confounding of batch and treatment
effects, there remains a fundamental problem. Differences
between individual batch effects, Bn in Table 1B, will
inflate within-treatment variances, diminishing the power
of any between-treatment comparison tests. As a result
genes that are actually differentially expressed between
two experimental conditions will have their p-values
elevated and will appear to be not differentially expressed

(see also [2], p.736). Moreover, different probesets on a
particular array are affected differently by batch effects,
meaning that some genes will have their p-values altered a
lot, some less so, and some not at all. This will distort the
ranking of genes based on their p-value, also distorting the
results of rank based false discovery correction methods
such as Benjamini-Hochberg ([14]; see also [13], pp. 9–10).
The ideal solution to batch effects is to completely

dissociate batch noise from genuine biological signal in
the dataset, remove all of batch noise and none of the
biological signal. In practice, however, removing noise
carries with it the risk of also removing biological signal.
One fundamental reason for this is that the distinction
between signal and noise components, if attainable, is
likely to be probabilistic rather than absolute. If genuine
biological variance is removed along with batch noise,
within-group variances are then artificially deflated making
genes that are not differentially expressed appear as though
they are. If we had multiple batch correction methods to
choose from, the score by which we measure their effective-
ness would have two dimensions – how much of the batch
noise they remove, and how much of the biological signal
they preserve.

Outline
In this paper we describe a novel method which dissoci-
ates and removes the batch noise component in a dataset,
with the constraint that the associated risk of also remo-
ving genuine biological signal is quantified and kept to a
fraction set by the end user. If we set our confidence limit
to .95, this would mean that the probability of some of
what we remove not being batch effect but a feature of
genuine biological signal is .05. The method works by first
separating the data into its principal components. It scans
each principal component for variance arising out of
batch noise – as manifest by clustering of scores belonging
to the same batch – and removes any that is found up to a
point where the risk of removing biological signal is no
more than the tolerance level set by the user. As the prin-
cipal components collectively explain all the variance to
be found in the dataset, scanning and if necessary correct-
ing each of them means that batch effects are found and
corrected, irrespective of how big or small they may be
with respect to other factors accounting for the data vari-
ance. The principal components after removal of batch
noise are recombined and transformed back into the
original dataset format, ready to be used for any down-
stream analysis tailored for the initial dataset, without
necessitating any additional data processing. We call this
new method Harman, meaning (in Turkish and Persian)
threshing yard where grain was separated from chaff in
the days before Industrialisation. Harman has a precedent
in and can be seen as a refinement of the work of Alter
and colleagues [15, 16], who transformed genome-wide

Table 1 Separating samples into processing batches

Batch 1 Batch 2 Batch 3 Batch 4

A

T1r1 + B1 T2r1 + B2 T3r1 + B3 T4r1 + B4

T1r2 + B1 T2r2 + B2 T3r2 + B3 T4r2 + B4

T1r3 + B1 T2r3 + B1 T3r3 + B3 T4r3 + B4

T1r4 + B1 T2r4 + B2 T3r4 + B3 T4r4 + B4

B

T1r1 + B1 T1r2 + B2 T1r3 + B3 T1r4 + B4

T2r1 + B1 T2r2 + B2 T2r3 + B3 T2r4 + B4

T3r1 + B1 T3r2 + B1 T3r3 + B3 T3r4 + B4

T4r1 + B1 T4r2 + B2 T4r3 + B3 T4r4 + B4

B denotes batch effects, T is treatment and the subscript r is the replicate of that
treatment. (A): In this design, each batch consists of one type of treatment.
Batch and treatments effects are completely confounded. When we attempt to
measure the difference between two treatments, say T1 and T2, what we are
actually measuring is (T1-T2) + (B1-B2). Moreover, (B1-B2) is typically likely to be
much larger than (T1-T2). (B): This represents the optimal experimental design
strategy, where all treatments are distributed equally across all batches.
There is no confounding here, but differences between B1, B2, B3 and B4
artificially inflate within-treatment differences, and reduce the power of
subsequent statistical tests
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expression data into principal components, and then
removed some of them entirely which they inferred to be
dominated by batch effects.
ComBat [17] is a popular batch removal method, which

has been shown to have the best overall performance in a
recent comparative study [9] of six approaches including
[18–21]. As such it makes for a good standard against
which to compare any novel batch removal method. We
compare the performance of Harman with that of ComBat
in the context of three distinct, publically available
genome-wide gene expression datasets. Two of these – an
in vitro [11] and an in vivo [12] study – were generated in
our laboratory. The third is the in vitro dataset used in
ComBat’s development [17]. While all three are micro-
array datasets, it is important to note that both ComBat
and Harman would be applicable in correcting RNA-seq
datasets (e.g., [22]). We also use Harman regularly to
correct large methylation datasets.
The performance measures used in the study are the

removal of (batch) noise, and preservation of (biological)
signal. For the sake of objectivity, and in the absence of
knowing categorically what is signal and what is noise, we
use a third party batch noise quantification to evaluate the
two methods, the “guided-PCA” statistic developed by
Reese et al., [23] (see Additional file 1 for further discus-
sion). Guided-PCA p-values can be used as a measure of
the probability of batch effects being present in the data-
set. As p-values are a continuous rather than discrete
score, they provide a continuum against which the batch
noise suppression of different methods or trade-off
settings can be measured. The (inversely) proportional
relationship between g-PCA p-value and the magnitude of
the batch effect as measured by g-PCA is further demon-
strated in the Additional file 1. We compute this for each
of the three datasets before correction, and after correc-
tion by the two methods. Against this metric, we measure
what proportion of the raw data variance is preserved in
the corrected datasets. A two-dimensional plot of the prob-
ability of batch effect existence and proportion of preserved
variance post correction depicts the relative merit of the
two batch effect removal methods (see Additional file 1 for
a more detailed discussion).

Results
Figure 1a above shows the batch correction results for
Dataset 1, and Fig. 1b shows the PC plot for the first and
second components. With a gPCA p-value of .008, the
uncorrected dataset has a prevalent batch noise compo-
nent, also evident in the PC plot. Consistent with this, the
most conservative Harman setting with a confidence limit
of .99 – which means correction stops when there is just
1 % chance that what is being removed may not be due to
batch effects alone – results in a 32 % reduction in data
variance. After correction by either method, p-value

increases significantly suggesting the methods are capable
of removing batch noise. The figure also reveals how the
confidence limit for Harman operates as a trade-off coeffi-
cient between noise rejection and signal preservation.
As the threshold is decreased, noise rejection increases as
reflected by the gPCA p-value, and data variance decreases.
The resulting Harman points can be thought of as consti-
tuting a performance curve for the correction method –
one can choose to be at different points on the curve
depending on the trade-off coefficient, but nevetheless is
constrained to be on the curve. The ComBat point on the
graph is below this curve.
Dataset 2 results are depicted in Fig. 2. At .037, the

gPCA p-value for the uncorrected dataset is small enough
to indicate the presence of batch effects, if not to the same
extent as in Dataset 1. Once again, this is consistent with
the PC plot. Figure 2b indicates a batch effect but not to
the same extent as Fig. 1b. Accordingly, both batch effect
correction methods result in higher proportions of pre-
served data variance when compared to Dataset 1. As with
Dataset 1 the gPCA p-value increases significantly after
correction by either method. For Harman the confidence
limit has the same trade-off characteristic between noise
rejection and data variance preservation. The ComBat
point falls below the Harman curve.
Dataset 3 shows (Fig. 3a), as with Datasets 1 and 2, that

gPCA p-value increases after correction by ComBat or
Harman, and that for the latter the confidence limit sets
the trade-off between noise rejection and data variance
preservation. It also produces some distinct results. The
gPCA p-value for the uncorrected data is .225, which
indicates that there is much less batch noise in Data
3 than in the other two datasets, if any at all. Indeed,
Fig. 3b indicates that treatment variability (in particu-
lar, in the treatment group denoted by “*”) is a larger
source of data variance than batch effects in the first
two principal components. Harman (.95) removes
17 % (gPCA p-value = .52), compared to the 37 %
(gPCA p-value = .63) it removed from Dataset 1.
ComBat removes 49 % (with gPCA p-value = 1) of the
data variance, about the same proportion it removed
from Dataset 1 (48 %; gPCA p-value = .233) which
has the most prevalent batch effect of all datasets
(gPCA p-value = .008). Furthermore, Harman (.75)
matches ComBat’s gPCA p-value of 1 while removing
20 percentage points less data variance.
Given the unexpectedly high p-value for the raw data,

it is worth exploring further. With Harman, it is possible
to dissociate the principal components in which it finds
and removes batch effects, and whether these are in any
way different for Dataset 3 than the other datasets.
Table 2A below shows the amount of batch correction
applied to the first 8 principle components for the three
datasets. A score of 1 means there is no correction. The
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closer the number to 0, the bigger the correction. The
remaining principal components not included in the
dataset show no or negligible batch correction. Table 2B
shows the proportion of overall data variance explained
by each principal component.
For Datasets 1 and 2 the most of batch related variance

is accounted for before the third principal component,
which is typically the case given the relative size of batch
noise compared to other sources of variation captured in
the data. In the case of Dataset 3, there is some correction
at the first principal component, none at the second, and
the largest correction occurs at the third and fourth prin-
cipal components. The plot of third and fourth principal
components in Fig. 4 shows a clear grouping of scores into
processing batches, which suggests that what Harman is
identifying and removing as batch noise may indeed be so.
Variance in the first two principal components is

mainly due to within-treatment variability rather than
batch effects (Fig. 3) as mentioned, and yet ComBat
removes nearly half of the overall data variance. It may
therefore be interesting to see how the first two PCs of
the ComBat corrected data look. For a fair comparison,
we do the same for Harman at the lowest confidence
setting, which maximises the amount of data variance
removed. As Fig. 5a shows Harman brings the batches
closer to one another by reducing batch means towards
zero, but without changing the distribution of samples
within them. ComBat, on the other hand, rearranges
samples within batch (Fig. 5b), and in particular brings
the outlying member of the “*” treatment group within
about two thirds of the original distance from the
remaining three samples in the batch. More broadly,
Fig. 5 displays the compressed nature of samples belong-
ing to the same batch in ComBat corrected data (Fig. 5b)
relative to Harman (Fig. 5a). ComBat, in effect, seems to
alter and partially remove the biological variance in the
data along with removing batch effects. An analysis of
variance also confirms this. While both methods drive
variance attributable to batch effects to virtually zero
(uncorrected data .128; Harman .00018; ComBat .0053),
ComBat also removes 23 % of the variance attributable
to treatment (uncorrected data .140; Harman .140; ComBat
.108), and about 32 % attributable to within treatment
variation (uncorrected data .133; Harman .133; ComBat

.090). The analyses of Datasets 1 and 2 also show loss of
biological variance resulting from ComBat, but to a lesser
extent than Dataset 3.
Finally, considering all three datasets, Harman, for

a given confidence limit, has a tight range of gPCA
p-values. For example, for Harman (.95) p-values
range between .52 and .7 across the three datasets.
ComBat varies from .23 to 1.

Discussion
We developed Harman, first and foremost, to tackle the
double edged problem with batch effects – to optimise
batch noise removal with the constraint that the risk of
also removing genuine biological variance is quantified
and kept to a sensible level determined by the user. We
evaluated Harman, comparing its performance as a batch
noise removal method to that of ComBat. We chose
ComBat as the benchmark, as it is overall the best
performing one amongst the existing techniques [9, 10].
We used three independent, publically available datasets
for this purpose, two of them produced by our laboratory,
and the third originally utilised by the developers of
ComBat [17].
First of all, gPCA measure we used indicates that

Harman and ComBat perform their primary function –
they remove batch noise. For all three datasets gPCA
p-value for batch effect existence increased markedly
following batch removal by either method. The confidence
limit for Harman does operate as a trade-off coefficient
between noise rejection and data variance preservation as
expected. As the confidence limit decreased (i.e. tolerance
for overcorrection increased), gPCA p-value went up and
preserved data variance went down.
Second, the data provide compelling evidence that

Harman on the whole may be the one with superior per-
formance. At the outset, our expectation was that ComBat
would fall somewhere on the curve formed by Harman at
different trade-off settings, except that this point may not
always be the optimal one for any given application. As it
turned out, for Dataset 1 and Dataset 2 ComBat fell below
the performance curve of Harman, meaning that there
was always a trade-off setting for Harman which results in
better noise rejection and better signal preservation at the
same time. In the case of Dataset 1, this was true for all

(See figure on previous page.)
Fig. 1 a gPCA p-value vs preserved data variance plot for Dataset 1 (Osmond-McLeod, Osmond et al., 2013), showing the scores for data before
correction (*gPCA= .008), and after correction by ComBat and Harman batch effect removal methods. For Harman, the fractions in the labels denote the
adjustable confidence threshold (=1-probability of overcorrection) for batch noise removal. Hn-.95 is highlighted as it may be the setting of choice for a
typical dataset. On the vertical, the larger the p-value the lower the probability of batch noise presence as detected by gPCA (Reese et al, 2013). Raw data
p-value of .008, indicates a prevalent batch noise component in the uncorrected dataset. The figure shows that ComBat falls below the Harman curve,
indicating Harman’s superiority in terms of removing batch noise and preserving biological signal in the dataset. b First and second PCs for Dataset 1
(Osmond-McLeod, Osmond et al., 2013) before correction. The four colours represent the four processing batches. The shapes represent seven distinct
treatments. The clustering of batches indicate the presence of batch effects in the first and second PCs of the data
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trade-off settings. To put it in perspective, Harman with
an extremely cavalier confidence limit of .10 (meaning there
is 90 % chance that biological signal is being removed along
with batch noise) not only displayed better noise rejection,
but preserved more data variance than ComBat (see Fig. 1).
At the conservative extreme, Harman (.99) which stops
removing variance if there is just 1 % chance that it might
also be removing genuine signal achieved better noise sup-
pression (gPCA p-value = .42) than ComBat while preser-
ving 15 percentage points more data variance. At the
typical trade-off setting of .95, the value used in the actual
studies [11, 12], Harman returned 63 % data variance with
a gPCA p-value of .63 against ComBat’s 52 % and with a
lower gPCA p-value of .23 for Dataset 1. For Dataset 2,
Harman (.95) returned 93 % data variance to ComBat’s
79 %, and had a higher gPCA p-value (.72 vs .58).
Its peculiarities notwithstanding, Dataset 3 also provides

evidence that Harman’s performance may be superior.
The gPCA p-value for the raw data was .225, significantly
larger than those of Dataset 1 and Dataset 2. Interpreting
this result as there not being a batch effect in Dataset 3 is
the worst possible scenario for both methods. It means
that whatever the methods removed from the dataset was
biological signal, not batch noise. Combat preserved less
data variance than Harman for all confidence limit set-
tings. Harman (.75) matched ComBat’s gPCA p-value of 1
yet preserved 20 percentage points more data variance.
The difference between Harman (.95) and Combat was a
sizable 31 percentage points.
Fortunately for the two batch correction methods, and

in particular Harman, further exploration revealed that
there may have been a batch noise component in Dataset
3. Harman had identified that the noise component in
Dataset 3 was predominantly in the third and fourth prin-
cipal components. A plot of the two principal components
(Fig. 4) showed clearly that samples cluster according to
which batch they belong, providing at least subjective
evidence that there was a batch noise component. It is
unusual for third and fourth principal components to
account for more batch noise than the first and second.
As a general rule, and as a consequence of batch effects
being typically the greatest source of variation in genomic
datasets, the earlier the principal component the greater
the proportion of batch noise explained. Datasets 1 and 2

constitute typical examples of batch effects, in that first
and second principal components account for the bulk of
that data’s batch noise component.
This raises another pertinent point. It has been argued

that PCA based batch correction approaches do not work
well if batch effects are not the greatest source of variation
[21, 23]. As exemplified by Dataset 3, Harman investigates
all principal components for batch effects, and is able to
identify and remove them no matter what their relative
size compared to other sources of variation.
A further exploration of Dataset 3 (Fig. 5) revealed that

ComBat removed biological variance from the data in the
process of removing batch effects. A visual comparison
of Fig. 5a and b reveals the within-batch compression
ComBat causes. An analysis of variance confirmed that
Harman, in distinction to Combat, removed only the
variance attributable to batch effects without altering the
biological (i.e between treatment and within-treatment)
variance. Removing treatment variance leads to an expected
increase in false negatives in comparison tests, and remov-
ing within-treatment variance leads to an expected increase
in false positives. We should also note that analysis of
variance attributes all that is attributable to batch effects.
This still makes analysis of variance a revealing metric to
compare the two methods, when they are set to remove the
entirety of the batch effect as identified by it. In the general
case, however, it does not replace a metric like gPCA,
which is also sensitive to the underlying likelihood of any
variance attributed to batch effects.
The final point we will discuss is Harman’s consistency in

achieving comparable noise suppression - signal preserva-
tion trade-offs across different datasets, which is of particu-
lar advantage when conducting meta-analyses and genomic
data integration from several distinct datasets [10]. It would
be possible to falsely infer differences between two equiva-
lent datasets, just by being bullish in the removal of batch
effects in one, and overly cautious in the other. The three
datasets varied in the relative magnitude (Dataset 1 vs
Dataset 2) and also nature (Dataset 3 vs Datasets 1 and 2)
of their batch noise components. They also varied in the
number and size of their processing batches. Yet, after
correction by Harman (.95), the resulting datasets had a
tight range of gPCA p-values, from 0.52 to 0.7. This
is not accidental. What Harman removes as batch noise is

(See figure on previous page.)
Fig. 2 a gPCA p-value vs preserved data variance plot for Dataset 2 (Osmond-McLeod, Oytam et al., 2013), showing the scores for data before
correction (*gPCA = .037), and after correction by ComBat and Harman batch effect removal methods. For Harman, the fractions in the labels denote
the adjustable confidence threshold (=1-probability of overcorrection) for batch noise removal. Hn-.95 is highlighted as it may be the setting of choice
for a typical dataset. On the vertical axis, the larger the p-value the lower the probability of batch noise presence as detected by gPCA (Reese et al,
2013). Raw data p-value of .037, indicates a batch noise component in the uncorrected dataset. The figure shows that ComBat falls below the Harman
curve, indicating Harman’s superiority in terms of removing batch noise and preserving biological signal in the dataset. b First and second PCs for
Dataset 2 (Osmond-McLeod, Oytam et al., 2013) before correction. The three colours represent the three processing batches. The shapes represent four
distinct treatments. The clustering of batches (less pronounced than Dataset 1) indicate the presence of batch effects in the first and second PCs of
the data
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driven directly by a trade-off coefficient constraining it to
approach, but not exceed, a set risk of overcorrection. Fur-
thermore this risk calculation is internally normalised for
different batch numbers and sizes (see methods section).
ComBat on the other hand, resulted in a relatively wide
range of gPCA p-values, from 0.23 to 1. This difference in
consistency between the two methods is similarly reflected
in resultant preserved data variance post correction as a
function of the level of batch noise in the raw data. Dataset
1 had a much more prevalent batch noise component than
Dataset 3. Accordingly Harman (.95) removed 37 % vari-
ance from Dataset 1 and 17 % from Dataset 3, settling for
comparable gPCA p-value scores (.63 and .52, respectively).
Combat, on the other hand removed 48 % from Dataset 1,
and yet 49 % from Dataset 3, producing quite different
gPCA p-value scores (.23 and 1, respectively) in the
process.

Conclusion
Considering the issue of batch noise in its totality – the
potential impact of its presence (or undercorrection) as
well as overcorrection, and the importance of being able
to control the trade-off between batch noise rejection
and signal preservation especially in relation to studies

that span multiple datasets – it is reasonable to state
that Harman’s performance as explored in this study
makes it the more effective approach to deal with batch
effects in high-throughput genomic datasets. Harman is
flexible in terms of the data types it can process (e.g.
microarray, RNA-seq, methylation). Given its mathemat-
ical underpinnings its potential use extends beyond gen-
omic datasets. Of practical significance, it is also able to
work with datasets where batch compositions – i.e. the
number of experimental conditions, and replicates they
contain – are not necessarily the same. It is freely avail-
able online as an R package, as well as a compiled
Matlab package which does not require a Matlab
license to run.

Methods
The datasets
In the olfactory stem cell study (Dataset 1), there were
six treatment groups plus the control group, each con-
sisting of four replicates, giving a total number of 28
arrays [11]. The experiment was performed with four
processing batches of seven arrays each, consisting of
one replicate from each of the groups. The dataset com-
prising the genome wide gene expression scores from
the 24 Affymetrix Human Gene 1.0 ST arrays, were nor-
malised and background adjusted as a whole using the
RMA procedure [8] in MATLAB. Batch correction
methods, ComBat and Harman were performed on the
RMA adjusted dataset.
The mouse study (Dataset 2) had four groups (three

treatment, one control) with six replicates in each group,
making a total of 24 arrays [12]. There were a total of
three processing batches of eight arrays, each consisting of
two replicates per group. Affymetrix Mouse Gene 1.0 ST
arrays were used in this study. The third dataset is the one
used by Johnson et al. ([17], p.119). This was another cell
study with one treatment, one control, and 2 time points,
resulting in 4 distinct (2 treatment x 2 time points) experi-
mental conditions. There were three batches and a total of
12 samples, with each batch consisting of one replicate
from each of the experimental conditions. RMA was

(See figure on previous page.)
Fig. 3 a gPCA p-value vs preserved data variance plot for Dataset 3 (Johnson et al., 2007), showing the scores for data before correction
(*gPCA = .225), and after correction by ComBat and Harman batch effect removal methods. For Harman, the fractions in the labels denote
the adjustable confidence threshold (=1-probability of overcorrection) for batch noise removal. Hn-.95 is highlighted as it may be the setting of choice
for a typical dataset. On the vertical axis, the larger the p-value the lower the probability of batch noise presence as detected by gPCA (Reese et al, 2013).
Raw data p-value of .225, indicates that the batch noise component in Dataset 3 is not as predominant as Datasets 1 and 2. The worst case scenario for
both methods is that there is no batch effect in the dataset and what they do remove is genuine biological signal. ComBat removes 49 % (with gPCA
p-value = 1) of the data variance, which is about the same proportion it removed Dataset 1 (48 %; gPCA p-value = .233), which had the most prevalent
batch effect (gPCA p-value = .008). Harman (Hn.95) removes 17 % (gPCA p-value = .52), when it removed 37 % (gPCA p-value = .63) from Dataset 1. Hn-75
matches ComBat’s gPCA p-value of 1 while removing 20 percentage points less data variance. b A plot of first and second PCs for Dataset 3 before
correction (Johnson et al., 2007). The three colours represent the three processing batches. The shapes represent four distinct experimental conditions.
The figure indicates that within-treatment variability is a larger source of data variance than batch effects in the top two principal components

Table 2 The varying nature of batch effects in the three
datasets as detected by Harman

PC indices 1 2 3 4 5 6 7 8

A. Correction Vector (Hn-.95)

Dataset 1 0.26 0.33 0.51 0.9 0.44 0.85 0.74 1

Dataset 2 0.42 1 0.93 1 0.99 1 1 0.95

Dataset 3 0.76 1 0.35 0.69 1 1 1 1

B. % of data variance explained by PC

Dataset 1 43.4 % 9.5 % 4.8 % 4.3 % 2.7 % 2.4 % 2.2 % 2.0 %

Dataset 2 19.1 % 11.5 % 6.9 % 4.6 % 4.3 % 4.0 % 3.6 % 3.6 %

Dataset 3 33.9 % 17.2 % 16.0 % 8.6 % 5.8 % 4.5 % 3.7 % 3.3 %

(A) Shows the ‘correction vector’ spanning the first eight principal components
for the three datasets resulting from Harman (.95). No or negligible correction
were detected for the remaining PCs. A score of 1 means no correction,
whereas a score of 0 means maximum correction within the confines of
Harman. (B) Shows the relative proportion of overall variance explained by
each of the (first eight PCs) for the three datasets
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implemented in the same way as Dataset 1 described
above, and batch corrections were applied to RMA
adjusted data.

PCA is an effective means of complexity reduction and
data visualisation
Principal component analysis (PCA) is one of the most
widely used techniques of multivariate analysis [24]. It
is an intuitive way of reducing complexity without any
(involuntary) loss of information. A typical gene-expression
dataset will have n samples of p (highly inter-related) pro-
besets, where n is typically in the lower range of 10–100,
and p is 20,000–40,000. PCA transforms the data into a
new set of variables, where n samples are expressed in
(n-1) dimensions, and sometimes fewer depending on
how extensively inter-related the probesets may be. The
new dimensions are the principal components (PCs),
which are orthogonal (uncorrelated) to one another, and
are ordered according to how much of the data variance
they explain. First PC accounts for the largest portion of
variance, the second PC accounts for the second most,
and the last PC accounts for the least (non-zero) portion
of variance. Collectively, principal components account
for all of the variance in the data, and as such there is no
loss of information. It is also useful to note that principal

components are weighted linear sums of the original
variables (e.g. probesets) in which the data is expressed.
PCA is routinely used as a visualisation tool for high-

throughput genomics data. It is not viable to visualise a
particular sample in a 20,000-dimensional probeset space.
A two-dimensional plot of first and second PCs, on the
other hand provides meaningful, intelligible information
while still representing a significant portion of the vari-
ance in the data. Indeed, a table of paired plots of many
(if not all) PC’s can be produced, which spans virtually all
the variance in the data (e.g. [21], p.109, Fig. 5; “PCplot”
function in [25]).

In PC plots batch effects appear as marked differences in
batch means
Plots of (the major) principal components are also a very
popular means of displaying batch effects. Batch effects, as
captured in a given principal component appear as a shift
or offset in the geometric centre of the sample scores
which belong to the same batch (see Figs. 1b, 2b and 4;
see also [15, 16]). This is not incidental. We can assume,
for batch effects, the general model of additive as well as
multiplicative noise at the measurement (e.g. probe) level
[10]. Such measurements are typically log transformed
meaning that the resulting noise component is additive
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Fig. 4 A plot of third and fourth PCs for Dataset 3 (Johnson et al., 2007). The three colours represent the three processing batches. The shapes represent
four distinct experimental conditions. The clustering of batches indicates the likely presence of batch effects in the third and fourth PCs of the data
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only. Moreover, even in the absence of log transformation,
as principal components are weighted linear sums of the
measurement variables, resulting effect of batch noise will
be additive at the level of principal component scores. Be-
cause batch effects are by definition common to all sam-
ples in a processing batch, they share this additive noise in

their PC scores, resulting in an offset in the mean of the
batch. Furthermore, what puts these noise related offsets
in batch means in sharp contrast is that for a given princi-
pal component the sample scores have a mean of zero.
Therefore, if not for the batch effects, samples from differ-
ent (but similarly constituted) processing batches would
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Fig. 5 a A plot of first and second PCs for Dataset 3 (Johnson et al., 2007) after correction by Harman (.10). The three colours represent the three
processing batches. The shapes represent four distinct experimental conditions. b A plot of first and second PCs for Dataset 3 (Johnson et al., 2007)
after correction by ComBat. The three colours represent the three processing batches. The shapes represent four distinct experimental conditions
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be statistically equivalent and hence the expected value of
batch means would also be zero. In principle, therefore,
the more distinct the dispersion of batches, the larger the
batch noise component in the dataset.

From subjective visualisation to quantification of batch noise
Capture of batch effects as shifts in batch means in a PC
coordinate system forms the basis of an objective assess-
ment of batch effect where batch noise is quantified and
then potentially removed. If a correction procedure can
be established in the PC coordinate system, all that
remains is straight forward matrix algebra to transform
the (corrected) samples back into the standard data
format, as depicted in Fig. 6 (see also [15, 16, 26]).
The distinct batch noise variance to be found in each

of the PCs can be removed independently, which results
in the modification of the corresponding column vector
of the PC scores matrix. Once all the PCs are corrected,
the modified PC scores matrix is transformed back into
the original set of variables, i.e. probesets for our
Datasets (1-3). The corrected data would consist of
the N samples expressed in p probesets as in the ori-
ginal dataset, except that the batch noise component
in probeset values is removed. Eq.1 describes this
process, assuming that a correction procedure exists.

½Coef f p� N−1ð Þ; ScoresN� N−1ð Þ� ¼ pca dataN�p
� �

Correctedscores :; kð Þ ¼ Correction Scores :; kð Þð Þ f or k ¼ 1;…;N−1
CorrecteddataN�p ¼ pca−1 CorrectedscoresN� N−1ð Þ

� �
¼ CorrectedscoresN� N−1ð Þ � Coef f 0N−1ð Þ�p

ð1Þ
It should be mentioned that the probeset means are

subtracted from the data prior to pca, and then added to

the Correcteddata after pca−1. As denoted above, pca−1

amounts to a matrix multiplication (by the transpose of
the coeff matrix computed by PCA) and the resultant
Correcteddata is unique.
The key issue to consider in terms of establishing a

correction procedure is the converse of what is described
in the previous sub-section. If batch noise to be found in a
given principal component is necessarily and exhaustively
reflected as shifts in the mean scores of individual batches,
can such shifts observed in PC scores be wholly and
directly be attributed to batch effects? If there were no
batch effects, the expected mean of each batch would be
zero because the overall mean of PC scores is zero. And if
there were hundreds of samples in a batch, we would
expect the actual mean of the batch to be very close to the
expected mean. In which case, a satisfactory batch effect
correction procedure may amount to no more than
removing the batch mean from the scores that constitute
that batch. Typically, though, the number of samples in a
batch is relatively small. The batch sizes of the datasets we
analysed in this study, for example, varied between 4 and
8. We would thus expect that the actual batch means
would vary considerably around the expected mean of
zero. As such, we would not be able to say without further
investigation, whether a particular non-zero batch-mean is
a reflection of the existence of batch effects, or whether it
is a reasonable variation between the “population mean”
(of zero) and that of a small subset from that population.
Essentially, the way Harman identifies whether or not
batch effects exist in a given principal component of the
dataset is by calculating the overall likelihood of the ob-
served deviation of batch means from zero, as a function
of the size of batches and the total number of samples.

Fig. 6 Diagram demonstrates how a potential batch correction procedure may be implemented at each PC. The corrected data can then be transformed
from principal components back to the original measurement variables as dimensions. As the dimensionality of the corrected data is identical to the
uncorrected original, all downstream analysis of can proceed without requiring any algorithmic adjustments
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It may be helpful to look in detail at how this batch
noise quantification works, using Dataset 1 to illustrate
the process. There are four batches in this dataset, each
possessing one of the four replicates from seven treat-
ments (see Fig. 1b). What would it mean to assume that
there are no batch effects in this data? It would necessarily
follow that there is statistically speaking no difference
between, say, the square in the cyan batch and the squares
in the red, green and blue batches – we have assumed
after all that there is no batch specific component to the
PC score denoted by the cyan square, or any of the other
squares. The difference between four squares would then
reflect the variability of the treatment of which they are
replicate PC scores. It would also mean that the cyan
square in the cyan batch happens to be there by chance.
Any of the four squares (i.e. 4 PC scores belonging to that
treatment) could have belonged to the cyan batch. This
would be true for all of the treatments and their replicates.
If this is so, then the four batches can be seen as

having eventuated from a much larger population of
potential batches. Since there are seven treatments in a
batch, and each treatment has four replicates, then there
are 47 possible combinations of PC scores each consti-
tuting a potential batch. For the general case, number of
possible combinations is:
Yτ
α¼1

nα
kα

� �
, where

τ = number of distinct treatments in a batch,
nα = total number of replicates of treatment α in the

study,
kα = number of replicates of treatment α in batch.

By computing the mean of the potential batches, we can
establish the population distribution of batch-means
representing the no-batch-effect assumption. We can use
this distribution to calculate the empirical likelihood of
ending up with the four actual batch-means under the
assumption that there are no batch effects.
The batch-mean population is normally distributed,

irrespective of the distribution of measurement variables
(e.g. probesets) in the raw dataset. This is because of
Central Limit Theorem [27], which applies not once but
twice. Central Limit Theorem states that populations
created from sums or averages of large numbers are
normally distributed (asymptotically speaking) irrespective
of the underlying distribution of those numbers. PC scores
are weighted linear sums of the original measurement
variables (i.e. probes), which number in the thousands in
typical high throughput datasets, and in the ones we use
in this study. Batch-means in turn are weighted linear
sums of PC scores. We would also expect the mean of this
distribution to be zero, on account of the PC scores
adding up to zero. The critical measure derived from the
establishment of the population distribution of batch-

means is its variance (or standard distribution). Once the
batch-mean population is established, it is trivial to com-
pute its variance.
After establishing the population distribution of batch-

means – most crucially, its variance – representing the
condition that there are no batch effects, we proceed to
calculating the probability (zb) of selecting a batch b with
a particular batch-mean (BMb). Each batch mean prob-
ability is calculated based on the cumulative distribution
function (CDF) of the population distribution [28].

F xð Þ ¼ CDF normal; 0; std; xð Þ
zb ¼ probability BMbð Þ ¼ F − BMbj jð Þ ð2Þ

We negate the absolute value of BMb in the formula, as
the probability of deviating from the expected batch mean
is a function only of the magnitude of the deviation, not
its direction. The overall probability (L) of the four actual
batch-means eventuating, will be a function of the prob-
ability of the individual batch-means, with the constraint
that they must add up to zero. If there were no constrain-
ing equation, L would be the product of the individual
batch-mean probabilities. Note that with this constraint,
once the three batch-means are chosen, the fourth one is
fixed. There are four distinct ways of choosing a set of
three batch means in this way. Hence the structure of L
becomes:

L ¼ f ðz1; z2; z3; z4Þ with
X4
b¼1

BMb ¼ 0:

L ¼ cðz1z2z3 þ z1z2z4 þ z1z3z4 þ z2z3z4Þ
where c is the normalising constant.
The normalising constant in the equation above plays

an important role. First and foremost, we would want L to
be comparable across different datasets which may have
different number of batches. As it stands, L is a function
of the number of batches in the dataset. Secondly, we
would want L to range from 0 to 1. The maximum value L
can have (Lmax) in the example above, is when all batch
means are equal to the expected mean of zero. In which
case, zi = 0.5 for all values of i, with Lmax = c(4/8).
With c thus set to (8/4) to make Lmax equal to 1,

L ¼ 8
4

z1z2z3 þ z1z2z4 þ z1z3z4 þ z2z3z4ð Þ

The general equation for n batches is:

L¼ 2n−1
n

Xn
i¼1

ð
Yn
j¼1

zijÞ where zij ¼ zj if i≠j

zij ¼ 1 if i ¼ j

ð3Þ
With L, we now have the likelihood of batch-mean

dispersion we observe in the PC scores (normalised with
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respect to no dispersion, i.e. zero batch-means) if there
were no batch effects. If L is small, we can say with (1-L)
confidence that there is batch noise in the data.

Removal of batch noise
Say the confidence percentage is high – i.e. higher than
the smallest value (i.e. confidence limit) at which the user
is prepared to say that there are batch effects in the data.
This would mean that a portion of the batch-mean disper-
sion is due to there being batch noise. For a given PC, the
scores for the samples can be expressed as:

sji ¼ BMj þ rji ; i ¼ 1 : n and j ¼ 1 : b; ð4Þ

where sij is the score corresponding to ith sample in batch
j with batch-mean BMj, n is the number of samples per
batch, and b is the number of batches. rji thus becomes
the distance between the sample score sji and centre of the
batch to which it belongs.
Removing batch noise would then amount to ‘compres-

sing’ or ‘shrinking’ the observed batch mean dispersion as
much as possible, with the constraint that the confidence
value is not less than the limit set by the user. In other
words, the corrected version of sji can be defined as:

sji correctedð Þ ¼ k:BMj þ rji; 0≤k
< 1; such that L zj correctedð Þ� �
¼ 1−confidencelimit ð5Þ

In practice, a sufficiently close approximation k̂
� �

to k can be computed iteratively, starting from 1 and
approaching zero in discrete steps (e.g. of .01), recompu-

ting L at each step and then choosing the smallest k̂ , such
that the confidence percentage is not less than the confi-
dence limit. Harman uses an optimised version of this
process to ensure that the number of iterations is mini-
mised for computational efficiency. For example, suppose
the resulting L for a given principal component of the data
was only .01, meaning that the observed dispersion of
batch means only had 1 % chance of emerging in the
absence of any batch noise in the data. The user may have
decided that a suitable noise rejection – signal preserva-
tion trade-off would result from a confidence limit of .95.
The corrected scores would be calculated in accordance
with the equation above, by compressing batch means

with a suitable k̂ , such that L = .05. This process is
repeated independently for all of the PCs.
Figure 7 demonstrates the confidence percentage as a

function of k for the first three PCs. The points marked
on the three curves correspond to Harman (.95), showing
the k values which result from setting the confidence limit
to 95 %.
Figure 8 shows the sample scores for the first and

second PCs after correction by Harman (.95). The

correction vector, i.e. values of k corresponding to all PCs
are included in Table 2.
Once all the PCs are corrected, the batch noise free

data is expressed in the original variables, as described
by Eq.1.

Additional file

Additional file 1: Contains additional information and discussion on
gPCA (Reese et al., 2013). Table S1. Demonstrates the inverse
proportionality between gPCA p-value and the associated ‘delta’
score, reflecting unadjusted relative magnitude of batch effects
(Reese et al., 2013). The table shows the scores for all three datasets.
Figure S1. Contains an Illustration to further help interpret gPCA p-value
vs preserved data variance plots. (DOCX 60 kb)
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