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Abstract
In this paper, we investigate the oscillation of the following higher order delay
dynamic equation: {an(t)[(an–1(t)(· · · (a1(t)x�(t))� · · · )�)�]α}� + g(t, x(τ (t))) = 0 on any
time scale T with supT =∞. Here n ≥ 2, ak(t) ∈ Crd(T, (0,∞)) (1≤ k ≤ n), τ : T → T
is an increasing differentiable function with τ (t)≤ t and limt→∞ τ (t) = ∞,
g ∈ C(T×R,R) with g(t, x)/xβ ≥ q(t) for some q(t) ∈ Crd(T, (0,∞)) when x �= 0, and
α ≥ 1, β ≥ 1 are two quotients of odd positive integers. We give sufficient conditions
under which every solution of this equation is either oscillatory or tends to zero.
MSC: 34K11; 34N05; 39A10
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1 Introduction
In this paper, we investigate the oscillation of the following higher order delay dynamic
equation:

{
an(t)

[(
an–(t)

(· · · (a(t)x�(t)
)� · · · )�)�]α}� + g

(
t,x

(
τ (t)

))
=  (E)

on some time scale T. Here n ≥ , ak(t) ∈ Crd(T, (,∞)) ( ≤ k ≤ n), τ : T → T is an in-
creasing differentiable function with τ (t) ≤ t and limt→∞ τ (t) = ∞, g ∈ C(T × R,R) with
g(t,x)/xβ ≥ q(t) for some q(t) ∈ Crd(T, (,∞)) when x �= , and α ≥ , β ≥  are two quo-
tients of odd positive integers. Write

Sk
(
t,x(t)

)
=

⎧⎪⎨
⎪⎩
x(t), if k = ,
ak(t)S�

k–(t,x(t)), if  ≤ k ≤ n – ,
an(t)[S�

n–(t,x(t))]α , if k = n,

then (E) reduces to the equation

S�
n
(
t,x(t)

)
+ g

(
t,x

(
τ (t)

))
= . (.)

Since we are interested in the oscillatory behavior of solutions near infinity, we assume
that supT = ∞ and t ∈ T is a constant. We define the time scale interval [a,∞)T =
{t ∈ T : t ≥ a}. A nontrivial real-valued function x is said to be a solution of (.) if
x ∈ Crd([Tx,∞)T,R), Tx ≥ t, which has the property that Sk(t,x) ∈ C

rd([Tx,∞)T,R) for
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 ≤ k ≤ n, and satisfies (.) on [Tx,∞)T. The solutions vanishing in some neighborhood
of infinity will be excluded from our consideration. A solution x of (.) is said to be os-
cillatory if it is neither eventually positive nor eventually negative, otherwise it is called
nonoscillatory. The theory of time scales, which has recently received a lot of attention,
was introduced by Stefan Hilger in [] in order to unify continuous and discrete analy-
sis. The cases when a time scale T is equal to R or the set of all integers Z represent the
classical theories of differential and difference equations. Many results concerning differ-
ential equations carry over quite easily to corresponding results for difference equations,
while other results seem to be completely different from their continuous counterparts.
The study of dynamic equations on time scales reveals such discrepancies, and it helps
avoid proving results twice-once for differential equations and once again for difference
equations. The general is to prove a result for a dynamic equation where the domain of the
unknown function is a time scale T. In this way results not only related to the set of real
numbers or set of integers but those pertaining to more general time scales are obtained.
Therefore, not only can the theory of dynamic equations unify the theories of differential
equations and difference equations, but it also extends these classical cases to cases ‘in be-
tween’, e.g., to the so-called q-difference equations whenT = {,q,q, . . . ,qn, . . .}, which has
important applications in quantum theory (see []). In this work, knowledge and under-
standing of time scales and time scale notation are assumed, for an excellent introduction
to the calculus on time scales; see Bohner and Peterson [, ]. In recent years, there has
been much research activity concerning the oscillation and asymptotic behavior of solu-
tions of some dynamic equations on time scales.
In [], Hassan studied the third-order dynamic equation

(
a(t)

{[
r(t)x�(t)

]�}γ )� + f
(
t,x

(
τ (t)

))
=  (.)

on a time scale T, where γ ≥  is the quotient of odd positive integers, a and r are positive
rd-continuous functions on T, and the so-called delay function τ : T→ T satisfies τ (t) ≤ t
for t ∈ T and limt→∞ τ (t) = ∞ and f ∈ C(T×R,R) and obtained some oscillation criteria,
which improved and extended the results that have been established in [–].
Li et al. in [] also discussed the oscillation of (.), where γ >  is the quotient of odd

positive integers, f ∈ C(T×R,R) is assumed to satisfy uf (t,u) >  for u �=  and there exists
a positive rd-continuous function p on T such that f (t,u)

uγ ≥ p(t) for u �= . They established
some new sufficient conditions for the oscillation of (.).
Wang and Xu in [] extended the Hille and Nehari oscillation theorems to the third-

order dynamic equation

(
r(t)

((
r(t)x�(t)

)�)γ )� + q(t)f
(
x(t)

)
= 

on a time scale T, where γ ≥  is a ratio of odd positive integers and the functions ri(t)
(i = , ), q(t) are positive real-valued rd-continuous functions defined on T.
Erbe et al. in [] were concerned with the oscillation of the third-order nonlinear func-

tional dynamic equation

(
a(t)

[(
r(t)x�(t)

)�]γ )� + f
(
t,x

(
g(t)

))
= 
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on a time scale T, where γ is the quotient of odd positive integers, a and r are positive rd-
continuous functions on T, and g : T → T satisfies limt→∞ g(t) = ∞ and f ∈ C(T× R,R).
The authors obtained some new oscillation criteria and extended many known results for
oscillation of third-order dynamic equations.
Qi and Yu in [] obtained some oscillation criteria for the fourth-order nonlinear delay

dynamic equation

x�
(t) + p(t)xγ

(
τ (t)

)
= 

on a time scale T, where γ is the ratio of odd positive integers, p is a positive real-valued
rd-continuous function defined on T, τ ∈ Crd(T,T), τ (t) ≤ t, and limt→∞ τ (t) =∞.
Grace et al. in [] were concerned with the oscillation of the fourth-order nonlinear

dynamic equation

x�
(t) + q(t)xλ(t) =  (.)

on a time scale T, where λ is the ratio of odd positive integers, q is a positive real-valued
rd-continuous function defined on T. They reduced the problem of the oscillation of all
solutions of (.) to the problem of oscillation of two second-order dynamic equations and
gave some conditions to ensure that all bounded solutions of (.) are oscillatory.
Grace et al. in [] established some new criteria for the oscillation of the fourth-order

nonlinear dynamic equation

(
a(t)x�

(t)
)�

+ f
(
t,xσ (t)

)
= , t ≥ t,

where a is a positive real-valued rd-continuous function satisfying
∫ ∞
t

σ (s)
a(s)�s < ∞, f :

[t,∞)T × R → R is continuous satisfying sgn f (t,x) = sgnx and f (t,x) ≤ f (t, y) for x ≤ y
and t ≥ t. They also investigate the case of strongly superlinear and the case of strongly
sublinear equations subject to various conditions.
Agarwal et al. in [] were concerned with oscillatory behavior of a fourth-order half-

linear delay dynamic equation with damping

(
r(t)

(
x�

(t)
)γ )� + p(t)

(
x�

(t)
)γ + q(t)xγ

(
τ (t)

)
=  (.)

on a time scale T with supT = ∞, where λ is the ratio of odd positive integers, r, p, q
are positive real-valued rd-continuous functions defined on T, r(t) – μ(t)p(t) �= , τ ∈
Crd(T,T), τ (t) ≤ t and τ (t) → ∞ as t → ∞. They established some new oscillation cri-
teria of (.).
Zhang et al. in [] concerned with the oscillation of a fourth-order nonlinear dynamic

equation

(
p(t)x�

(t)
)� + q(t)f

(
x
(
σ (t)

))
=  (.)

on an arbitrary time scale T with supT = ∞, where p,q ∈ Crd(T, (,∞)) with
∫ ∞
t


p(s)�s <

∞ and there exists a positive constant L such that f (y)
y ≥ L for all y �= , they gave a new

oscillation result of (.).
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In [], Sun et al. studied the following higher order dynamic equation:

S�
n
(
t,x(t)

)
+ p(t)xβ (t) = 

and established some new oscillation criteria.
For much research concerning the oscillation and nonoscillation of solutions of higher

order dynamic equations on time scales, please refer to the literature [–].

2 Some lemmas
In order to obtain the main results of this paper, we need the following lemmas.

Lemma . [] Assume that

∫ ∞

t

[


an(s)

] 
α

�s =
∫ ∞

t

�s
ai(s)

=∞ for all ≤ i≤ n – , (.)

and integer m ∈ [,n]. Then:
() lim inft→∞ Sm(t,x(t)) >  implies limt→∞ Si(t,x(t)) = ∞ for i ∈ [,m – ].
() lim supt→∞ Sm(t,x(t)) <  implies limt→∞ Si(t,x(t)) = –∞ for i ∈ [,m – ].

Lemma . [] Assume that (.) holds. If S�
n (t,x(t)) <  and x(t) >  for t ≥ t, then there

exists an integer m ∈ [,n] such that:
() m + n is even.
() (–)m+iSi(t,x(t)) >  for t ≥ t and i ∈ [m,n].
() If m ≥ , then there exists T ≥ t such that Si(t,x(t)) >  for t ≥ T and i ∈ [,m – ].

Lemma . [] Assume that (.) holds. Furthermore, suppose that

∫ ∞

t


an–(u)

{∫ ∞

u

[


an(s)

∫ ∞

s
q(v)�v

] 
α

�s
}
�u =∞. (.)

If x is an eventually positive solution of (.), then there exists sufficiently large T ≥ t such
that:
() S�

n (t,x(t)) <  for t ≥ T .
() Either limt→∞ x(t) =  or Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n.

Lemma . [] Assume that x is an eventually positive solution of (.). If there exists
T ≥ t such that:
() S�

n (t,x(t)) <  for t ≥ T .
() Si(t,x(t)) >  for t ≥ T and  ≤ i≤ n.

Then

Si
(
t,x(t)

) ≥ S

α
n

(
t,x(t)

)
Bi+(t,T) for  ≤ i≤ n –  and t ≥ T (.)

and there exist T > T and a constant c >  such that

x(t)≤ cB(t,T) for t ≥ T, (.)
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where

Bi(t,T) =

{∫ t
T [


an(s) ]


α �s, if i = n,∫ t

T
Bi+(s,T)
ai(s)

�s, if ≤ i≤ n – .
(.)

Lemma . [] Let f : R→ R be continuously differentiable and suppose that g : T→ R is
delta differentiable. Then f ◦ g is delta differentiable and

(f ◦ g)�(t) = g�(t)
∫ 


f ′(hg(t) + ( – h)gσ (t)

)
dh.

Lemma . [] If A, B are nonnegative numbers and λ > , then

Aλ – λABλ– + (λ – )Bλ ≥ .

Lemma . [] Assume that U , V are constants and γ ≥  is the quotient of odd positive
integers. Then

(U –V )+

γ ≥U+ 

γ +

γ
V + 

γ –
(
 +


γ
V


γ U

)
.

3 Main results
Throughout this paper, we assume that:
() τ ◦ σ = σ ◦ τ , where the forward jump operator σ : T→ T by σ (t) = inf{s ∈ T : s > t}.
() 	 : T→ (,∞) and φ : T→ [,∞) such that 	(t) and a(t)φ(t) are differentiable.

Write

h(t,T) =
B(t,T)
a(t)

,

h(t,T) = h(t,T)Bα–


(
σ (t),T

)
= h(t,T)

(
Bα–
 (t,T)

)σ ,

δ(t,T , c, c) =

⎧⎪⎨
⎪⎩
c, c are any positive constant, if α < β ,
, if α = β ,
cBβ–α

 (σ (t),T), c are any positive constant, if α > β ,
(.)

δ(t,T , c, c) =

⎧⎪⎪⎨
⎪⎪⎩
c, c are any positive constant, if α < β ,
, if α = β ,

cB
β
α –
 (σ (t),T), c are any positive constant, if α > β ,

(.)

g(t,T , c, c) = 	�(t) + β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)(
an(t)φ(t)

)σ ,

g(t,T , c, c) = 	�(t) +
(
 +


α

)
β	(t)τ�(t)h

(
τ (t),T

)
× δ

(
τ (t),T , c, c

)((
an(t)φ(t)

)σ ) 
α ,

G(t,T , c, c) = 	(t)q(t) –	(t)
(
an(t)φ(t)

)� + β	(t)τ�(t)h
(
τ (t),T

)
× δ

(
τ (t),T , c, c

)((
an(t)φ(t)

)σ ),
G(t,T , c, c) =	(t)q(t) –	(t)

(
an(t)φ(t)

)� +
β

α
	(t)τ�(t)h

(
τ (t),T

)
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× δ
(
τ (t),T , c, c

)((
an(t)φ(t)

)σ )+ 
α ,

g+ =max{, g}, g– =min{,–g},

X(t) =
{
an(t)

[
[S�

n–(t,x(t))]α

xβ (τ (t))
+ φ(t)

]}σ

.

Theorem . Suppose that (.) and (.) hold. If there exist differentiable functions
	 : T → (,∞) and φ : T → [,∞) with an(t)φ(t) being differentiable such that for all
sufficiently large T ∈ [t,∞)T and for any positive constants c, c, there is a T > T with
τ (T) > T such that

lim sup
t→∞

∫ t

T

[
G(s,T , c, c) –

g (s,T , c, c)
β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

]
�s =∞, (.)

then every solution of (.) is either oscillatory or tends to .

Proof Assume that (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of
generality, there is a sufficiently large t ≥ t such that x(t) >  for t ≥ t. Therefore from
Lemma ., we know that there exists sufficiently large T ≥ t such that:
() S�

n (t,x(t)) <  for t ≥ T .
() Either limt→∞ x(t) =  or Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n.

Let Si(t,x(t)) >  for t ≥ T and  ≤ i≤ n. Consider

w(t) = 	(t)an(t)
[
(S�

n–(t,x(t)))α

xβ (τ (t))
+ φ(t)

]
. (.)

Then X(t) = wσ (t)/	σ (t) and w(t) >  for t ≥ T .
By the product rule and the quotient rule

w�(t) =
	(t)

xβ (τ (t))
S�
n
(
t,x(t)

)
+

[
	(t)

xβ (τ (t))

]�

Sσ
n
(
t,x(t)

)
+	(t)

[
an(t)φ(t)

]� +	�(t)
[
an(t)φ(t)

]σ .

Since g(t,x(τ (t)))/xβ(τ (t))≥ q(t) (x(t) > ), we get

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

–	(t)
[
(xβ (τ (t)))�

xβ (τ (t))

][
Sn(t,x(t))
xβ (τ (t))

]σ

. (.)

Using the fact that x and τ are differentiable functions and τ ◦ σ = σ ◦ τ , we see that x ◦ τ

is a differentiable function and (x(τ (t)))� = x�(τ (t))τ�(t). Note β ≥ . From Lemma .,
we get

(
xβ

(
τ (t)

))� ≥ βxβ–(τ (t))x�
(
τ (t)

)
τ�(t),

which implies

w�(t)≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)
x�(τ (t))
x(τ (t))

[
Sn(t,x(t))
xβ (τ (t))

]σ

. (.)

http://www.advancesindifferenceequations.com/content/2014/1/328
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We choose t ≥ T such that τ (t) > T for t ≥ t. Then, from (.) and the fact that S�
n (t,

x(t)) <  for t ≥ T , we get

x�
(
τ (t)

) ≥ S

α
n

(
τ (t),x(t)

)B(τ (t),T)
a(τ (t))

≥ [
S


α
n

(
t,x(t)

)]σh
(
τ (t),T

)
= h

(
τ (t),T

)(
a


α
n (t)S�

n–
(
t,x(t)

))σ (.)

= h
(
τ (t),T

)[Sn(t,x(t))
xβ (τ (t))

]σ [
xβ (τ (t))

S
α–
α

n (τ (t,x(t)))

]σ

. (.)

From (.), we have

x(t)≥ S

α
n

(
t,x(t)

)
B(t,T).

Thus

S
α–
α

n
(
τ (t),x(t)

) ≤ xα–(τ (t))
Bα–
 (τ (t),T)

,

which combines with (.) to imply

x�
(
τ (t)

) ≥ h
(
τ (t),T

)[ (Sn(t,x(t)))
xβ (τ (t))

]σ [
xβ (τ (t))
xα–(τ (t))

]σ

. (.)

Combining (.) with (.) and from xσ (τ (t))
x(τ (t)) ≥ , we obtain that

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)[xβ (τ (t))
xα(τ (t))

]σ {[
Sn(t,x(t))
xβ (τ (t))

]σ }

.

Now we consider the following three cases.
Case (i). If α < β , then x�(t) >  for t ≥ T and x(t)≥ x(T) = b > . Thus

(
xβ–α

(
τ (t)

))σ ≥ bβ–α
 = c >  for t ≥ t.

Case (ii). If α = β , then

(
xβ–α

(
τ (t)

))σ =  for t ≥ t.

Case (iii). If α > β , then from (.) we get that there exist t > t and a constant c >  such
that

x(t)≤ cB(t,T) for t ≥ t.

Thus

(
xβ–α

(
τ (t)

))σ ≥ c
(
Bβ–α


(
τ (t),T

))σ for t ≥ t,

where c = cβ–α > .

http://www.advancesindifferenceequations.com/content/2014/1/328
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We obtain from the above that

(
xβ(τ (t))
xα(τ (t))

)σ

≥ δ
(
τ (t),T , c, c

)
.

Thus

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

){[
Sn(t,x(t))
xβ (τ (t))

]σ }

. (.)

Since

[(
Sn(t,x(t))
xβ (τ (t))

)σ ]

=
(
X(t) –

(
an(t)φ(t)

)σ )
= X(t) – 

(
an(t)φ(t)

)σX(t) +
((
an(t)φ(t)

)σ ), (.)

from (.) and (.) and the definitions of G(t,T , c, c) and g(t,T , c, c), we get

w�(t) ≤ –G(t,T , c, c) + g(t,T , c, c)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X(t). (.)

It is easy to check that

w�(t) ≤ –G(t,T , c, c) +
g (t,T , c, c)

β	(t)τ�(t)h(τ (t),T)δ(τ (t),T , c, c)
.

Integrating both sides of the above inequality from t to t, we get

∫ t

t

[
G(s,T , c, c) –

g (s,T , c, c)
β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

]
�s

≤ w(t) –w(t) ≤ w(t),

which leads to a contradiction to (.). The proof is completed. �

Theorem . Suppose that (.) and (.) hold. If there exist differentiable functions
	 : T → (,∞) and φ : T → [,∞) with an(t)φ(t) being differentiable such that for all
sufficiently large T ∈ [t,∞)T and for any positive constants c, c, there is a T > T with
τ (T) > T such that

lim sup
t→∞

∫ t

T

[
G(s,T , c, c) –

αα((g(s,T , c, c))+)+α

( + α)+α(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))α

]
�s

=∞, (.)

then every solution of (.) is either oscillatory or tends to .

http://www.advancesindifferenceequations.com/content/2014/1/328
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Proof Assume that (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of
generality, there is a sufficiently large t ≥ t such that x(t) >  for t ≥ t. Therefore from
Lemma ., we know that there exists sufficiently large T ≥ t such that:
() S�

n (t,x(t)) <  for t ≥ T .
() Either limt→∞ x(t) =  or Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n.

Let Si(t,x(t)) >  for t ≥ T and  ≤ i≤ n. From (.), we get

x�
(
τ (t)

) ≥ [
S


α
n

(
t,x(t)

)]σh
(
τ (t),T

)
= h

(
τ (t),T

)(
x

β
α
(
τ (t)

))σ

{[
Sn(t,x(t))
xβ (τ (t))

]σ } 
α

. (.)

Define w(t) as (.). Choosing t ≥ T such that τ (t) > T for t ≥ t. Combining (.) with
(.), we see that for t ∈ [t,∞)T,

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)h
(
τ (t),T

){[
Sn(t,x(t))
xβ (τ (t))

]σ }+ 
α (x

β
α (τ (t)))σ

x(τ (t))
.

Note x(τ (t))≤ (x(τ (t)))σ since x�(t) > , we obtain

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)((
Sn(t,x(t))
xβ (τ (t))

)σ )+ 
α (
x

β–α
α

(
τ (t)

))σ .

Now we consider the following three cases.
Case (i). If α < β , then

(
x

β–α
α

(
τ (t)

))σ ≥ x
β–α
α (T) = c >  for t ≥ t

since x�(t) >  for t ≥ T .
Case (ii). If α = β , then

(
x

β–α
α

(
τ (t)

))σ =  for t ≥ t.

Case (iii). If α > β , then we get from (.) that there exist t > t and a constant c >  such
that

x
(
τ (t)

) ≤ cB
(
τ (t),T

)
for t ≥ t.

Thus

(
x

β–α
α

(
τ (t)

))σ ≥ c
(
B

β–α
α


(
τ (t),T

))σ for t ≥ t,

where c = c
β–α
α > .

We obtain from the above

(
x

β–α
α

(
τ (t)

))σ ≥ δ
(
τ (t),T , c, c

)
.
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Then

w�(t) ≤ –	(t)q(t) +	(t)
[
an(t)φ(t)

]� +	�(t)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

){[
Sn(t,x(t))
xβ (τ (t))

]σ }+ 
α

. (.)

From Lemma ., we have

((
Sn(t,x(t))
xβ (τ (t))

)σ)+ 
α

=
(
X(t) –

(
an(t)φ(t)

)σ )+ 
α

≥ X+ 
α (t) +


α

(
aσ
n (t)φ

σ (t)
)+ 

α

–
(
 +


α

)(
aσ
n (t)φ

σ (t)
) 

α X(t). (.)

Combining (.) with (.) and the definitions ofG(t,T , c, c) and g(t,T , c, c), we get

w�(t) ≤ –G(t,T , c, c) + g(t,T , c, c)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X+ 

α (t)

≤ –G(t,T , c, c) +
(
g(t,T , c, c)

)
+X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X+ 

α (t). (.)

Let

A+ 
α = β	(t)τ�(t)h

(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X+ 

α (t), (.)

B

α =

α(g(t,T , c, c))+
( + α)(β	(t)τ�(t)h(τ (t),T)δ(τ (t),T , c, c))

α
α+

. (.)

We have from Lemma .

(
g(t,T , c, c)

)
+X(t) – β	(t)τ�(t)h

(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X+ 

α (t)

≤ αα((g(t,T , c, c))+)+α

( + α)+α(β	(t)τ�(t)h(τ (t),T)δ(τ (t),T , c, c))α
.

Then

w�(t) ≤ –G(t,T , c, c) +
αα((g(t,T , c, c))+)+α

( + α)+α(β	(t)τ�(t)h(τ (t),T)δ(τ (t),T , c, c))α
.

Integrating both sides of the above inequality from t to t, we get

∫ t

t

[
G(s,T , c, c) –

αα((g(s,T , c, c))+)+α

( + α)+α(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))α

]
�s

≤ w(t) –w(t) ≤ w(t),

which leads to a contradiction to (.). The proof is completed. �
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4 Further results
For convenience, let D = {(t, s) ∈ T : t ≥ s ≥ t, t, s ∈ [t,∞)T}. For any function G : T →
R, denote by G�s the partial derivative of G(t, s) with respect to s. Define


∗ =
{
G ∈ Crd

(
D, [,∞)

)
:G(s, s) = ,G(t, s) > ,G�s ≤ , t > s ≥ t

}
.

Theorem . Suppose that (.) and (.) hold. If there exist functions r,R ∈ 
∗ and dif-
ferentiable functions	 : T → (,∞) and φ : T→ [,∞)with an(t)φ(t) being differentiable
such that for all sufficiently large T ∈ [t,∞)T and for any positive constants c, c, there is
a T > T with τ (T) > T such that

R�s (t, s) +
R(t, s)g(s,T , c, c)

	σ (s)
=

r(t, s)
	σ (s)

R

 (t, s) (.)

and

lim sup
t→∞


R(t,T)

∫ t

T

[
R(t, s)G(s,T , c, c)

–
r(t, s)

β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

]
�s =∞, (.)

then every solution of (.) is either oscillatory or tends to .

Proof Assume that (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of
generality, there is a sufficiently large t ≥ t such that x(t) >  for t ≥ t. Therefore from
Lemma ., we know that there exists sufficiently large T ≥ t such that:
() S�

n (t,x(t)) <  for t ≥ T .
() Either limt→∞ x(t) =  or Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n.

Let Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n. Define w(t) as (.). Choosing t ≥ T such that
(.) holds for t ≥ t. Then for t ∈ [t,∞)T

G(t,T , c, c)

≤ –w�(t) + g(t,T , c, c)X(t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X(t). (.)

In (.), replace t by s and multiply both sides by R(t, s), integrate with respect to s from
t to t > t, we have

∫ t

t
R(t, s)G(s,T , c, c)�s

≤ –
∫ t

t
R(t, s)w�(s)�s +

∫ t

t
R(t, s)g(s,T , c, c)X(s)�s

–
∫ t

t
R(t, s)β	(s)τ�(s)h

(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X(s)�s.
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Integrating by parts and using (.), we get
∫ t

t
R(t, s)G(s,T , c, c)�s

≤ R(t, t)w(t) +
∫ t

t

[
r(t, s)R


 (t, s)X(s)

– R(t, s)β	(s)τ�(s)h
(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X(s)

]
�s.

This implies
∫ t

t
R(t, s)G(s,T , c, c)�s

≤ R(t, t)w(t) +
∫ t

t

r(t, s)
β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

�s.

Thus


R(t, t)

∫ t

t

[
R(t, s)G(s,T) –

r(t, s)
β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

]
�s ≤ w(t),

which leads to a contradiction to (.). The proof is completed. �

Theorem . Suppose that (.) and (.) hold. If there exist functions r,R ∈ 
∗ and dif-
ferentiable functions	 : T → (,∞) and φ : T→ [,∞)with an(t)φ(t) being differentiable
such that for all sufficiently large T ∈ [t,∞)T and for any positive constants c, c, there is
a T > T with τ (T) > T such that

R�s (t, s) +
R(t, s)g(s,T , c, c)

	σ (s)
=

r(t, s)
	σ (s)

R
α

+α (t, s) (.)

and

lim sup
t→∞


R(t,T)

∫ t

T

[
R(t, s)G(s,T , c, c)

–
αα(r(t, s))+α

( + α)+α(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))α

]
�s =∞, (.)

then every solution of (.) is either oscillatory or tends to .

Proof Assume that (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of
generality, there is a sufficiently large t ≥ t such that x(t) >  for t ≥ t. Therefore from
Lemma ., we know that there exists sufficiently large T ≥ t such that:
() S�

n (t,x(t)) <  for t ≥ T .
() Either limt→∞ x(t) =  or Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n.

Let Si(t,x(t)) >  for t ≥ T and  ≤ i ≤ n. Define w(t) as (.). Choosing t ≥ T such that
(.) holds for t ≥ t. Then for t ∈ [t,∞)T, we have

G(t,T , c, c) ≤ –w�(t) +
g(t,T , c, c)

	σ (t)
wσ (t)

– β	(t)τ�(t)h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
X(+ 

α )(t). (.)
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In (.), replace t by s and multiply both sides by R(t, s) and integrate with respect to s
from t to t > t, it follows that

∫ t

t
R(t, s)G(s,T , c, c)�s

≤ –
∫ t

t
R(t, s)w�(s)�s +

∫ t

t
R(t, s)

g(s,T , c, c)
	σ (s)

wσ (s)�s

–
∫ t

t
R(t, s)β	(s)τ�(s)h

(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X(+ 

α )(s)�s.

Integrating by parts and using (.), we get

∫ t

t
R(t, s)G(s,T , c, c)�s

≤ R(t, t)w(t) +
∫ t

t

[
r+(t, s)R

α
+α (t, s)X(s)

– βR(t, s)	(s)τ�(s)h
(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X(+ 

α )(s)
]
�s. (.)

Let

A+ 
α = βR(t, s)	(s)τ�(s)h

(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X+ 

α (s), (.)

B

α =

αr+(t, s)
( + α)(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))

α
α+

. (.)

From Lemma ., we have

∫ t

t

[
r+(t, s)R

α
+α (t, s)X(s) – βR(t, s)	(s)τ�(s)h

(
τ (s),T

)
δ

(
τ (s),T , c, c

)
X+ 

α (s)
]
�s

≤
∫ t

t

αα(r+(t, s))+α

( + α)+α(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))α
�s,

which implies

∫ t

t

[
R(t, s)G(s,T , c, c)

–
αα(r+(t, s))+α

( + α)+α(β	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c))α

]
�s ≤ R(t, t)w(t).

Then


R(t, t)

∫ t

t

[
R(t, s)G(s,T , c, c)

–
αα(r+(t, s))+α

( + α)+α(β	(s)τ�(t)h(τ (s),T)δ(τ (s),T , c, c))α

]
�s ≤ w(t),

which leads to a contradiction to (.). The proof is completed. �

http://www.advancesindifferenceequations.com/content/2014/1/328


Sun et al. Advances in Difference Equations 2014, 2014:328 Page 14 of 16
http://www.advancesindifferenceequations.com/content/2014/1/328

5 Example
In this section, we give an example to illustrate our main results.

Example . Consider the following higher order dynamic equation:

S�
n
(
t,x(t)

)
+

γ

tβ+
xβ+(τ (t)) =  (.)

on time scale T = {} ∪ {/k : k = , , , . . .} ∪ {k : k = , , , . . .}, where n ≥ , Sk(t) ( ≤
k ≤ n) is as in (.) with an(t) = tα , an–(t) = · · · = a(t) = , q(t) = γ

tβ+ , γ > /–β ,  < β < ,
t = , and τ (t) = t/. Then τ�(t) = / and the forward jump operator σ (t) = t satisfies
σ (τ (t)) = τ (σ (t)). Thus

∫ ∞

t

(


an(s)

) 
α

�s =
∫ ∞

t

�s
s

=∞,

∫ ∞

t

�s
ai(s)

=
∫ ∞

t
�s =∞,

∫ ∞

t


an–(t)

{∫ ∞

t

[


an(s)

∫ ∞

s
q(u)�u

] 
α

�s
}
�t

=
∫ ∞

t

{∫ ∞

t

[

sα

∫ ∞

s

γ

uβ+ �u
] 

α

�s
}
�t

≥
(

γ

β

) 
α

∫ ∞

t

{∫ ∞

t

[

sα

∫ ∞

s

(uβ )�

uβ (uβ )σ
�u

] 
α

�s
}
�t

=
(

γ

β

) 
α

∫ ∞

t

[∫ ∞

t

�s

ss
β
α

]
�t ≥

(
γ

β

) 
α

∫ ∞

t

[∫ ∞

t

�s
ssσ

]
�t

=
(

γ

β

) 
α

∫ ∞

t


t
�t =∞.

Therefore (.) and (.) hold. Note that

lim
t→∞Bn(t,T) = lim

t→∞

∫ t

T

[


an(s)

] 
α

�s = lim
t→∞

∫ t

T


s
�s =∞.

It is easy to check that

lim
t→∞B(t,T) = lim

t→∞B
(
σ (t),T

)
=∞

and

lim
t→∞h(t,T) = lim

t→∞h
(
σ (t),T

)
=∞.

Then for any positive constants c, c, there is a sufficiently large t such that (B(τ (t),T))σ >
 for t ≥ t, h(τ (t),T)≥ /c, and h(τ (t),T)≥max{, /c} for t ≥ t,

h
(
τ (t),T

)
δ

(
τ (t),T , c, c

)
=

⎧⎪⎨
⎪⎩
ch(τ (t),T)≥ , if α < β + ,
h(τ (t),T)≥ , if α = β + ,
ch(τ (t),T)(Bβ

 (τ (t),T))σ ≥ , if α > β + .

http://www.advancesindifferenceequations.com/content/2014/1/328


Sun et al. Advances in Difference Equations 2014, 2014:328 Page 15 of 16
http://www.advancesindifferenceequations.com/content/2014/1/328

Choosing φ(t) =  and 	(t) = t. Then g(t,T , c, c) = 	�(t) =  and G(t,T , c, c) =
	(t)q(t) = γ

tβ . Thus

lim sup
t→∞

∫ t

T

[
G(s,T , c, c) –

g (s,T , c, c)
(β + )	(s)τ�(s)h(τ (s),T)δ(τ (s),T , c, c)

]
�s

≥ lim sup
t→∞

∫ t

T

(
γ

sβ
–


(β + )


s

)
�s ≥ lim sup

t→∞

∫ t

T


s

�s =∞.

The conditions of Theorem . are satisfied. Then every solution of (.) is either oscilla-
tory or tends to .

Remark . If β = , then the conditions of Theorem . are also satisfied and every so-
lution of (.) is also either oscillatory or tends to .

Remark . In Example ., let R(t, s) = r(t, s) =  for t > s ≥  and R(t, t) = r(t, t) =  for
t ≥ . Then the conditions of Theorem . are satisfied. It also follows from Theorem .
that every solution of (.) is either oscillatory or tends to .
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