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Abstract

Background: Cell survival and development are orchestrated by complex interlocking programs of gene activation
and repression. Understanding how this gene regulatory network (GRN) functions in normal states, and is altered in
cancers subtypes, offers fundamental insight into oncogenesis and disease progression, and holds great promise
for guiding clinical decisions. Inferring a GRN from empirical microarray gene expression data is a challenging task
in cancer systems biology. In recent years, module-based approaches for GRN inference have been proposed to
address this challenge. Despite the demonstrated success of module-based approaches in uncovering biologically
meaningful regulatory interactions, their application remains limited a single condition, without supporting the
comparison of multiple disease subtypes/conditions. Also, their use remains unnecessarily restricted to
computational biologists, as accurate inference of modules and their regulators requires integration of diverse tools
and heterogeneous data sources, which in turn requires scripting skills, data infrastructure and powerful
computational facilities. New analytical frameworks are required to make module-based GRN inference approach
more generally useful to the research community.

Results: We present the RMaNI (Regulatory Module Network Inference) framework, which supports cancer subtype-
specific or condition specific GRN inference and differential network analysis. It combines both transcriptomic as
well as genomic data sources, and integrates heterogeneous knowledge resources and a set of complementary
bioinformatic methods for automated inference of modules, their condition specific regulators and facilitates
downstream network analyses and data visualization. To demonstrate its utility, we applied RMaNI to a
hepatocellular microarray data containing normal and three disease conditions. We demonstrate that how RMaNI
can be employed to understand the genetic architecture underlying three disease conditions. RMaNI is freely
available at http://inspect.braembl.org.au/bi/inspect/rmani

Conclusion: RMaNI makes available a workflow with comprehensive set of tools that would otherwise be
challenging for non-expert users to install and apply. The framework presented in this paper is flexible and can be
easily extended to analyse any dataset with multiple disease conditions.

Background
Complex cellular behaviour in cancer is orchestrated by
the action of transcriptional regulatory networks [1,2].
Computational inference of transcriptional regulatory net-
works, referred to as Gene Regulatory Networks (GRN),

from microarray gene expression data is one of the funda-
mental goals of systems biology and its translation to
genomic medicine [3]. GRN inference and analysis, espe-
cially when integrated with experimental validation, has
proven to be a powerful tool in understanding how regula-
tory networks are disrupted and rewired in normal and
cancer conditions, and in identifying novel regulatory
interactions as well as broader systemic disruptions in key
oncogenic processes [4-6]. Many methods have been
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developed to infer GRNs from microarray gene expression
data. These approaches include unsupervised, semi-super-
vised and supervised methods based on computational
mathematics, multivariate statistics and information
science [7-11].
Although diverse computational and statistical approa-

ches have been applied to this problem, the accuracy of
edge-wise network inference methods remains poor
[11-14]. Novel approaches are needed to address the
genome-wide network inference problem. A promising
direction is the inference of transcriptional modules
instead of individual edges. Module inference is simpler
than edge-wise network inference [15,16], and higher
accuracies can be achieved [7,17].

Transcriptional module networks
Several studies have revealed that regulatory networks are
modular in nature and organised hierarchically [18].
According to Oltvai and Barabasi’s “complexity of life”
pyramid, functional modules are less complex compared
to individual transcriptional programs, which in turn are
the building blocks for these modules [15]. Therefore,
inferring modules instead of the individual interactions of
complete networks drastically reduces the complexity of
the inference problem, and shows great promise for net-
work analysis in complex disease conditions including
cancer [17,19-21]. A transcriptional-module network is
composed of clusters of co-expressed genes collaboratively
or alternatively regulated by one or several transcription
factors (TFs) via convergent or divergent regulatory pro-
grams. A convergent regulatory program represents a parti-
cular set of target genes (TGs) regulated by different sets
of TFs, whereas a divergent regulatory program represents
a given set of TFs regulating distinct sets of TGs [7,22].
Several methods have been developed to infer modules

from microarray data, including a range of clustering
methods such as k-means, hierarchical clustering and
self-organizing maps. However, all these approaches suf-
fer from certain limitations; for instance, the number of
clusters is not determined automatically but requires the
number of clusters to be pre-specified [23-26]. WGCNA
[27], based on the weighted gene co-expression network
analysis approach [28], is the most widely used method
and has been applied to a number of diseases [29-32]. It
also uses a clustering approach to infer modules, but it
optimizes the threshold to achieve a scale-free topology.
Assuming scale-freeness, several model-based clustering
approaches have been developed [33-35]. Model-based
approaches allow a statistical analysis of the inferred
modules and automatically estimate the number of mod-
ules [34]. For example, Genomica [20] uses expectation
maximisation (EM) to identify modules [16,20].
Other methods [22,36-39] use additional experimental

data such as protein-protein interactions, TF binding

affinity data, in vitro DNA binding specificities, DNA
motifs and ChIP-chip data. Such integrative approaches
are attractive and promising approaches to infer mod-
ules, as they take into account different sources of biolo-
gical information [40]. However, they do not natively
integrate methods for module inference, identification of
regulators, or comprehensive downstream analysis and
visualization. Also, they support the analysis only of
individual datasets arising from only one condition with-
out differential analysis of other conditions or subtypes.
Integrating diverse data sources as well as multiple

methods brings many challenges. These challenges can be
diverse, range from methodological to practical in nature,
and can arise due to the computational or statistical com-
plexities of methods and the dimensionality of omic data
[41,42]. For instance, combining heterogeneous data
requires extensive file formatting at different stages of ana-
lysis, while integrating different methods involves the
selection or optimization of diverse parameters and other
user-control features. As a consequence of these chal-
lenges, it is difficult for biologists or clinicians (without
strong informatic skills) to chain multiple methods
together into comprehensive, flexible workflows to address
substantial questions. For example, to identify the modules
involved in any disease condition one must retrieve data
from different repositories (e.g. motif data from Transfac
[43] or Genomatix [44]), map the identifiers e.g. using Bio-
mart [45], perform differential gene expression analysis e.g
using LIMMA [46], infer the modules and identify regula-
tors e.g. using Genomica [20], integrate the inferred mod-
ules and regulators for visualization e.g. using Cytoscape
[47], and finally perform functional analysis of module
genes e.g. using DAVID [48,49]. This work focuses on
making available a workflow and computational resources
for the inference of modules and their regulators, down-
stream analyses and visualization.

RMaNI - Regulatory Module Network Inference framework
Here, we present a novel integrative and automated analy-
tical framework “RMaNI - Regulatory Module Network
Inference” for disease condition or subtype-specific mod-
ule network inference, analysis and data visualization. It
uses the Learning Module Networks (LeMoNe) algorithm
[50] and Regulatory Impact Factors (RIF) [51] to identify
relevant regulatory TFs. The LeMoNe algorithm uses a
Bayesian probabilistic model-based approach for clustering
genes, and in selecting thresholds does not assume that
networks necessarily have a scale-free topology [50].
RMaNI combines both transcriptomic as well as geno-

mic data sources, and integrates heterogeneous knowledge
resources and a set of complementary bioinformatic meth-
ods for microarray data processing, differential expression
(DE) analysis, module detection and regulator identifica-
tion, gene and module significance measure calculations,
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functional enrichment analysis of module genes, and
visualization of data and networks.

Case study - application to hepatocellular carcinoma
To demonstrate its utility, we applied RMaNI to a hepa-
tocellular microarray dataset containing normal tissue
and three disease conditions: pre-malignant (cirrhosis),
cirrhosis with hepatocellular carcinoma (cirrhosisHCC),
and hepatocellular tumor (HCC). We illustrate that the
identification and analysis of transcriptional module
network can give insight into the common and unique
genetic architecture underlying hepatocellular carcinoma
conditions.

Implementation
The RMaNI web interface has been created using Rwui
[52], a Java-based application that uses the Apache Struts
framework. The complete application is running on a
Tomcat server on a high-performance computing cluster.
The workflow integrates publicly available R[53], Biocon-
ductor [54] and custom packages and functions for data
import, processing, analysis, integration and visualization.
All packages are currently running under R version 2.15.2,
and can be easily updated as newer versions of R are
released. RMaNI is freely available as a user-friendly web-
application at http://inspect.braembl.org.au/bi/inspect/
rmani, with a comprehensive manual available (Additional
File 1).
In the next section, we describe the RMaNI workflow

and provide a brief overview of the methods used in each
step. Then, we present a case study showing how RMaNI
can be employed to understand the genetic architecture
underlying three hepatocellular carcinoma conditions.

RMaNI: structure and functionalities
Figure 1 illustrates the workflow in RMaNI. The workflow
is divided into three main stages: 1) data preparation, 2)
inference of modules and regulators, and 3) integration of
module networks and analysis. In this section, we describe
these stages and the individual steps involved therein.

Stage 1 - Data Preparation
At this stage, the pre-processed (background corrected
and normalized) microarray gene expression data and
sample annotations are imported from files uploaded by
the user.

Step 1.1 - Dataset
sRMaNI can be applied to gene expression datasets arising
from multiple conditions. Currently, we support datasets
arising from 13 different types of Affymetrix chips:
hgu133a, hgu133a2, hgu133b, hgu133plus2, hgu219,
hgu95a, hgu95av2, hgu95b, hgu95c, hgu95d, hgu95e,
hthgu133a and hthgu133b.

Step 1.2 - Feature selection for input to module inference
workflow
Once a user has the microarray dataset, the question
arises: which and how many features should one input to
the network inference step? Because there is no standard
feature-selection method or recommendation on the
minimum number of features, the workflow compares
different feature-selection methods for different gene
sets, and identifies the optimal combination of these two
parameters.
The user compares three feature-selection methods:

differentially expressed genes between normal and all
subtypes (DE_all), differentially expressed genes between
normal and each subtype (DE_pair), and the most-
variable genes across the dataset based on the coefficient
of variation (Var). For differential expression analysis
RMaNI uses the LIMMA package [46], and to select vari-
able genes it uses a custom R function. To find the opti-
mal number of genes, for each of the three feature
selection methods, it selects eight subsets with 10 to
4000 genes (10, 50, 100, 200, 500, 1000, 2000 and 4000
genes) optimal for network inference step. To identify
the optimal feature selection method and number of
genes, it examines how well they group the samples into
the known classes.
The user compares the different gene sets on seven dif-

ferent clustering methods (clues, kmeans, PAM, AGNES,
Fanny, SOTA and MCLUST) [55-57]. The workflow uses
the Rand Index (RI) [58] as a measure for evaluating the
clustering performance. RI measures the similarity
between two data clusterings (known against predicted).
An RI equal to 1 indicates perfect clustering, while an RI
of 0 indicates that the clustering is no better than chance.
These methods are implemented in the R packages clValid
[59], clues [55], cluster [57] and mclust [56]. A brief
description of each clustering method is given below.
clues (clustering based on local shrinking) is a nonpara-

metric clustering method using local shrinking [55]. It esti-
mates the number of clusters and simultaneously finds a
partition of a data set via three steps: shrinking, partition,
and determination of the optimal number of partitions.
kmeans is a parametric, centroid-based clustering

method. Given the number of clusters, it starts with an
initial estimate for the cluster centroids, and each sample
is assigned to the cluster with the nearest mean [60]. The
cluster centroids are then updated, and the entire process
is iterated until the cluster centroids become stable.
PAM (Partitioning Around Medoids) is a parametric

method similar to k-means, but PAM is a medoid-based
method. A medoid is a representative object of a cluster,
such that its average dissimilarity to all objects in that
cluster is minimal [61]. Given the number of clusters,
PAM starts with an initial estimate for the cluster
medoids, and calculates the dissimilarity matrix using the
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Euclidean or Manhattan distance [61]. Based on this
matrix, each sample is assigned to the cluster with the
nearest medoid.
AGNES (AGglomerative NESting) is a hierarchical

clustering method which groups a dataset into a tree of

clusters [61]. It is a bottom-up clustering method that
starts with small clusters of single samples and then, at
each step using a specified distance metric, merges the
clusters into larger cluster. This is repeated iteratively until
a single cluster is obtained, containing all samples.

Figure 1 RMaNI workflow. Stages involved in RMaNI workflow. Workflow is divided into three main stages - Data preparation, Inference of
modules and regulators, and Integration of module networks and analysis.
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Fanny is a fuzzy or soft clustering method [61]. With
this method each sample has partial membership with
each cluster rather than belonging exclusively to just a
single cluster. Each sample describes the probability
scores for its cluster membership. After optimizing the
number of clusters, the method starts with assigning
random cluster probabilities to each sample, and repeats
this process until convergence.
SOTA (Self-Organising Tree Algorithm) is a divisive

clustering method [62]. It generates an unsupervised
neural network with a binary tree topology. Contrary to
AGNES, SOTA is a top-down clustering method. It starts
the clustering process with a binary tree consisting of a
root node with two leaves, each representing one cluster.
The self-organizing process then grows the tree by con-
verting the leaf with the highest score into a node and
attaching two new leaves to it. The score for each cluster
is defined as the mean value of the distances between the
cluster and the samples associated with it [63].
MCLUST (Model based clustering) is a nonparametric,

model-based clustering method that uses finite normal
mixture modelling and the expectation maximisation
(EM) algorithm. Unlike other methods, it does not require
the number of clusters as input, but instead infers the
number of clusters from the data.
In summary, stage 1 provides an estimate on the feature-

selection method and optimal number of genes which best
explains the given data. The user can choose this feature
selection method and this many genes for input to find
clusters of co-expressed genes in the next step. For ease
and flexibility of processing the user’s own data, the
feature selection step is not supported through the RMaNI
web-interface.

Stage 2 - Clustering of genes to modules and
identification of regulators
This is the main stage of the RMaNI workflow. It takes
the gene set optimized in the feature selection step, and
uses the corresponding gene expression data for module
network inference. Below we provide the details of the
individual steps.

Step 2.1 - Inference of transcriptional module networks
Given a gene expression dataset and a set of candidate
regulators (TFs, microRNA or clinical variable of interest
like stage or grade); inference of modules is composed of
two steps: first clustering of co-expressed genes to iden-
tify modules, and second the inference of links between
regulators and modules.

Step 2.1.1 - Clustering of genes
RMaNI uses the LeMoNe (Learning Module Networks)
algorithm for inferring modules from microarray data,
LeMoNe performs a two-way Bayesian clustering of genes

and uses a Gibbs sampling procedure to iteratively update
the cluster assignments of genes [34,50]. Each inferred
module contains the genes for which the expression pro-
files best fit the same multivariate normal distribution [7].
LeMoNe has been successfully applied to different condi-
tions including cancer [17,64-67]. LeMoNe outputs the
ensemble of clustering solutions represented as a gene-to-
cluster probability matrix reflecting the probability of the
assignment of a gene to each module, referred to as fuzzy
clustering (one gene can belong to multiple modules, each
with certain probability). Using a graph spectral method
and a probability cut-off, it then outputs tight clusters (in
which one gene belongs to only one cluster) from fuzzy
clusters [50].

Step 2.2 - Inferring the regulators
To identify and prioritize potential TFs regulating mod-
ules, candidate TFs are gathered by integrating lists of TFs
from Vaquerizas [68], Ravasi [69], TCOF-DB [70] and
Transfac [43]. To infer the potential regulator for each
module, two methods are employed: LeMoNe’s regulatory
program (LRP) and the Regulatory Impact Factor analysis
(RIF) algorithm. Below, we briefly describe these methods.

Step 2.2.1 - LeMoNe regulatory program
In LeMoNe’s regulatory program, two types of regulators
can be assigned, regulators with continuous or with dis-
crete values. Continuous values include expression values
measured, for example, for TFs, signal transducers, kinases
and/or microRNAs. Discrete values can be clinical vari-
ables like tumor stage or grade. In this workflow the focus
is on TFs. Transcriptional regulatory programs are
inferred using a hierarchical decision-tree model. The reg-
ulator assigned to each module consists of the set of TFs
for which the expression profiles best explain all or part of
the conditions. TFs receive a regulatory score reflecting
the statistical confidence with which a TF regulates genes
in the cluster. The collection of the regulatory scores for
each TF is then converted into a global score. Finally, the
TFs are sorted by their scores to construct a ranked list of
potential regulators.

Step 2.2.2 - Regulatory Impact Factor (RIF) analysis
RIF analysis was initially developed to identify TFs that
contribute to the differential expression in a particular
condition, although the TF itself is not differentially
expressed [51]. RIF is based on the differential correlation
between a TF and the genes differentially expressed (DE)
under two conditions. To compute a regulatory confi-
dence score, it integrates three sources of information into
a single measure: (a) the change in correlation between
the TF and the DE genes, referred to as differential wiring;
(b) the amount of differential expression of DE genes; and
(c) the abundance of DE genes under the two conditions.
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It assigns a score (RIF1) to those TFs that are consistently
most differentially co-expressed with the highly abundant
and highly expressed DE genes, and another score (RIF2)
to those TFs with the most altered ability to predict the
abundance of DE genes [51].

Step 2.3 - Gene significance measures for module ranking
RMaNI uses two measures to rank the modules for each
subtype, average gene significance (GS) and modScore.
The average gene significance focuses on the differential
expression of genes in two conditions in each module and
the modScore represents the overall correlation between
genes in each module. RMaNI combines these two scores
into a single score referred as a standard score:

averageGS = average(-log10(DE pvalue of a gene))
modScore = sum(abs(correlation of genes))/choose

(ngenes,2))
standardScore = 1 - ((1 - averageGS])*(1 - modScore))

Stage 3 - Integration of transcriptional module networks
and topological analysis
At this stage, the workflow combines all subtype-specific
modules and regulators to build a transcriptional module
network. In the topological analysis of such a module
network, RMaNI calculates the overlap of TFs, TGs and
interactions across subtypes, and generates node and
edge attributes to aid in visualization.

Step 3.1 - Functional enrichment analysis of the inferred
modules
The genes in each of the modules are subjected to a
functional GO enrichment analysis using BiNGO [71].
Significantly enriched GO terms are detected by a hyper-
geometric test with adjusted Benjamini-Hochberg False
Discovery Rate (FDR) [72] correction at significance level
0.05 against the all other genes in the network as a
background.

Step 3.2 - Cluster similarity measures
To visualize the similarities between different modules,
RMaNI uses the Jaccard similarity index as an external
measure and Biological Process (BP) and Molecular
Function (MF) as biological measures. The Jaccard index
is calculated as the number of unique genes common to
two clusters divided by the total number of unique genes
in two sets. The BP and MF similarity measures are calcu-
lated by the GOSemSim package in Bioconductor [73].

Step 3.3 - Visualization
Throughout the analysis a number of figures are generated
for data visualization, including the representation of
inferred modules, significance measures calculated for
each module, and overlaps of TFs, TGs and interactions
across all subtypes. To visualize the network, the workflow

exports interactions to a Cytoscape [47] -compatible file.
Node attributes such as subtype and module member-
ships, number of modules regulated by a TF, GO annota-
tions, and edge attributes such as subtype membership of
an interaction, and regulatory score for an edge, are also
provided for further exploration.

Application of RMaNI to hepatocellular carcinoma
To demonstrate the utility of RMaNI, we applied this
workflow to hepatocellular carcinoma dataset (GSE14323)
[74], containing normal tissues and three disease condi-
tions: pre-malignant (cirrhosis), cirrhosis with hepatocellu-
lar carcinoma (cirrhosisHCC), and hepatocellular tumor
(HCC). We investigated the ability of RMaNI to infer
condition-specific transcriptional module networks, find
common and unique TFs and regulatory interactions to
examine the genetic architecture and ultimately to under-
stand the differences and similarities between conditions.
Below, we present the results for the individual steps to
demonstrate the workflow.

Dataset
We used a Robust Multiarray Averaging (RMA) normal-
ised and standardised hapatocellular carcinoma microarray
gene expression dataset, based on 115 samples (Table 1).

Inference of module networks in hepatocellular
carcinoma conditions
We selected top 4000 differentially expressed genes (based
on BH-adjusted p-value) between normal and three condi-
tions to infer the modules as described in the workflow.
For this step RMaNI uses the LeMoNe algorithm. Michoel
et al. [65] evaluated performance of the LeMoNe against
state-of-the-art method genomica, and Smet and Marchal
[7] compared LeMoNe against other network inference
methods. For each pair of the normal-to-condition
datasets (Table 2), 10 clustering solutions were generated.
For each run LeMoNe used the default setting of 50 burn-
ins and 100 Gibbs sampling steps, where the minimum
number of genes in a cluster was set to 4. The default
probability score cut-off of 0.2 was used uniquely assign
genes to clusters.
Table 3 summarizes the clustering results. For each

condition, it shows the different number of clusters gener-
ated, with their number of genes, maximum and minimum

Table 1 Description of the hepatocellular carcinoma
microarray dataset.

Dataset No. of samples in each condition Platform

Normal Cirrhosis CirrhosisHCC HCC

GSE14323
115 samples

19 41 17 38 HG-U133A
(12079 probes)

In the next step, we input dataset to the LeMoNe algorithm to infer modules.
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module sizes. We also performed a GO enrichment analy-
sis on each module using BiNGO to measure the func-
tional coherence of genes in the modules. Table 3 also
shows the total number of modules, in each subtype, with
at least one significant GO category enriched (BH-adjusted
p-value 0.05). For instance, in cirrhosis, RMaNI generated
a set of 74 modules corresponding with a total of 3794
genes. The largest modules had 302 genes and the smallest
4. In the next step we identified the regulators of the
modules.

Identification and ranking of regulators
To assign the potential regulators (TFs) to the inferred
modules, two data-driven approaches were employed in
RMaNI: LRP and RIF. This step resulted in the potential
regulatory TFs ordered according to their LRP and RIF
score. To find the most confident regulators for each
cluster, RMaNI used the intersection of regulators identi-
fied by both methods and integrated both scores into one
score (stdScore). Table 4 presents the TFs predicted that
have a regulatory role in at least two conditions. For
instance, it reveals that TF CBFB regulates at least one
module in each of the cirrhosis, cirrhosisHCC and HCC
conditions and has 557 interactions across the three con-
ditions. Previous studies were limited to a set of prior
candidate TFs only, e.g. differentially expressed TFs or
TFs involved in a particular pathway but considering the
fact that the detection of DE TFs from expression data is
limited due to their low and sparse expression levels,
RMaNI uses all the TFs of a species (human in this
study) without the need of prior TF identification. How-
ever, its applicability in organisms without known TFs
will largely be determined by the entirety of TF databases
and annotations, which are expected to improve over
time with advances in ChIP-chip and ChIP-seq studies.
Other continuous regulatory factors such as microRNAs,
signal transducers, kinases and discrete regulatory factors

such as clinical parameter, e.g. stage, grade or treatments
can also be used.

Identification of modules with the highest DE and
correlation
To identify the modules with high DE as well as high cor-
relation for each condition (referred as best modules), we
ordered the standard score, generated from averagGS and
modScore, and for each module the workflow detected the
knee-point (the maximum inflection point of a graph)
from standard score to select the best modules. Table 5
shows the total number of best modules selected for each
condition and the number of TFs and target genes in
selected modules. For instance, in cirrhosis, 7 modules
corresponding to 200 genes were selected. The 200 genes
include 191 TGs and 9 TFs.

Network analysis
We aggregated all the module networks inferred for each
condition to construct an overall network. For this pur-
pose, RMaNI generates the network around the regula-
tors predicted with highest confidence according to
stdScore. The generated hepatocellular carcinoma net-
work includes 24 TFs and 557 TGs connected by 5897
edges. We found 144 nodes unique to cirrhosis, 342
nodes unique to cirrhosisHCC, and 71 nodes unique to
HCC. 1296, 4104 and 497 edges were unique to cirrhosis,
cirrhosisHCC and HCC conditions, respectively. Previous
approaches do not identify unique or shared TFs between
modules, and between subtypes or conditions. By con-
trast, in this analysis we performed the analysis of con-
vergent and divergent regulatory programs via TF
overlap analysis. Figure 2 illustrates the TFs overlap
across three conditions. We found one TF (CBFB) asso-
ciated with all the three conditions, two TFs (TCF4 and
USF2) associated with two conditions (Table 4) and 21
TFs were unique to one condition.

Network visualization
We imported the inferred module network in Cytoscape
for visualization and exploration. For demonstration of
topological analysis of inferred network, we extracted a
sub-network of 70 nodes (TFs and TGs). Figure 3 shows
hepatocellular carcinoma sub-network which includes 6
TFs and 64 TGs connected by 110 edges. Nodes and edges
are rendered as per different evidences. For instance, node

Table 2 Summary of the datasets used in the study, five
sets of normal and subtype pairs data were input to
LeMoNe.

Datasets No. of DE Genes No. of Samples

Normal + cirrhosis 4000 60

Normal + cirrhosisHCC 4000 36

Normal + HCC 4000 57

Table 3 Summary of gene clustering results.

Conditions No. of Modules No. of Genes Max Module Size Min Module Size

Normal + cirrhosis 74 3794 302 4

Normal + cirrhosisHCC 59 3813 342 4

Normal + HCC 78 3772 219 4
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Table 4 TFs that are predicted to have a regulatory role in at least two conditions.

TFs Conditions TGs in cirrhosis TGs in cirrhosisHCC TGs in
HCC

Total
Edges

CBFB cirrhosis, cirrhosisHCC, HCC 144 342 71 557

TCF4 cirrhosis, HCC 144 0 71 215

USF2 cirrhosis, cirrhosisHCC 144 342 0 486

Remaining TFs are unique to individual conditions.

Table 5 Summary of the modules with highest DE and correlation (best modules).

Conditions Total Modules No. of best Modules No. of
Genes

No. of
TFs

No. of
TGs

cirrhosis 74 7 200 9 191

cirrhosisHCC 59 6 183 11 172

HCC 78 6 255 30 225

Total 211 18 638 50 588

Unique 211 50 548 47 548

Best modules were selected, for each condition, from all the modules inferred.

Figure 2 TF overlap analysis result. Figure illustrates TF overlap analysis results. Three TFs are predicted to have a regulatory role in at least
two conditions. Remaining TFs are unique to individual conditions.
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shape represents its type (TF or TG), and node colour gra-
dient represents DE in cirrhosis against normal tissues.
Edge colour represents condition membership. Figure
shows distinct modules regulated by different TFs. It also
illustrates the TF overlap analysis result (Table 4), for
instance, CBFB, TCF4 and USF2 regulates the TGs in at
least two conditions whereas TCF21, ATF1 and BRCA2
are predicted to have regulatory role only in one of the
conditions.

Conclusions
We have presented the RMaNI workflow, developed for
the end-user perspective of a biologist or clinician. It
provides an easy-to-use interface to a comprehensive,
integrated suite of tools for the inference of condition
or subtype-specific transcriptional module networks and
their analysis. We described the RMaNI workflow and
applied it to hepatocellular carcinoma data. We demon-
strated that identifying the transcriptional module net-
work, and analysing and visualizing the inferred
network, can give insight into the common as well as
unique regulatory architecture underlying different dis-
ease conditions. We anticipate integrating additional
tools and workflows in future to meet the distinct needs
of researchers confronting the complexity of cancer.
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