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1 Introduction

Supersymmetric (SUSY) gauge theories give us a useful playground where we can test and

try to understand non-perturbative features of gauge-theories. On the other hand large-N

expansions of various kinds [1, 2] provide further simplifications in the non-perturbative

dynamics to the extent that suitable combinations of SUSY and large-N often result in

models that can be (almost) fully understood analytically and/or numerically. A well

known example of such a powerful mix is, of course, the AdS/CFT correspondence [3, 4].

Another application of the same set of ideas is the so-called planar equivalence [5, 6]

between gauge theories with Dirac fermions in the antisymmetric (or symmetric) 2-index

representation of SU(N) and theories with Majorana fermions in the adjoint. Such a corre-

spondence (which holds at large volume for a “common sector” in the two theories) could

be physically relevant if N = 3 is “large-enough” since the former theories become, in
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that case, QCD-like. On the other hand, the adjoint-fermion theories become, in some

cases, supersymmetric hence allowing to make predictions such as that of the quark con-

densate in QCD from the known value of the gluino condensate in N = 1 super-Yang-Mills

theory [7, 8].

Furthermore, SU(N) gauge theories with Nf ≥ 1 adjoint fermions appear to present

another peculiar large-N virtue, volume independence [9, 10], according to which their

properties at infinite volume are still captured if we consider them on a partially com-

pactified space R
3 × S1 with periodic boundary conditions both for the bosons and for

the fermions. As the center symmetry appears to be unbroken in this case even at small

volume [11], we can send the volume of the S1 to zero and yet recover, at large-N , the

large-volume physics (unlike the case of the well known Eguchi-Kawai reduction [12] for

fundamental fermions). Combining planar equivalence and volume independence we may

dream of calculating part of the spectrum of QCD (modulo 1/N -corrections) by a small-

volume calculation in a gauge theory with Majorana adjoint fermions.

Having in mind these motivations, we combine in this work large-N reduction and

SUSY ideas by considering the well-known N = 1 supersymmetric SU(N) Yang-Mills

(SYM) theory compactified to two dimensions. However, since the precise connection of

this model with four-dimensional SYM theory is not yet clear [9], we should consider for

the time being this model for its own sake as a two-dimensional (and, to our knowledge,

so far unsolved) model.

Various versions of two dimensional gauge theories have been intensively studied over

last two decades. Beginning with the work of Dalley and Klebanov [13] and Bhanot,

Demeterfi and Klebanov [14] on the system with adjoint fermions, the LC simulations were

extended to adjoint scalar matter and eventually to supersymmetric theories [15]. Lower

part of the spectra were unambiguously computed, their quantum numbers identified and

supersymmetric degeneracies found in corresponding models. Later on the N = (2, 2)

theory, which is considered here, was also successfully investigated by Pinsky et al. [16, 17]

with similar results. As usual, these pioneering works prompted further questions which still

remain open. In general spectra become quite complicated, with increasing mass, and defy

simple interpretation. The number of states grows rapidly with the mass, supporting the

effective string models. On the other hand linear trajectories are already hard to identify.

The question of screening, which was put forward in analogy with the Schwinger model,

and related with it onset of the continuous spectrum, is also open. In our opinion all these

problems cannot be answered by brute force, i.e. by increase of the precision of the numerical

computations. Independently the exponential growth of the number of states implies that

even with modern computers possible increase in the harmonic resolution will not be that

great. Therefore, rather than trying to match the, already impressive, precision of above

studies we attempt in this paper to understand the structure of the whole problem. To

this end we propose rather brutal simplification of the LC Hamiltonian, which nevertheless

turns out to be surprisingly rich and reproduces fair amount of physics of these theories.

At the same time our results clearly indicate which phenomena cannot be accounted for

by the present, “zeroth-order” approximation and require further refinements.
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We will be using a LC gauge and LC quantization [18], which has the advantage that

all the unphysical degrees of freedom can be integrated out at the price of introducing

Dirac brackets, a common procedure for constrained systems. The final outcome is a

2-dimensional N = (2, 2) supersymmetric gauge theory on the light-cone. It appears

to have an exact SUSY vacuum and a well-defined, normal-ordered, positive-semidefinite

LC Hamiltonian that can be written as an anticommutator of supercharges. At large

N this Hamiltonian acts on color-singlet physical states that can be written in terms of

single-trace operators:

Tr
(

o1(k1)
† . . . on(kn)†

)

|0〉

where the different o†i will represent either bosons or fermions with different light-cone

momenta ki > 0.

The full Hamiltonian is still quite involved. In this paper, after having identified some

“leading” terms which present potential Coulomb-like infrared singularities, we will define

a natural Coulomb approximation to the full Hamiltonian. We show that, in this rather

drastic approximation, the model becomes a partially (i.e. N = (1, 1)) supersymmetric

generalization [19] of ’t Hooft’s model in two dimensions [20] with non-interacting sectors

characterized by the number and species of partons they contain.

Some analytic results will be presented but most of the calculations will be numerical.

This is done by discretizing the LC momenta [15] ki = nǫ, thereby reducing the problem

to the diagonalization of a large M ×M hermitean matrix. We then prove that our dis-

cretization indeed converges to a continuum-limit once we take the ǫ→ 0 (M → ∞) limit.

The rest of the paper is organized as follows: in section 2 we sketch the derivation of

the LC two-dimensional theory starting from the SYM Lagrangian in four dimensions. We

give the explicit expressions for the SUSY charges, light-cone momentum and Hamiltonian

that satisfy the usual SUSY algebra. In section 3 we introduce our Coulomb approxima-

tion and show how its apparent infrared divergences neatly cancel for colour-singlet states

leaving behind the effects of a confining linear potential. In section 4 we introduce a LC

compactification of the two-dimensional theory as a device to work with discrete values of

the light-cone momenta. Explicit construction of our planar bases and results for matrix

elements are given in section 5. In section 6 we present our analytic and numerical results

for the 2, 3 and 4 partons sectors of the Coulomb Hamiltonian and discuss the left-over

traces of the original supersymmetry. Finally, in section 7, we give some conclusions and

a short outlook.

2 Light-cone SYM4 and its dimensional reduction

Our starting point is 4-dimensional N = 1 super Yang-Mills (SYM) theory as defined by

the Lagrangian [21]:

L = −1

4
F a

µνF
aµν + iλa†σ̄µDµλ

a = Tr

[

−1

2
FµνF

µν + 2iλ†Dµσ̄
µ λ

]

. (2.1)
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The gauge group is SU(N) and we have set to zero a possible θ-term since it can be rotated

away in the absence of a gluino mass (i.e. as long as we do not break SUSY). We shall use

the following conventions:

F a
µν =∂µA

a
ν−∂νA

a
µ−gfabcAb

µA
c
ν , Dµλ

a =∂µλ
a−gfabcAb

µλ
c ,

Aµ =Aa
µT

a
fund , Fµν =F a

µνT
a
fund =∂µAν−∂νAµ+ig[Aµ, Aν ] , Dµλ=∂µλ+ig[Aµ, λ] .

We now introduce LC coordinates x± = x0±x3
√

2
and fix the LC gauge A− = 0. As a

result we can rewrite (2.1) as:

L = Tr
[

(∂−A+)2 + 2(∂−A(∂+A
† − D̄A+) + ∂−A

†(∂+A−DA+))+

(D̄A−DA† − ig[A†, A])2 + 2
√

2iλ†

(

∂− −D̄
−D D+

)

λ

]

, (2.2)

where we have introduced A = (A1 + iA2)/
√

2, A† = (A1 − iA2)/
√

2, D1+i2 ≡
√

2D =√
2(∂ + ig[A,×]) and its hermitean conjugate D1−i2 ≡

√
2D̄ =

√
2(∂̄ + ig[A†,×]).

The fields A+ and λ1 become non-dynamical (in the sense that their equations of mo-

tion do not involve derivatives with respect to the lightcone time x+) and can be integrated

out. Furthermore, we can consider the reduction of the theory to D = 2 by discarding all

dependencies on x⊥ and hence by setting to zero ∂ and ∂̄. As a result the Lagrangian

under consideration becomes:

Lr
io = Tr

[

J+
r

1

∂2
−
J+

r + 2(∂−A∂+A
† + ∂+A∂−A

†) − g2[A,A†]2+

+ 2
√

2i(λ∗2∂+λ2 − g2[A,λ∗2]
1

∂−
[A†, λ2])

]

, (2.3)

where the subscript io means that we have integrated out the non-dynamical fields and the

superscript r tells us that this is now a theory in 2-dimensions x±. The (reduced) current

J+
r turns out to be:

J+
r = ig[A†, ∂−A] + ig[A, ∂−A

†] +
√

2 g{λ∗2, λ2} . (2.4)

To obtain the Hamiltonian from (2.3) we have simply to perform a Legendre transform:

Hr
io =Tr

[

−J+
r

1

∂2
−
J+

r + g2 [A,A†]2 + 2
√

2i g2[A,λ∗2]
1

∂−
[A†, λ2]

]

, (2.5)

We have to keep in mind, however, that the right commutation relations are those

obtained from Dirac –rather than Poisson– brackets: only then the constraints implicitly

used will be preserved by the LC-time evolution generated by Hr
io. This leads to the

following quantization of the dynamical fields A and λ2 in terms of creation/annihilation
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operators with a Fock vacuum |0〉:1

Aa(0, x−) =

∫ ∞

0

dk+

√
2π

√
2k+

[

aa(k+)e−ik+x−

+ b†a(k+)e+ik+x−

]

,

λa
2(0, x

−) =

∫ ∞

0

dk+

21/4
√

2π

[

fa(k+)e−ik+x−

+ g†a(k+)e+ik+x−

]

,

[aa(k+), a†b(k′+)] =[ba, b†b] = {fa, f †b} = {ga, g†b} = δ(k+ − k′+)δab , (2.6)

and of course all other (anti-)commutators vanish. Note that in order to obtain precisely

the Dirac commutation relations we have to take our LC momenta k+ to be positive.

The theory thus obtained can be seen as the N = (2, 2) two-dimensional supersym-

metric theory that follows from the dimensional reduction of N = 1 super Yang-Mills on

R
2 ×T 2. Note, however, that due to the non-susy invariance of the gauge fixing the trans-

formations generated by the supercharges through Dirac brackets will not be the usual one

but will have to be supplemented by an additional gauge transformation needed to restore

the gauge constraint A− = 0. This is already true before compactification (where one gets

N = 1 SUSY in D = 4) and keeps working after compactifying on R
2 × T 2 i.e. if we keep

only the zero-modes (hence setting ∂/∂x⊥ = 0). A straightforward calculation leads to the

following form for the supersymmetric charges, momentum and Hamiltonian operators:

Q2 =

∫

dx− 2
√

2∂−A
aλ∗a2

= 23/4

∫ ∞

0
dk1dk2

√

k1δ(.)
(

ba†k1
ga
k2

− aa
k1
fa†

k2

)

, (2.7)

P− =
1

2
√

2
{Q2, Q̄2̇} =

∫

dx− (2∂−A
†a∂−A

a + i
√

2λ∗a2 ∂−λ
a
2)

=

∫ ∞

0
dk k

[

a†ak a
a
k + b†ak b

a
k + f †ak fa

k + g†ak g
a
k

]

, (2.8)

Q1 =

∫

dx−(−2
√

2gfabcA†a∂−A
b + 2igfabcλa

2λ
∗b
2 )

1

∂−
λ∗c2

=
g

21/4
√
π

∫ ∞

0
dk1dk2dk3 δ(.)f

abc

[
√
k2

k3

√
k1

(

aa†
k1
ab

k2
gc
k3

− aa†
k1
ab

k2
f c†

k3

+bak1
bb†k2
f c†

k3
− bak1

bb†k2
gc
k3

)

+

√
k1

k3

√
k2

(

ba†k1
ab†

k2
gc
k3

+ aa
k1
bbk2
f c†

k3

)

+
(k3 + k2)

2k3k2

(

ga†
k1
gb
k2
gc
k3

− fa
k1
f b†

k2
f c†

k3

)

+
(k2 − k3)

k3k2

(

fa
k1
f b†

k2
gc
k3

+ ga†
k1
f b†

k2
gc
k3

)

]

(2.9)

P+ =
1

2
√

2
{Q1, Q̄1} =

∫

dx−Hr
io , (2.10)

where δ(.) is a shorthand notation for δ(±k1 ± . . .) where the sign plus is for creation

operator while the minus sign otherwise. We did not report here the explicit momentum

1We have assumed a vanishing VEV for the scalar field although, even in D = 2, we expect the classical

moduli space to be preserved since tunneling should be suppressed in the large-N limit. If so the spectrum

will depend on the particular point chosen in moduli space. One of us (GV) is grateful to A. Armoni and

A. Schwimmer for a discussion concerning this point.
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space version for P+ since, as the reader may guess from the rather involved expression for

Q1, its expression is quite long and not particularly illuminating. A lengthy calculation

shows that the above charges satisfy the N = (2, 2) SUSY algebra:

{Q1, Q̄1} =2
√

2P+ = 2
√

2Hr
io ,

{Q2, Q̄2} =2
√

2P− , (2.11)

with all other anticommutators vanishing identically.

As we will see in the following sections one can compactify also the x− direction and

replace all the integrals
∫∞
0 dk with sums over positive integers

∑∞
n=1, the key point is

precisely that all LC momenta have to be greater than zero, so we can actually rewrite
∫∞
0 dk =

∫ +∞
−∞ dk θ(k). We note, incidentally that in [17] it was claimed that the discretized

version of the supercharges does not satisfy the susy algebra. We claim instead that

everything works fine provided an appropriate care is used in performing the discretization

and in defining the (anti)commutators; particular attention is needed when, by momentum

conservation, an intermediate parton gets a vanishing momentum: by adopting a careful

prescription for the ensuing θ(0) we can fully maintain supersymmetry.

2.1 General properties of the reduced theory

Let us discuss some exact features of the complete SUSY charges and Hamiltonian. The

Hamiltonian conserves parton number parity (−1)p (actually changes p by 0,±2) and

therefore splits into two sectors with even and odd number of partons. On the other hand

the charges Q2, Q
†
2 preserve p while Q1, Q

†
1 change p by ±1.

Besides P− there is another conserved quantity, Jz , which is what remains of the

original helicity of the 4-D theory. The four partons a, b, f, g have Jz = +1,−1,+1/2,−1/2

respectively and the hamiltonian is block-diagonal with subspaces of fixed total Jz while

Q1, Q
†
2 change Jz by +1 and Q2, Q

†
1 by −1.

Consider for instance a supermultiplet containing a Jz = 0 boson |x〉 of non-vanishing

mass. Since its p+ and p− are both non-vanishing this state can be at most annihilated by

one out of Q1, Q
†
1 and similarly by one out of Q2, Q

†
2. Acting on |x〉 in all possible ways we

see that we generate a supermultiplet containing two bosons with opposite parton number

parity and two fermions with opposite parton parity. However CPT invariance requires

the existence of a similar multiplet of antiparticles and we end up with 4 bosons and 4

fermions as the minimal size of a massive supermultiplet.2

As an example, consider the anomaly (or Konishi) supermultiplet S ≡ ǫαβWαWβ. Its

lowest component is the gaugino bilinear ǫαβλαλβ which is just proportional to λ1λ2. Since

in our setup λ1 is expressed in terms of λ2 and Ā we see that, at first order, S|0〉 gives a

state of the type |gga〉. Such a state is clearly annihilated by Q̄2 (but not by Q2) and one

can consistently assume that it is annihilated by Q̄1 (and not by Q1), which mimics exactly

2This is only apparently in contrast with the counting of states in D = 4 but it is not since, in D = 2

there is a further doubling of states due to to the distinction between left- and right-movers [22].
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the situation in D = 4. Acting on |gga〉 with Q1, Q2 and [Q1, Q2] (the anticommutator

being zero), we generate two fermionic states (whose lowest p components look like |ga〉
and a combination of |ggf〉 and |gab〉) and one more scalar (a combination of |ab〉 and |fg〉
with additional p > 2 components). This gives a total of 2 bosons and 2 fermions to which

we have to add a similar set of states starting from S̄|0〉 ∼ |ffb〉.
As we shall see, our approximation to the full Hamiltonian breaks SUSY to an N =

(1, 1) subgroup of the full N = (2, 2) and therefore to the breaking of some degeneracies.

Nonetheless, an approximate full degeneracy will be seen to remain even in our very simple

system with Coulomb interactions only.

3 Cancellation of leading infrared divergences and a Coulomb approxi-

mation

In our LC quantization the supercharge Q2 and the momentum P− are like in a free theory

and thus trivial. By contrast, the supercharge Q1 and the “Hamiltonian” P+ are highly

not trivial: non-linear and even non-local. Let us discuss some of their properties be-

fore making any approximation. From (2.9) we see that every term appearing in Q1 is

trilinear in creation/annihilation operators. Furthermore, since the LC momenta are all

positive, momentum conservation implies the absence of pure creation or pure annihilation

terms. Thus Q1 connects states with opposite parton-number parity. The LC Hamiltonian,

{Q1, Q̄1}, will have either quadratic terms (with one creation and one annihilation opera-

tor), or quartic terms. Since no pure destruction or pure creation operators appear in Hr
io

the Fock vacuum is annihilated both by the SUSY charges and by the Hamiltonian and is

an exact zero-energy ground state. The quartic terms induce either 2 → 2 or 1 → 3, 3 → 1

transitions and thus conserve (−1)p.

The full Hamiltonian exhibits, at least superficially, both linear and logarithmic in-

frared (IR) divergences when some momenta (or combinations thereof) go to zero. The

logarithmic divergences, that resemble those of the 4D theory, presumably need a Block-

Nordsieck treatment that we plan to implement (analytically and/or numerically) in a

forthcoming paper. The linear, Coulomb-like divergences are instead neatly cancelled for

colour-singlet states as we shall now argue. Nevertheless, the finite effects they leave behind

are expected to dominate the Hamiltonian at large distances.

In order to illustrate this feature we introduce a rather crude “Coulomb approxima-

tion”, in which we keep only the linearly-divergent terms in the Hamiltonian in their min-

imal form of 1/q2 poles. Such IR singularities only appear in the quadratic terms (which

are necessarily diagonal) and in the elastic 2 → 2 scattering terms. In the above-mentioned

approximation the former take the simplified form:

Hquad
C =

λ

π

∑

A

Tr

∫ ∞

0
dk

∫ k

0

dq

q2
A†

kAk ; λ ≡ g2Nc , (3.1)
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where A stands for any one of the four parton species. Similarly the elastic quartic terms

can be simplified as:

Helastic
C = −

∑

A,B

g2

2π

∫ ∞

0
dp1dp2

[
∫ p1

0

dq

q2
Tr(A†

p1
B†

p2
Bp2+qAp1−q)+

+

∫ p2

0

dq

q2
Tr(A†

p1
B†

p2
Bp2−qAp1+q)

]

, (3.2)

where A,B stand for any one of the four parton species. Note that these elastic terms

neither change the number of partons nor their species. For this reason we can restrict

ourselves to subspaces of the entire Hilbert space of states with a given set (i.e. number and

species) of partons and fixed total momentum P−(≡ P below). Furthermore, as discussed

in section 1, the ’t Hooft limit, N → ∞ with λ fixed, selects single trace states as the only

relevant ones (transitions with multi-trace states being 1/N -suppressed).

In conclusion, we can diagonalize HC by splitting the total Hilbert space generated by a

generic linear superposition of single-trace states into subspaces of definite total momentum

P and definite parton number p:

Hp
P =

{

|s〉 = Tr

(

o†1(k1)o
†
2(k2) . . . o

†
p−1(kp−1)o

†
p(P −

p−1
∑

i=1

ki)

)

|0〉
}

, (3.3)

where o†i can be any of our creation operators and all the momenta ki satisfy 0 < ki < P

for i = 1, . . . , p and we define kp = P −∑p−1
i=1 ki. Starting with section 5 we will study in

detail, both analytically and numerically, the eigenvalues and eigenvectors of HC restricted

to H2
P , H3

P and H4
P . For the numerical approach it will be convenient to discretize the LC

momenta by compactifying the coordinate x−. This will be discussed in the next section.

Before turning to actual calculations let us give a general argument for the cancellation

of the Coulomb divergences for a general state of the form (3.3). Let us take an arbitrary

pair of neighbour partons in (3.3) and consider four distinct contributions to their mutual

and self-interaction. The self interactions come from the quadratic terms (3.1) for each one

of the neighbour partons. However, in order to keep the book-keeping right, we attribute

half of the quadratic term acting on each parton to its interaction with the left neighbour

and half to the one with its right neighbour. The book-keeping is easier for the quartic

Hamiltonian where one just keeps the terms corresponding to the exchange of quanta

between the two selected partons (there are two such contributions, in general, depending

on which of the two partons gains energy in the process).

When these four contributions are added one finds, for each pair of neighbours, the

following result:

HA−B
C ϕ(. . . pA, pB , . . . ) =

λ

2π

∫ pA−ǫ

−pB+ǫ
dq
ϕ(. . . pA, pB , . . . ) − ϕ(. . . pA − q, pB + q, . . . )

q2
,

(3.4)

where A − B stand for a pair of neighbours and ϕ(p1, . . . , pN ) is the wavefunction in

momentum space of the particular chosen state. The total Hamiltonian is given then by a
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sum over A and B. We see that the numerator on the r.h.s. vanishes at q = 0. If we take

a smooth linear superposition of parton-momentum eigenstates, the numerator will vanish

quadratically in q thus completely removing the singularity.

As a physical example of such a smooth superposition let us consider two partons

displaced by some ∆x ≡ ∆x− in LC space. The momentum wavefunctions will combine to

give an eiq∆x for the second term in the numerator so that, for each pair:

HA−B
C ≃ λ

2π

∫ pA

−pB

dq
(1 − cos(q∆x))

q2
≃ λ

π

∫ ∞

−∞
dq
sin2(q∆x/2)

q2
=
λ

2
|∆x| , (3.5)

at large separations. We have just discovered that the Coulomb Hamiltonian, acting on a

single trace state, produces an energy proportional to the sum of the |∆x−ij| distances for

each pair of neighbouring partons. The constant of proportionality turns out to be just λ
2 i.e.

nothing but the 2D string tension for sources in the fundamental representation [23, 24].3

This is as it should be, since each parton behaves, vis-a-vis of its neighbours, like a parton

in the fundamental representation. Its belonging to the adjoint representation reveals itself

in the fact that it has two neighbours. For a two parton system this just produces the well

known factor two difference between adjoint and fundamental tension in the large-N limit.

A numerical verification of this analytic argument will be given in section 6.

4 Light-cone compactification

We now further compactify, for computational convenience, the x− direction on a circle

of radius R (with periodic boundary conditions). As a consequence, the p− momenta are

quantized:4

p− = n
~

R
≡ nǫ , n = 0, 1, . . . (4.1)

The total conserved momentum is taken to be

P− ≡ P = K
~

R
≡ Kǫ (4.2)

and we shall be interested in the decompactification limit R→ ∞ (ǫ→ 0). In order to keep

P fixed this also means K → ∞. Since in LC quantization all momenta are positive, P

effectively plays the role of an ultraviolet cut off ΛUV . In other words, in eq. (4.1), n ≤ K.

If we also take out the zero mode (n = 0 in (4.1)), ǫ ≡ ~/R plays instead the role of an

IR cutoff and K = ΛUV

ΛIR
. The picture is similar to that of a (2-dimensional) lattice gauge

theory in Hamiltonian formalism (continuous time and discretized space) with a lattice

spacing given by a = 2π~/P = L/K and a total of K lattice points to cover a large circle

of circumference L = 2πR = Ka.

According to the LC quantization philosophy, P+ plays the role of the Hamiltonian

and the Lorentz-invariant eigenvalue equation reads:

M2|s〉 = 2P+P−|s〉 = 2PP+|s〉 = 2KǫP+|s〉 (4.3)

3This can be generalized to finite N with CF ≡ (N2
− 1)/2N replacing N/2 (private communication by

G. C. Rossi).
4In this section we shall keep Planck’s constant explicit in order to illustrate the emergence of a quantum-

mechanical string.
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Figure 1. Cutoff dependence of the eigenvalues of HC in the three lowest multiplicity sectors.

The size of the HC matrix grows with the resolution parameter K and can be read from the range

covered on the horizontal axis, K = 30, 50, 70 for p = 2, 3, and K = 15, 25, 35 for p = 4.

The eigenvalues (and eigenvectors) of this operator should have a finite limit as K → ∞.

We have found it convenient to work in units in which ǫ = 1 (integer parton momenta). In

that case the operator KP+ should approach a finite limit as K → ∞. More physically we

could have chosen units in which a = 1 and momenta are quantized in units of 2π/K. One

can easily check that the limit K → ∞ provides in both cases the same spectrum for M2.

We expect to find finite-size effects at finite K. Because of periodicity the maximal x−

distance is Ka/2 and therefore only states whose wavefunction is concentrated in regions

much smaller than Ka/2 are expected to have already reached an asymptotic limit at

some given K. We will see later that this is exactly what happens numerically, but let us

anticipate the presentation of some of the results we will find for p = 2. Once we have

discretized the momenta in units of ǫ ≡ 1, the M2 operator becomes an (K − 1)× (K − 1)

matrix whose low eigenvalues converge fast to some finite values while increasing K. This

can be seen in figure 1 (to be discussed in detail in section 6) which illustrates what happens

for K = 30, 50 and 70. This is equivalent to discretizing states with a fixed total momentum

P = 1 by subsequently taking ǫ = 1/30, 1/50 and 1/70, We see a neat convergence of the

lowest eigenvalues towards a smooth (and almost linear) spectrum.

Referring still to the two-parton sector, we shall also find that the eigenvectors exhibit

a sharp localization in position (i.e. x−) space, or, more precisely, in the distance ∆x−

between the two partons. The average distance appears to be quantized:

〈∆x−〉n = cn
L

K
= 2πcn

~

P−
, n = 1, 2, . . . K − 1 , (4.4)

where the cn are a sequence of numbers going from a number of O(1) to a number of

O(K/2) in steps of O(1). The ordering coincides with that of the energy eigenvalues. In

other words, the average distance is of the order of a = 2π~/P− for the lightest states

and grows up to the maximal allowed physical distance for the heaviest eigenstates. As we

increase K, the low-lying states stabilize while the heavy ones change and stabilize only at

– 10 –



J
H
E
P
0
6
(
2
0
1
1
)
0
5
1

higher values of K (i.e. when ∆x− is well within the compact circle). The spread in ∆x−

is O(a) for all the states (this is the above-mentioned position-space localization).

The low-lying eigenvalues of P+ behave like P−1
− for large P− and, indeed, one finds

(cf. figure 9) an approximate linear relation between energy and average distance:

P
(n)
+ ≃ λ〈∆x−〉n (4.5)

where λ is ’t Hooft’s coupling normalized in such a way that it corresponds to a classical

tension. This means that an appealing string picture emerges whereby energies are propor-

tional to the string tension λ. This result, however, is Lorentz-frame dependent. In order

to find a Lorentz invariant result we compute the mass eigenvalues:

M2
n = 2P−P

(n)
+ ≃ 2λP−〈∆x−〉n = 4π~λcn = λMn〈∆xcm〉n (4.6)

where we have used first (4.4) and, for the last step, an n-dependent Lorentz transformation

with boost
√

2P−/Mn in order to go to the nth state rest frame. Thus we finally obtain:

〈∆xcm〉n =
√

4πcnls , Mn ≃ λ〈∆xcm〉n =
√

4πcnMs (4.7)

in terms of the string length and mass scales: ls =
√

~/λ, Ms ≡
√

~λ. This is in per-

fect agreement with expectations [23, 24] once we realize that, for p = 2, the sum over

neighbour-parton distances is 2∆x.

5 Bases and matrix elements at large Nc

Below we quote a few explicit expressions for matrix elements of the discretized (and

rescaled) Hamiltonian hC defined by:

HC =
λ

π

K

P
hC . (5.1)

The mode expansion of hC in terms of the discretized creation and annihilation operators

Am =
1√
R
Amǫ (5.2)

is the same as in (3.2), (3.1) with all momenta p→ m and integrals
∫

dp→∑

m.

There are four kinds (species) of partons in our model: two bosons and two fermions

with the corresponding annihilation operators denoted by a, b, f, g. The detailed con-

struction of the planar bases in each multiplicity sector differs slightly depending on the

particular choice of parton species involved and the same applies to the matrix elements of

hC (3.1), (3.2).

5.1 Two different partons

At given resolution K the states belonging to the discretised version of H2
K are labeled by

one integer:

|n〉 = Tr[A†
nB

†
K−n]|0〉, n = 1, . . . ,K − 1 , (5.3)
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where A,B = a, b, f, g. The large N rules, developed e.g. in [25], give

〈n|hC |n′〉 = δn,n′ (C(n) +C(K − n)) − (1 − δn,n′)
1

2(n − n′)2

− (1 − δK−n,K−n′)
1

2(n − n′)2
, (5.4)

C(n) =
n−1
∑

q=1

1

q2
.

5.2 Two identical partons

In this case, due to the cyclic symmetry n→ K − n, only half of the states from above, is

linearly independent. The matrix elements can be neatly expressed by (anti)symmetrized

ones from the previous case

〈n|hC |n′〉id = 〈n|hC |n′〉dif ± 〈K − n|hC |n′〉dif , n = 1, . . .
K − 1

2
, K odd, (5.5)

where the suffix id stands for identical partons and the suffix dif for different partons while

the + sign is for identical bosons and the − for fermions. The union of the two (bosonic and

fermionic) spectra for identical partons will reconstruct the complete spectrum obtained

from eq. (5.4).

5.3 Three different partons

We consider now states composed by three different partons (taken as abf ). These are

labeled by two integers:

|n,m〉 = Tr[a†nb
†
mf

†
K−n−m]|0〉, 1 ≤ n ≤ K − 2, 1 ≤ m ≤ K − n− 1 (5.6)

and the matrix elements of eq. (3.1), (3.2) read:

〈m,n|hC |m′, n′〉 =δm,m′δn,n′(C(m) + C(n) + C(K −m− n))

− δm,m′(1 − δn,n′)/2(n − n′)2

− δn,n′(1 − δm,m′)/2(m −m′)2

− δm+n,m′+n′(1 − δm,m′)/2(m −m′)2 . (5.7)

In the case of states with just two parton species (e.g. aaf) hC has the same matrix ele-

ments. The Hilbert space is however twice as small since cyclic and anticyclic permutations

correspond to the same state. On the other hand the bigger Hilbert space for three differ-

ent species splits into two separate sectors, since states corresponding to above cyclic and

anticyclic permutation do not interact in the planar limit.

5.4 Three identical partons

With a trick similar to the two parton case one can exploit the cyclic symmetry and express

matrix elements in terms of those for three different partons

〈n,m|hC |n′,m′〉id =〈n,m|hC |n′,m′〉dif + 〈m,K − n−m|hC |n′,m′〉dif+

+ 〈K − n−m,n|hC |n′,m′〉dif . (5.8)
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This time there is no difference between bosonic and fermionic sectors since Z3 shifts involve

an even number of fermionic transpositions.

5.5 Four different partons, the abfg sector

.

The planar basis is now parametrized by three integers

|n,m, o〉 = Tr[a†nb
†
mf

†
og

†
K−n−m−o]|0〉 ,

1 ≤ n ≤ K − 3 , 1 ≤ m ≤ K − n− 2 , 1 ≤ o ≤ K −m− n− 1 ,

and matrix elements of eq. (3.1), (3.2) read

〈m,n, o|hC |m′, n′, o′〉 =δm,m′δn,n′δo,o′(C(m) + C(n) + C(o) + C(K −m− n− o))

− δm,m′δn,n′(1 − δo,o′)/2(o − o′)2

− δn,n′δo,o′(1 − δm,m′)/2(m−m′)2

− δo,o′δm+n+o,m′+n′+o′(1 − δn,n′)/2(n − n′)2

− δm+n+o,m′+n′+o′δm,m′(1 − δo,o′)/2(o − o′)2 . (5.9)

Generalization to higher parton multiplicities is pretty straightforward.

6 Results

We turn now to discuss quantitative solutions obtained, mainly numerically, with the aid of

Mathematica. The crude Coulomb approximation introduced above is not only the lowest

approximation for the full set of the complete coupled LC eigenequations but, at the same

time, it defines a natural generalization of ’t Hooft equation to many-body sectors. Rather

than concentrate on separate parton multiplicities, p, we shall focus on a few physical issues

and compare results for different multiplicities. Until now only the first three nontrivial

sectors, i.e. p = 2, 3, 4 have been looked upon. Obviously, further increase of p is technically

more challenging, however it is feasible, if such a need arises, by employing more dedicated

methods and algorithms.

6.1 K dependence vs. K = ∞ limit

Figure 1 summarizes the cutoff dependence of spectra of HC for different multiplicities. As

expected, lower states converge faster, however one should remember that at the high end

of the spectrum new states appear for each K. Since K controls the length L = 2πK/P

of our torus, the highest state, for example, will never converge because it is a new state

with higher and higher energy as we increase K.

The eigenenergies of PHC (that is M2
n/2) are displayed as a function of a single index

n which labels consecutively ordered eigenvalues. Only for the two parton case n is directly

related with a single physical observable (see below). For more partons, n is effectively

composed of more quantum numbers related to other, yet unknown, quantities conserved

in a particular many body sector. As a consequence, the p = 2 dependence is nicely linear,

at large K, while the limiting curves for higher p are more complicated. They reflect the
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Figure 2. Convergence of the lowest energy levels with the cutoff (100 ≤ K ≤ 3000) and comparison

between the even (identical boson-boson) and odd (identical fermion-fermion) solutions. Stars

represent direct solutions of the ’t Hooft equations for continuous momenta (K = ∞).

above degeneracy with more and more states below a fixed energy as we increase p. In fact

one can read the spectral density of states dN/dE directly from the figure. It grows with

E at intermediate energies, the growth becoming more and more rapid as we increase p.

However at the highest end of the spectrum the density saturates revealing some sort of

blocking related to periodicity.

It is instructive to compare the figure above with the analogous one (their figure2) of

ref. [15]. Even though the details are quite different (we can afford much higher cutoff at

fixed, and low, p) the general shape of our p=4 density of states seems to be similar.

Let us now look for the cutoff dependence of the lowest levels in more detail. Figure 2

shows the first few eigenenergies in the boson-boson and fermion-fermion, p = 2, sectors as

a function of 1/K. Evidently dependence on K is very weak and the extrapolation to the

continuum momentum limit is straightforward. In fact, in this limit the LC eigenequations

are nothing but ’t Hooft equations with adjoint charges. Hence the limiting values can be

obtained by solving directly these equations. They are also displayed in figure 2, providing

a rather satisfactory cross check of the whole approach.

Finally we comment on the difference between bound states made of fermionic and/or

bosonic identical partons. Since HC is invariant under the reflection m ↔ K − m, the

non-degenerate eigenstates have definite parity. This is the case in the two parton sector.

Moreover, the Z2 symmetry of planar states together with the “flavour” independence

allows to identify the even and odd solutions as identical boson-boson and identical fermion-

fermion bound states. In the K = ∞ case, we have generated corresponding eigenstates

by employing bases with the required symmetry.

As usual, the lowest state is symmetric. It’s wave function is constant in the parton

momentum, k, with exactly zero eigenvalue for any cutoff K.5 This state is not displayed

in the right panel of figure 2.

5Many other massless states have been found in the literature [17] for any K. These are due to a finite-

K artifact by which states with a large number of partons, p ∼ K, are annihilated by the SUSY charges

(and therefore by the Hamiltonian), since all transitions are blocked by the finite momentum resolution.

Obviously only states with p ≪ K can be reliably computed in our approach. On the other hand the

massless two-parton state (and its SUSY partners) may be forced to remain massless even beyond the

Coulomb approximation as a consequence of anomaly matching arguments (see e.g. [26]).
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The very weak dependence on K, which is quite fortunate, seems to occur only for

massless partons. The same correlation was observed in ref. [14] (cf. their figure 6). Even

though their full simulations included mixing, their lowest state is almost pure two-body

which explains present agreement.

Let us quote, for completeness, the continuum momentum limit of the eigen-equations

of HC which was used to obtain the 1/K = 0 points in figure 2. They can be readily

derived from the discretized matrix elements (5.4)–(5.9) or, equivalently, by applying our

HC (3.1), (3.2) to the n-parton state and using rules of the planar calculus [25]. For two

partons one obtains:

ECϕ(p) =
λ

2π

[
∫ p

ǫ
dq
ϕ(p) − ϕ(p − q)

q2
+

∫ K−p

ǫ
dq
ϕ(p) − ϕ(p + q)

q2

]

, (6.1)

which indeed is equivalent to ’t Hooft equation:

ECϕ(x) =
λ

2π
PV

∫ 1

0
dy
ϕ(x) − ϕ(y)

(x− y)2
. (6.2)

It is perhaps worth observing that in the former variables, i.e. in terms of the momentum

transfer q, the linear and logarithmic divergencies clearly cancel leaving behind the finite

right hand side of (6.1). This provides the justification for the principal value prescription

commonly used in (6.2).

The multiparton generalizations follow from (3.1), (3.2) as well

Eϕ(p1, . . . pn) =

λ

2π

n
∑

i=1

∫ pi−ǫ

−pi+1+ǫ
dq
ϕ(p1, . . . pi, pi+1, . . . pn) − ϕ(p1, . . . pi − q, pi+1 + q, . . . pn)

q2
, (6.3)

and, again, can be written in many equivalent forms [14].

6.2 Spatial structure of multiparton states

It turns out that the eigenstates of HC have a very simple and natural structure which

shows up most beautifully in position space. For p = 2 it is summarized in figure 3

where a sample of two parton eigenstates spanning the whole interval of eigenenergies is

displayed. What is actually shown is the modulus squared of the discretized version of the

Fourier transform

ψr(∆12) =

∫ P

0
e−i∆12p1ψr(p1, P − p1)dp1, (6.4)

as a function of the relative, light cone, distance ∆12 = x1−x2, with ψr being the r-th eigen-

state of (5.4). Upon the discretization all momenta and coordinates become dimensionless

integers: P → K, p1 → m, ∆12 → d12.

The interpretation of the above figure is clear. The eigenstates are very well localized

in relative distance, and there is a very strong (linear in fact) correlation between d12 and

r. In the lowest state two partons sit on top of each other and their energy is exactly
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Figure 3. Space profiles of various eigenstates (6.4) with two partons, K=201 (r = 1, 26, 50,

100, 150, 200).

zero. Excited states correspond to partons separated by a finite distance which gradually

increases with the energy. Finally, in the highest state partons are maximally separated,

i.e. are located at the antipodes of the circle (the figure refers to K = 201). The relation

between d12 and eigenenergy turns out to be linear, as expected in the one dimensional

world (cf. section 6.4). This also explains the linearity of the p = 2 plot in figure 1.

Interestingly, this picture generalizes naturally to many parton sectors. Figure 4 dis-

plays a sweep through three parton eigenstates obtained by diagonalization of (5.7). Co-

ordinate space wave functions depend now on two independent relative distances which we

choose as ∆13 = x1 − x3 and ∆23 = x2 − x3.

ψr(∆13,∆23) =

∫ P

p1,p2,p3>0
ei∆13p1ei∆23p2ψr(p1, p2, P − p1 − p2)dp1dp2 . (6.5)

Again, after the discretization the relative distances become integer: 1 ≤ d13, d23 ≤ K − 2,

with K − 2 being the period of the discrete Fourier transforms.

Similarly to the p = 2 case the wave functions are composed of a series of very narrow

(in lattice units) structures which give a sharp localization in relative distances. Again

the energy of the lowest state is exactly zero with all three partons located at the same

point (upper left panel). Going to higher and higher states partons are moving apart

migrating into the whole circle and finally, in the highest state, three partons are sitting

at the maximal and equal distances forming the familiar “mercedes” star (lower right).

Obviously the structure of three parton states is much richer than that in the p = 2

sector. Nevertheless a number of regularities can be found which provide a compelling

overall picture. They are better seen in the contour plots which we will now discuss.

Apparently the whole spectrum consists of a series of states with similar properties.

Beginning of one such series is shown in figure 5. Again we see that the higher the energy,
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r = 1, 80, 120, 406, K = 30.

the larger are the inter-parton distances. The new feature is that now there are many

peaks (i.e. parton configurations) in a single state. Part of it comes from the Z3 symmetry

of the displayed densities. However the rest provides a beautiful confirmation of the lin-

earity of the Coulomb potential and/or the underlying string picture. Namely, all parton

configurations, composing a particular state in one series, appear to have the same value

of the “combined string length” l = |d12| + |d23| + |d31|. And vice versa: configurations

with different l belong to states with different energy. As an illustration consider the fifth

state displayed in figure 5. It has l = 12, this can be achieved, e.g. with partons 1 and

2 separated by 6 units and with parton no. 3 somewhere between the two. This is rep-

resented by 5 configurations (peaks) extending from (d13, d23) = (1,−5) to (5,−1) as no.

3 moves from no. 1 to no. 2. Similarly one can decode all structures appearing in that

figure. One more example: a horizontal ridge extending between (−5,−6) and (−1,−6),

in that panel, describes partons 2 and 3 separated by 6 units and parton 1 located in five

positions between the two.

– 17 –



J
H
E
P
0
6
(
2
0
1
1
)
0
5
1

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

-10 -5 0 5 10
-10

-5

0

5

10

Figure 5. A clean series (A) of three parton eigenstates, K = 100, 4 ≤ l ≤ 14.
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Figure 6. Different series (D) and on the “Dalitz plot”.

The Z3 symmetry of planar states is not evident in these figures, because of the asym-

metric variables used. However it is there and corresponds to (x, y) = (d13, d23) → (y −
x,−x) → (−y, x−y). The Z3 symmetric representation is shown in figure 6 where another

series is displayed on the massless “Dalitz plot” ensuring the constraint d12 +d23 +d31 = 0.
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Finally, let us comment on the existence of different series in the many body spectrum

which we find quite intriguing. As already said, we see “experimentally” that our three

parton states group naturally into series. States in one series differ only by the increase

of the relative distance between partons, as in figure 5. However states from various series

exhibit other differences. An example of another series was just given in figure 6. Here

again, increasing the inter parton distances increases the eigenenergy, however the pattern

of the configuration remains the same. On the other hand, apart from the change of a

display, there is a clear difference between patterns shown in figures 5 and 6. In the first

series (A) the partons never coincide, while in the other one (D) in every configuration one

relative distance vanishes. However, we have also found other series where the differences

are not so clear. In general, states from different series can have the same combined string

length l and yet they have different energies. This suggests the existence of other conserved

quantities, hence quantum numbers, which also control multiparton spectra.

Solutions in the four parton sector show qualitatively the same phenomena. In Fig 7

we display contour plots, in three relative distances d14, d24 and d34, of various eigenstates

of (5.9). Again, in the lowest state all relative distances vanish; then, in higher states,

partons gradually separate and in the highest state they group in two closely bound pairs

sitting at the antipodal locations on the circle. This is different than the naive extrapolation

from the three parton case and illustrates how rich is the system with possibly more

surprises at higher multiplicities. Similarly to p = 2, 3, states are sharply localized in

the relative distances and separations between various partons can be determined.

Obviously, multidimensional representations like figure 7 become unpractical for higher

multiplicities. An alternative way to proceed is to study inclusive densities and correlations.

In our case, e.g. in a given p parton sector, an inclusive single parton density can be

defined as

Dr(∆) =

∫

dp−1 ~∆p

p−1
∑

i=1

δ(∆ − ∆in)|ψr(~∆p)|2, (6.6)

and gives the number of partons at a distance ∆ from i.e. the last one. It can be easily

calculated from our exclusive wave functions or, yet simpler, directly from the Fourier

components. The latter representation reads, e.g. in the four parton case,

Dr(∆) =

∫ P

p2,p3,P−p2−p3>0
dp2dp3|ψr(∆, p2, p3)|2 + cycl. (6.7)

with ψr(∆, p2, p3) standing for the partial Fourier transform - only in the first variable.

In figure 8 above density is shown in the four parton sector. It confirms what we have

already learned from the exclusive data. However the structure of four parton states can

now be seen in more detail. Rather than sweeping through the whole spectrum, we have

concentrated on lower states. Figure 8 clearly shows the growth of the distance between the

two outermost partons and how the intermediate positions between the two are populated.

Of course the complete information could be recovered only upon examining simultaneously

higher inclusive densities.
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Figure 7. Structure of eigenstates with four partons. Contour plots in three relative distances

(d14, d24, d34) for states no. 1,9,35,60,100,165 spanning the whole range of states for K = 12,

rmax = 165.

6.3 Some analytic considerations

Let us now discuss some analytic aspects of the solutions. To this date such solutions

are not available in spite of many attempts [27]. Actually, quite sometime ago, by using

a somewhat stronger approximation Kutasov [28] has found some analytic solutions for a

theory with just adjoint fermions and obtained spectra which are amazingly consistent with

what one would expect in a (higher-dimensional) string theory, including an exponential

growth of the number of state as a function of their mass. We are planning to check

whether these features survive under our assumptions. Generalization for many bodies

only increases the challenge. We believe however that the numerical studies presented

here can also contribute to the analytic understanding of these systems. Consider for

example the massless, EC = 0, bound state. It has been found numerically, and it is

obvious from (6.3) that such a solution exists for all multiplicities and has a constant wave

function in the momentum representation. It is then a simple matter to construct its (LC)

configuration space counterpart. For two partons we have

ψ(x1, x2) = c

∫ P

0
dp1dp2e

−ix1p1−ix2p2δ(p1 + p2 − P )

= e−iP (x1+x2)/2 sin(P∆12)√
P∆12

, (6.8)

with the (not normalized) probability distribution depending only on ∆12

|ψ|2 =
sin2(P∆12)

P∆2
12

. (6.9)
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Figure 8. Inclusive single parton density for four partons and for lower states r = 1, 4, 5, 6, 9,

12, 13, 14, 15, 20, 26, 29, K = 27, rmax = 2600.

For three partons one obtains analogously

ψ(x1, x2, x3) = c

∫ P

0
dp1dp2dp3 δ(p1 + p2 + p3 − P )e−ip1x1−ip2x2−ip3x3 =

= ic
e−ix3P

2∆1∆2(∆1 − ∆2)

(

∆1e
−i∆2P sin(∆2P ) − ∆2e

−iP∆1 sin(∆1P )
)

, (6.10)

where we used ∆1 = ∆13/2,∆2 = ∆23/2 as relative distances. Upon normalization c =

P/
√

2, we obtain for the density

|ψ|2 =
P 2

32∆2
1∆

2
2(∆1 − ∆2)2

[

(∆1 sin(2∆2P ) − ∆2 sin(2∆1P ))2+

+4(∆1 sin2(∆2P ) − ∆2 sin2(∆1P ))2
]

, (6.11)

which is completely symmetric in exchanging ∆1 with ∆2 and regular for ∆1,∆2 → 0. As

for the two parton case we see that in the limit P → ∞ we find a δ-function centered at

zero, both for ∆1 and ∆2, confirming that actually the zero energy state corresponds to

three partons sitting all together at the same position.

Generalizing this computation to higher sectors is trivial, hence the massless eigenstates

can be constructed analytically in all multiplicity sectors.
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Figure 9. Two-parton energies, as a function of (doubled) parton separation, for increasing K.

Different colors (bottom to top) correspond to K = 50, 100, 200, 400.

6.4 String picture

The findings reported so far support the widely accepted string picture of (1+1)- dimen-

sional planar gauge theories. The relation is quite natural, even hardly surprising, in the

case of two partons. It is also generally expected with more partons, however our results

provide a direct illustration of how this is happening.

We have seen that the two parton eigenstates are very well localized in (LC) configu-

ration space. Consequently, the length of the effective string between two partons can be

readily extracted from our eigenstates (cf. figure 3). Figure 9 shows the dependence of the

eigenenergies on that length. It approaches a nice linear form at large cutoff, K, with a

well defined, finite, string tension.

There is an interesting correlation between the parity under the reflection k ↔ P − k,

and the inter parton distances. Namely, in even (odd) states partons are separated by

integer (half-integer) distances. This explains why the eigenenergies of the symmetric and

antisymmetric states are half a way between each other in figure 2

Before moving to higher multiplicities, let us compare our numerical results with the

theoretical prediction for the effective string tension in the two-parton case, σ = λ/2 [23,

24]. Figure 10 shows the ratio of two parton eigenenergies to the combined string length

x = |x12| + |x21|, in units of λ, as a function of the dimensionless lattice distance Px =

2πx/a = 2πl. Different colors show results for different cutoffs, K = 50, 100, 200, 400, 800.

As expected, there is a significant cutoff dependence for larger parton separations. The

K dependence is however rather weak and can be easily taken care of. Black points show

results of the polynomial (in 1/K) extrapolation to K = ∞, at few values of l. In lattice

terminology they correspond to the string tension determined from finite lattice distances

hence are still biased by finite a effects. To get rid of the latter one has to perform the

continuum (i.e. a → 0) limit. This is summarized in figure 10 where the a/x dependence

of above K extrapolations is displayed. Again the a/x dependence is mild and polynomial

fits provide quite stable extrapolations to a = 0. Those are in very satisfactory agreement

with the theory cf. table 1.
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Figure 10. Left: as in figure 9 but for the string tension together with the extrapolations to

K = ∞ (black). Right: polynomial extrapolations (see the text) to a = 0.

M 1 2 3

WM(0) 0.4944 0.4980 0.4997

Table 1. First three polynomial extrapolations of the a dependence of the string tension from

figure 10.
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Figure 11. Eigenenergies of three parton states vs. the combined string length l.

With three partons, situation is yet more interesting. Assigning automatically the

combined string length l to each state on the basis of integer coordinates of sharp peaks in

the density, results in figure 11 (left, K = 100). This only confirms the existence of some

ambiguities. We have already found, however, that there are series of states composed

of similar patterns of configurations. Could they account for what is seen in figure 11?

In fact yes, in the right panel of figure 11 we show similar plot but constructed for five

series identified by inspection of lowest 20 eigenstates. Two of them were described in the

previous subsection. Indeed, for each series we observe a clean linear growth of the energy

with l. The slope of that dependence is consistent (albeit somewhat smaller) with the one

seen for two partons.
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Figure 12. As in figure 11 but for four partons.

Similar behaviour is seen in the four parton sector, figure 12, obviously the situation is

more complex with more families and larger spread of energies at fixed “l”. No attempt was

made to identify separate series yet and to extract the string tension. The latter requires

the former and extrapolations in K and a, as was done for p = 2.

Clearly more detailed studies are needed to unravel a complete structure of higher

parton states. In particular comparison with the direct solutions of ’t Hooft equations in

higher-p sectors would be very useful.

6.5 Pre-SUSY

As already mentioned our drastic approximation breaks half of the original supersymmetry

leaving behind just the N (1, 1) subgroup generated by Q2, Q
†
2. In spite of this it is amusing

to compare the spectra of sectors that should be connected by the action of all the SUSY

charges. The supersymmetry generated by Q2, Q̄2 connects states with the same number

of partons and is self-evident in our graphs. On top, there are further degeneracies between

states with the same p due to our Coulomb approximation. It is clear, instead, that there

is no exact degeneracy for states of different p even if some of them should be connected

through the action of the Q1, Q̄1 generators.

Let us consider, as an example, the Konishi (anomaly) supermultiplet keeping figure 13

in mind. As discussed in section 2.1 the full chiral supemultiplet in this case contains p = 2

states of non-identical partons and p = 3 states in which there are at least two different

species. The corresponding energy levels match the union of the aa and ff spectra in

the figure and the central (xxy/xyz) levels. We see that there is (decreasingly) good

matching for the first three excited levels while for the fourth the matching is already quite

poor (for higher levels the good matching looks a bit accidental given the high density

of p = 3 levels).

Consider now a different supermultiplet, one that contains the state |aa〉. Its partners

should be found in the af sector and in the aaf and aff sectors and all works as in the

previous case.
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Figure 13. The lowest levels with 2 and 3 partons. Here a represents either a or b and f either f

or g. For p = 2 the aa and ff spectra, for identical partons, are complementary and their sum gives

all the unequal-parton spectra. For p = 3 the xxx (i.e. aaa or fff) spectra are all identical but

contain far less states than the xxy or xyz spectra. The xyz spectra are equal to the xxy spectra

modulo a doubling of the states since xyz and xzy are two distinct, but degenerate, states.

Consider finally the supermultiplet containing the state |ff〉. Apparently we find a

problem since the lowest excited ff state has no nearly-degenerate partner in the fff

sector. However this is as it should be: the |ff〉 wavefunction must be odd under the

interchange of the two momenta. When one applies Q1 to it one finds that this antisym-

metry clashes with the symmetry needed in |fff〉. Instead, the |ff〉 state should form a

multiplet with |af〉, |afg〉 and |abf〉. The matching is now excellent.

In conclusion, although a priori our drastic truncation of the Hamiltonian could have

left no sign at all of the supersymmetry generated by Q1 and Q̄1, we have found that some

trace of the full N = (2, 2) supersymmetry appears to have survived in the spectra of

HC . This makes us confident that our truncated Hamiltonian may represent a fairly good

approximation to the exact one.

7 Conclusions and outlook

We have considered the dimensional reduction of D = 4, N = 1 SYM theory to two

dimensions in the large-N (planar) limit using the LC gauge and LC quantization. This

allows us to explicitly eliminate all non-physical degrees of freedom at the price of having

a non-local LC Hamiltonian. Nonetheless, such an Hamiltonian exhibits many desirable

features: it is invariant under N = (2, 2) supersymmetry transformations provided these
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are suitably defined in order not to destroy the LC-gauge choice; it is manifestly normal-

ordered and positive-semidefinite so that it possesses an exact zero-energy ground state

and a spectrum of non-negative energy excitations.

In order to solve for the eigenvalues and eigenstates of the Hamiltonian we have com-

pactified LC-space to a circle of radius R allowing to work within a finite Hilbert space

as long as we keep the conserved LC momentum of our states finite, the idea being, of

course, to eventually send R to infinity and check that physical quantities approach a finite

smooth limit.

Infrared (IR) divergences appear to make this task somewhat technically complicated

(although in principle possible) and therefore, in this first paper, we have truncated the

Hamiltonian to what looks superficially as its most IR divergent part. Indeed, for the

colour-singlet, single-trace states that survive in the large-N limit, these linear IR diver-

gences are neatly cancelled and get replaced by an effective Coulomb interaction which,

in D = 2 gives a confining linear potential. We have then studied many properties of the

eigenvalues and eigenfunctions of this Coulomb Hamiltonian, HC , and confirmed that, at

least in this approximation, the large R limit is smooth (although larger and larger R are

needed before heavier and heavier states stabilize).

The resulting model breaks supersymmetry down to an N = (1, 1) subgroup and looks

like a supersymmetric generalization of ’t Hooft’s original model [20] where states with an

arbitrary number of partons are present even at leading order in 1/N . Will the mixing of

states with a different number of partons change qualitatively this confining string picture?

Previous work6 [29–32], has claimed that two-dimensional theories of the kind considered

here (i.e. with massless fermions in the adjoint representation) should exhibit a Schwinger-

like phenomenon even in the planar large-N limit. This would result in the screening of

the linear potential and in the spectrum becoming continuous above a certain energy scale

meaning that the terms we neglected should have a dramatic effect, at least for the high-

energy part of the spectrum. This point, as well as the dependence of the spectrum itself

on the scalar VEV, clearly deserve further investigation.

When seen in position-space a nice string picture emerges in which the mass of each

state is proportional to the sum of the (center-of-mass distances) of each pair of neighbour-

ing partons. These distances are quite sharply quantized leading to a discrete spectrum

with approximately linear “Regge” trajectories. The numerical value of the proportionality

constant (the string tension) agrees very well with theoretical expectations. For states with

more than two partons the situation is obviously richer. Yet we were able to identify clean

series of three-parton states whose eigenenergies are indeed proportional to the combined

length of strings stretched between neighbouring partons. Moreover, the detailed patterns

of parton configurations contributing to these states confirm unambiguously the linear form

of the two-body interactions. String tension seen in these sectors is compatible with the

one extracted from the two parton sector.

Clearly the configuration space methods developed in section 6.2 and 6.4 can be also

6We are grateful to A. Armoni for bringing the abovementioned papers to our attention.
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used to analyse results of the full simulations like those done in refs. [14] and [17]. It was

found there that lowest states of the complete Hamiltonian contain mainly two parton

components. It is then natural to expect that they would show similar string structure as

found here (cf. figures 3 and 6). Consequently at least those lowest states should exhibit

linear trajectories. At the same time the inclusive densities introduced in eq. (6.6) can prove

useful in searching for the signatures of screening advocated by some authors [29–32]. We

intend to study these questions in the forthcoming articles.

In our Coulomb approximation the first excitation over the Fock vacuum is also mass-

less with all the partons sitting at the same point but this is most likely an artifact of our

Coulomb approximation that allows all partons to sit at the same point without paying any

kinetic-energy price. Since even those massless states are nicely paired in supermultiplets,

we expect them to be lifted to some finite energy. Indeed, if we add some finite terms

present in the full Hamiltonian (2.5), we see that these state acquire a non-zero energy.

At least in our approximation we find no evidence (apart from the just mentioned states)

for the absence of a mass gap reported in some previous studies [17]. We also see clearly

how the existence of many other massless states, for each value of R, is nothing but a

consequence of the breakdown of the method when the number of partons approaches its

maximal value compatible with momentum conservation.

Finally, we found that, even in our drastic approximation the full N = (2, 2) supersym-

metry of the original model shows up as an approximate supermultiplet structure at least

for the lightest states. Our belief is that the “worst” divergent part in (2.5) gives us the

bulk structure of the energy states, namely the nice discrete linear spectrum. We expect

the logarithmic IR singularities to lead to a dressing of our states à la Block-Nordsieck and

to modify the energies by lifting, in particular, the zero-energy states. We plan to report

on progress in this direction in a forthcoming paper.
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