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Abstract

Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of
macromolecules in the range of 50 - 400 mg

ml
. Molecular species occupy a significant fraction of the immersing

medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed ‘crowded’
and/or ‘confined’. In crowded conditions non-specific interactions between macromolecules may hinder diffusion -
a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both
qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review
focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model
diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of
macromolecules under in vivo conditions.

Introduction
Intracellular organelles are packed with small solutes,
macromolecules, membranes and skeletal proteins. Such
crowding is characteristic not only of the cell’s interior but
also for extracellular tissues [1]. The kinetics and thermo-
dynamics of macromolecular processes and biochemical
reactions taking place in vivo are known to be affected by
complex, volume-occupied environments [2-5].
More and more experimental methods have become

available to investigate macromolecules under in vivo
conditions. These include nuclear magnetic resonance
[6-8] and fluorescence spectroscopies [9]. Techniques
such as SPT (single-particle tracking) [10,11], FRAP
(fluorescence recovery after photobleaching) [12,13], FCS
(fluorescence correlation spectroscopy) [14] have been
applied to measure diffusion constants of macromole-
cules in the cytoplasm and membranes. All experiments
show that diffusion of proteins in vivo is significantly
reduced compared to dilute conditions. In the cytoplasm
of eukaryotic cells, diffusion of both large and small
molecules is slowed down three to four times [1]. FRAP
measurements of the diffusion coefficient of GFP in the
Escherichia coli (E. coli) cytoplasm [15,16] yield about
10 times smaller values than at infinite dilution in water.

Theories of diffusion for colloidal soft matter are well
established. Within their framework, the behavior of col-
loidal systems (both dilute and concentrated), consisting
of mesoscopically large colloidal particles dispersed in
low-molecular-weight solvent, can be simulated, repro-
duced, and more importantly predicted [17-21]. In cell
biology, however, an appropriate theory of diffusion phe-
nomena is still lacking. Complications arise due to the
cellular heterogeneity. Moreover, there are different cell
types whose compositions vary over space and time on
the scales associated with diffusive motion and the
knowledge of the surroundings of diffusing species is
essential for successful applications of theoretical
approaches. Unfortunately, even for the best-studied sys-
tems, experimental data is too scarce to describe elemen-
tary processes involving macromolecules, their timing
and spatial distribution.
Simulation methods used to study the in vivo diffusion

of macromolecules should take into account their bio-
logical localization, sizes and shapes, and positions in
three dimensional space. Intermolecular interactions
(both specific and non-specific, repulsive and attractive)
should be also included [22]. Ideally, the modeling should
be performed at atomic resolution. However, due to the
μm size of an average cell and a large number of compo-
nents occupying its volume, reductionist (coarse-grained)
approaches are unavoidable. The simulation methods
[22] that can be applied to directly account for the
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crowded conditions, sizes and shapes of molecules and
their interactions, as well as other features of the cellular
environment, include different variants of particle-based
Brownian dynamics (BD) [23-26]. In this review, we
describe recent applications of BD to study diffusion in
the crowded, in-vivo-like systems. Examples of different
modeling approaches, either coarse-grained or more ela-
borate, are presented and discussed.

Diffusion in dilute and crowded solutions
In dilute solutions, diffusional properties of molecules
treated as rigid bodies are determined by their sizes,
shapes, temperature, and solvent viscosity. The complete
information required to describe translational and rota-
tional motions of Brownian particles in dilute solutions
is contained in their diffusion tensors. Single-particle
diffusion tensor, D, is represented with a symmetric,
6×6 matrix containing 3×3 blocks related to the transla-
tional (tt) and rotational diffusivities (rr) and their cou-
plings (rt, tr) [26]:

D
D D

D D

tt tr

rt rr











 (1)

The diffusion tensors of molecules can be obtained
from rigid-body hydrodynamic calculations [27]. Transla-
tional diffusion coefficient is an average over the diagonal
terms of Dtt. The rotational dynamics of a free diffusing
molecule can be predicted from the eigenvalues of Drr

[28]. For a spherical molecule, diffusion is isotropic, the
diffusion tensor is diagonal, and the molecule can be
described with a single translational and a single rota-
tional diffusion coefficient. Translational diffusion coeffi-
cient (Dtrans) determines the time dependence of the
diffusion of the particle’s center of mass. The mean
square displacement (MSD) of a freely diffusing (in three
dimensions) particle’s center of mass changes linearly
with time t according to the following equation [29]:

MSD t D ttrans( )   6 (2)

with the Dtrans as a proportionality constant.
In biological setup, solutes interact with their environ-

ments and other molecules which affects their Brownian
motion, thus single-particle diffusion tensors are no
longer the unique determinants of diffusion. Neverthe-
less, the relation between the MSD and time t (not
necessarily linear) can still be used to measure the
apparent translational diffusion of molecules [4,11].

Particle-based Brownian dynamics algorithms
Brownian dynamics is a stochastic simulation approach
with continuum space and time. In BD the molecules

exhibit noise as they are propagated according to the
Langevin equation [30]. The equation contains random
and frictional forces that are intended to represent the
interaction between the diffusing molecules and solvent
(treated implicitly). High-friction limit is assumed;
momentum relaxation is much faster than position relaxa-
tion, thus the equations of motions do not contain parti-
cles’ velocities. Below, we briefly describe two common
BD algorithms.

Brownian dynamics of rigid, arbitrarily shaped objects
The propagation scheme for a number of rigid bodies,
described either at atomic level or with coarse-grained
models, can be written as [23,26]:

   
x x

t
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D M R ti i

o
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i i i      (3)

where i runs over molecules, Δt is the time step, and

x is the vector describing the position of the center of
diffusion ( r ) and orientation (


 ) of the i-th molecule,

M .

M is a generalized force acting on a given particle

having two components: the force acting on the diffu-
sion center ( F ) and the torque

   
T M F T
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R (Δt) is

a random displacement vector resulting from the Brow-
nian noise, with zero mean and the variance-covariance
given with:

      
 
R t R t D ti j i ij2  (4)

Here, D is the precomputed and constant in the simu-
lation 6×6 diffusion tensor of the i-th molecule at its
diffusion center. Random displacements of particles can
be computed via Cholesky decomposition of D [23].
Intermolecular hydrodynamic interactions between dif-
fusing bodies are neglected.
A simplified version of the above algorithm [25],

which assumes isotropic properties of molecules and
replaces their diffusion tensors with translational and
rotational diffusion coefficients, has been widely used.
Apart from treating the diffusing molecules as spheres,
this simplification also ignores the coupling between
translational and rotational diffusion. It is however ques-
tionable, whether using pre-averaged diffusion tensors is
justified for nonglobular molecules (e. g., see the discus-
sion on the influence of anisotropy on transport and
association rates of model molecules [31] or on the dif-
fusion of an ellipsoid near planar surfaces [27]).

Brownian dynamics with hydrodynamic interactions
When hydrodynamic interactions (HI) are considered in
BD simulations, the diffusion tensor of the entire system
(6N×6N, with N being the number of spherical mole-
cules or the number of spherical pseudo-atoms in case
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of more elaborate coarse-grained molecular models [32])
is used to propagate particles. This tensor depends on
the system’s configuration and varies with time. The
propagation scheme can be written as [23,24]:

   
x x D t

t

k T
DM R to

B

          (5)

When the Rotne-Prager-Yamakwa [33,34] form of the
diffusion tensor is used (see below) the gradient term in
the above equation (∇D) vanishes. The 6N-dimensional
random displacement vector has zero mean and fulfills

<

R (Δt)


R (Δt) > = 2DΔt. Again, random displacements

of particles can be computed via the Cholesky decompo-
sition of D [23]. However, the decomposition of D must
be performed at each BD step due to its dependence on
the positions of particles.

Intermolecular interactions
The influence of environments on the diffusion of
macromolecules manifests through intermolecular forces
acting on individual particles. The types and functional
forms of interactions included in BD simulations vary
depending on the level of detail used to describe the
studied systems. Different types of intermolecular inter-
actions that can be modeled in BD simulations are
briefly described below.

Electrostatics
When diffusing molecules are described in a reduced
way with spherical subunits (e. g., as in case of model
spherical proteins [35-37] or bead-models of flexible
polymers [38]), the DLVO (Derjaguin - Landau -
Verwey - Overbeek) approach (or the Debye-Hückel
approximation), commonly applied in the studies of col-
loid suspensions, can be used [39]. Spherical molecules
(of radii Ri, Rj) with central net charges (Qi, Qj) interact
via pairwise additive potentials:
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Q Q
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eij

i j
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Where �o is the vacuum permittivity, � is the dielectric
constant of the immersing medium, � is the inverse of
the Debye screening length, and rij is the separation
between molecules. However, the above description is
not valid for highly charged systems such as nucleic
acids where the linearized form of the Poisson-Boltz-
mann equation [40] is not applicable and there is strong
electrostatic coupling between the molecular and ionic
species. In such cases, the net charges can be replaced
with renormalized charges [41].
A more sophisticated approach to treat electrostatic

interactions in BD simulations of rigid molecules with

atomic detail [42,43] is based on the model of effective
charges developed by Gabdoulline and Wade [44]. In
this approach, each molecule is described with a limited
set of optimized, discrete, effective charges immersed in
an uniform dielectric. These effective charges are
derived by fitting the electrostatic potential resulting
from the Debye-Hückel approximation to the external
molecular potential obtained from the numerical solu-
tion of the Poisson-Boltzmann equation. Electrostatic
energies (and thus forces) are evaluated using the values
of the electrostatic potential (derived from the solution
of the Poisson-Boltzmann equation on a three-dimen-
sional grid) generated by one molecule at positions of
effective charges of the second molecule. The electro-
static potential grids and effective charges are precom-
puted so when multiple molecules are simulated, the
electrostatic potential grids need to be translated and
reorientated at each simulation step along with translat-
ing and rotating molecules. This approach ignores the
dielectric polarization effects that occur when two mole-
cules come close to each other. These effects may be
particularly important in the crowded systems, where
intermolecular distances are comparable with the sizes
of molecules. Polarization can be accounted for by using
an analytical formula proposed by Gabdoulline and
Wade [44]. The performance of the effective charges
approach is worsened for highly charged molecules
in cases where the nonlinear form of the Poisson-
Boltzmann equation should be used to evaluate electro-
static potentials. The Debye-Hückel approximation is
not valid in these cases, especially in the vicinity of the
electrostatic field sources [45].

Lennard-Jones potentials
Non-specific interactions between molecules can be
modeled with the Lennard-Jones type functions that are
commonly used in molecular dynamics simulations to
compute the van der Waals interactions between atoms;
at large intermolecular separations molecules attract
each other, while at small separations the interactions
are repulsive and molecules are impenetrable. The
Lennard-Jones functional form and parameters for BD
simulations with coarse-grained spherical models [35,37]
can be, for instance, taken from the ones derived for
large colloidal spheres [46,47].
In BD simulations employing all-atom models, the

forces acting between the surface atoms of molecules
can be evaluated using standard (6/12) Lennard-Jones
potentials:
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However, the well depth �LJ needs to be treated as a
free parameter and adjusted to reproduce experimental
data [42].

Hydrophobic effects
Nonpolar (hydrophobic) interactions can be included in
atomistic BD simulations by assuming their proportion-
ality to the amount of the solvent accessible surface area
(SASA) that gets buried when molecules come close to
each other. However, computing of SASA can be slow
and to make SASA-based approaches efficient, approxi-
mations are needed. Examples of how to incorporate the
hydrophobic effects based on SASA in BD simulations
can be found in the work of Elcock and McCammon
[48] or Gabdoulline and Wade [49].
While SASA-based models are commonly used to

evaluate nonpolar interactions, it has been shown that
including the solvent accessible volume (SAV) terms
may be essential to accurately model the nonpolar solva-
tion, especially at atomic-length scales [50]. Accurate
treatment of nonpolar energies and forces is crucial for
understanding any biomolecular process that involves
changes in solvent accessibility. The described inability
of SASA-only models [50] to reproduce and predict sol-
vation energies and forces indicates that there is a need
to include a more complete theory of nonpolar solvation
in atomistic BD simulations.
It was also proposed that hydrophobic interactions can

be accounted for by modifying the van der Waals inter-
actions and assigning more favorable interaction ener-
gies to nonpolar surface atoms than to polar ones [42].
With such an approach hydrophobic interactions can be
evaluated more rapidly, however its correctness is ques-
tioned (see the discussion in [42]).

Hydrodynamic interactions
In BD simulations water molecules are not treated expli-
citly but the influence of solvent on the diffusion of sus-
pended molecules can be included by proper treatment of
hydrodynamic interactions. However, even though their
importance is widely recognized [32,37,51], accounting for
HI is no simple matter due to their long-range and many-
body character [52] resulting in high computational cost.
Therefore, one is often tempted to neglect HI and, conse-
quently, the correlations of motions of molecules.
In the Ermak-McCammon algortihm [23] (Equation 5),

hydrodynamic interactions between spherical particles
can be included by using the Oseen [53], Rotne-Prager
[33] or Rotne-Prager-Yamakawa [34] forms of diffusion
tensors (without HI the diffusion tensor is represented by
a diagonal matrix). At each step of a BD simulation, the
diffusion tensor of the whole system is factorized using
the Cholesky decomposition [23] to obtain hydrodynami-
cally correlated displacements of particles. The Cholesky

decomposition scales as N3 (with N being the number of
particles), while evaluating direct intermolecular interac-
tions, that are assumed pairwise, scales as N2. It is possi-
ble to lower the cost of evaluating HI using the
Chebyshev approximation proposed by Fixman [54], but
the HI-related computational overhead is still consider-
able (N2.5). Recently, Geyer and Winter proposed a faster
algorithm that scales as N2 and is based on a truncated
expansion of the hydrodynamic multi-particle correla-
tions as two-body contributions [55].
An additional computational cost arises when HI are

evaluated in finite simulation boxes containing mole-
cules. This cost is due to the fact that for evaluating dif-
fusion tensors Ewald summation has to be used [56,57].
While the direct intermolecular interactions in such per-
iodic systems can be computed using less expensive cut-
off -based schemes, applying these schemes to evaluate
HI leads to diffusion tensors that are not positive defi-
nite (a condition that has to be met to use diffusion
tensors as covariance matrices [57].)
The treatment of hydrodynamics within the frame-

work of the Oseen, Rotne-Prager or Rotne-Prager-
Yamakwa tensors is appropriate for very dilute systems
capturing only the far-field, two-body hydrodynamic
effects. However, in crowded biological systems, the
many-body HI and lubrication forces (resulting from the
thin layer of solvent that separates the nearly touching
particles) may significantly influence diffusion. One
crude way to include the many-body HI in BD simula-
tions is to use mean-field approaches [58-60] that are
based on scaling the diffusion coefficients of particles
according to local volume fractions, as for example in
the work of Sun and Weinstein [61].
The most advanced approach to treating HI, used

recently in BD simulations of a biological system [37],
was developed by Brady and Bossis [17]. Their Stokesian
dynamics (SD) method includes both far-field and near-
field many-body contributions to Brownian forces acting
on particles. Moreover, particular implementations of SD
enable one to efficiently simulate long-time dynamics of
large multicomponent systems. For example, the acceler-
ated SD method, described in [62] scales as N1.25log(N).
Unfortunately, modeling of HI in BD simulations is

currently limited to systems composed of coarse-grained
particles (either spherical molecules or composed of a
small number of spherical units - pseudo-atoms). While
such models perform well for colloids, a question yet
unanswered is whether they are sufficient for crowded,
heterogeneous biological systems.

Applications to diffusion in crowded environments
Typically, the setup of BD simulations aimed at investigat-
ing diffusion in crowded solutions is the following.
A number of molecules (usually 102 - 103), described
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either at the atomistic level or with coarse-grained models,
is contained inside a primary simulation box. Periodic
boundaries are applied to reduce the edge effects and the
influence of the finite size of the system. BD trajectories of
all molecules are generated with the algorithm of choice.
The BD simulation time scale should be long enough so
the relative displacements in the system be at least com-
parable with the dimensions of molecules; the simulation
time scales range from microseconds to milliseconds,
while typical time steps are about a few picoseconds.
When one considers the number of simulated molecules,
the need to describe them in as detailed way as possible,
and the complexity of interactions calculated in a single
simulation step, it becomes clear that BD simulations of
crowded systems require a lot of computational resources.
Below we present a few recent (except for one) exam-

ples of BD simulations of macromolecular diffusion in
crowded media. We describe the studies that best illus-
trate the potential and shortcomings of the BD techni-
que applied to in vivo-like systems and the ones that
introduce a significant element of novelty. Some of
these computational studies relate to experiments -
experimental data were either used for parameterization
or for direct comparison with simulations.

Beginnings
One of the first studies that used the BD technique to
investigate macromolecular diffusion in congested media
was that of Dwyer and Bloomfield [63] in 1993. They
performed BD simulations of probe and self-diffusion of
concentrated solutions containing short DNA polymers
(modeled as wormlike chains, i.e. strings of spherical
beads) and the bovine serum albumin (BSA) protein
modeled as a sphere. Even though their DNA model
lacked the detailed all-atom description, it reproduced
the overall translational and rotational behavior of linear
DNA molecules [64]. The authors used an algorithm
similar to that of Ermak-McCammon [23], however,
they neglected HI, because the pairwise approaches are
inadequate for concentrated solutions. They also used
the Debye-Hückel approach to model long-range elec-
trostatics and the repulsive part of the Lennard-Jones
potential to ensure volume exclusion. This model, while
very simple, turned out to be realistic enough to simu-
late diffusion in the DNA/BSA system and accurately
reproduce experimental diffusion coefficients at 0.1 M
ionic strength for the self-diffusion of BSA and the
probe diffusion of BSA in DNA (both over a wide range
of BSA/DNA concentrations).
Simulations of the diffusion of BSA in the DNA solu-

tion conducted at low ionic strength of 0.01 M gave
worse agreement with experiments which the authors
attributed to the lack of HI and limitations of the
applied electrostatic model. The work of Dwyer and

Bloomfield is significant because it shows that even very
simple modeling approaches can accurately predict the
behavior of rather complex systems.
We note that the models similar to the one of Dwyer

and Bloomfield are still used, for example, in computa-
tional studies of facilitated diffusion of proteins on
DNA. The description of facilitated diffusion phenom-
enon and models of non-specific protein-DNA interac-
tions can be found in references [65,66].

Protein-protein association in crowded environments
Most biological reactions require some sort of diffusion-
mediated encounter. Here we describe BD applications
that directly investigate the influence of crowded envir-
onments on diffusional encounter and association of
molecules.
Sun and Weinstein [61] simulated systems of spherical

particles, mimicking globular proteins. Particles were
modeled as hard spheres; the authors used the elastic col-
lision method to effectively deal with particle overlaps
[67]. Electrostatic interactions were introduced using the
Debye-Hückel approach. A notable fact is that the
authors attempted to model also many-body HI. They
used the translational part of the Ermak-McCammon
algorithm with the diagonal form of the diffusion tensor.
However, they applied an average hydrodynamic correc-
tion and scaled the diagonal terms of the diffusion tensor
(i.e., the single particle diffusion coefficients) with func-
tions that depend on the instantaneous local volume frac-
tion of each particle [58-61]. The authors investigated
how the size of background molecules, volume fraction,
electrostatic interactions, and HI influence the diffusion
of a tracer molecule. Their study also quantitatively
described the dependence of diffusion-limited reaction
rates on crowding in model systems. Using a very
approximate approach, they showed a significant effect of
HI on diffusion and association rates. While this review
focuses on simulations of multimolecular systems, the
importance of intermolecular HI in modeling the associa-
tion kinetics in a two-molecular case was also described
by Frembgen-Kesner and Elcock [32]. A number of sim-
plifications was used in the described work of Sun and
Weinstein [61]. Simulated systems were rather homoge-
neous in comparison with in vivo environments. Mole-
cules were treated as spheres thus their association was
non-specific (the model of particles with uniformly reac-
tive surfaces was used). Anisotropy of particles, which
may play a role upon association, and specific intermole-
cular interactions were neglected. However, their work is
important as it showed the necessity to include HI in BD
simulations of crowded systems.
One of the conclusions of the work of Sun and

Weinstein [61] was that crowding slows down the non-
specific association of molecules. The two more recent
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BD studies focused on the influence of crowders on spe-
cific interactions in protein-protein association and con-
sidered the fact that partner proteins need to be properly
oriented to associate. Wieczorek and Zielenkiewicz [68]
used BD to simulate the diffusional encounter of HEL
and HyHEL-5 proteins in solutions of hard-sphere crow-
ders. Both proteins were modeled with atomistic details,
however, only the excluded volume interactions were
evaluated; simulation steps leading to overlaps were
rejected and repeated with different random displace-
ments, so no systematic forces were explicitly applied.
The crowders and proteins were modeled as rigid bodies
with isotropic diffusion tensors (both HEL and HyHEL-5
were represented as spheres with equivalent hydrody-
namic radii) and propagated with the algorithm described
in [25]. Hydrodynamic interactions were neglected. The
authors concluded that if the definition of an encounter
complex accounts for the orientation of associating mole-
cules, crowding can accelerate the association rate.
Similar observations were made by Kim and Yethiraj

[69]. Using spherical protein models with non-uniformly
reactive surfaces, they showed that association of model
molecules can be either slowed down or accelerated,
depending on the applied reaction criteria. These
authors recently used BD to investigate the effects of
crowding on the association at model membranes [70].
Both studies of Kim and Yethiraj [69,70] focus on how
the excluded volume effects influence the reaction rates.
In general, the above simulation results are in agree-

ment with purely theoretical predictions [3]. However,
they lack a close connection to experiments and the
ability to reproduce heterogeneous in vivo conditions.

Modeling bacterial cytoplasm
In the recent work of Elcock’s [43] and Skolnick’s [37]
groups BD was applied to investigate the diffusion in
cytosol-like systems with the Escherichia coli cytoplasm
as a model system. The cytoplasm model of McGuffee
and Elcock [43] contains 50 different types of the most
abundant proteins and nucleic acids present in the E. coli
cytoplasm. Additionally, a few molecules of the Green
Fluorescent Protein (GFP) were included, for the sake of
comparison with experimental data. All molecules were
represented with atomistic details. The algorithm of rigid
bodies was applied in BD but all molecules were treated
as isotropic, so the average rotational and translational
diffusion coefficients were used instead of 6×6 diffusion
tensors [25].
Intermolecular interactions included electrostatics,

modeled using the effective charges approach of Gaba-
doulline and Wade [44], and combined van der Waals
and hydrophobic interactions described with the
Lennard-Jones potential [42], with the well depth treated
as an adjustable parameter. Hydrodynamic interactions

were neglected. The authors investigated how different
energy models affect the translational diffusion coeffi-
cient of GFP. When only steric interactions (modeled
with the repulsive part of the 6/12 Lennard-Jones poten-
tial) were considered, the BD simulated translational dif-
fusion coefficient of GFP was 3 to 6 times higher than
the coefficient estimated experimentally. Even including
electrostatics did not significantly reduce the discre-
pancy between the experimental and computed values.
Nevertheless, the authors obtained a close agreement
with experiments after adding the short-range Lennard-
Jones attraction and tuning its well-depth. The observa-
tion that purely steric interactions are not able to
account for the reduction in proteins’ mobilities in vivo
concur with previous computational studies [71].
While adjusting the short-range attractive interactions

led to reproducing the in vivo GFP diffusion coefficient,
it has been later pointed out [37] that the magnitude of
attractive interactions can be tuned to set the diffusion
coefficient to any chosen value. McGuffee and Elcock
investigated also the character of translational diffusion
[4] in cytoplasm with different interaction energy mod-
els. When only the steric interactions were considered,
for the three chosen proteins they observed normal dif-
fusion at short times (ps), subdiffusion at moderate time
scales (ns) and normal diffusion at long times (μs).
When electrostatic and short-range attractions were
included, sub-diffusive behavior was noticed even for
short observation times.
The approach to model diffusion in the E. coli cyto-

plasm taken by Ando and Skolnick [37] is different than
the one described above. These authors investigated the
effect of macromolecular shapes on the diffusion in
crowded, heterogeneous environment, the role of HI, and
the interplay between hydrodynamic and non-specific
attractive interactions. Their cytoplasm model consisted
of 15 different types of molecules, each described with a
set of spherical subunits positioned at the Ca protein
atoms and the P, C4’, N1, and N9 atoms of nucleic acids.
The authors dealt with the anisotropy of macromolecular
shapes using the rigid body BD algorithm [26] that
describes molecules with precomputed, 6×6 diffusion
tensors. Notably, this is the first BD study of a multimo-
lecular system that takes into account the anisotropy of
diffusion. To investigate the role of HI they also simu-
lated the system of equivalent spheres corresponding to
the cytoplasm model (all molecules in the system were
represented as spherical particles and assigned hydrody-
namic radii based on translational diffusion coefficients
computed from their atomic structures [27]) with the far-
field many-body HI interactions and lubrication forces
treated with the method of Banchio and Brady [62]. Soft-
sphere harmonic potential was used to model repulsive
interactions between particles. Attractive interactions
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were described by the Lennard-Jones potential function
with a correction factor accounting for the roughness of
molecular surfaces. Electrostatic interactions were mod-
eled using the DLVO model.
Based on simulations of molecular-shaped and equiva-

lent sphere systems, the authors showed that the effects
of macromolecular shapes on long-time translational
diffusion are rather small in the studied concentration

range of 250 - 350 mg
ml

. This is an important result that

justifies the use of isotropic models to study transla-
tional diffusion in the crowded systems. The influence
of macromolecular shapes on rotational dynamics,
which is an interesting issue as well, was not investi-
gated. Their BD simulations with only steric repulsion
between particles also resulted in overestimated transla-
tional diffusion coefficients. However, when HI were
switched on, the computed long-time translational diffu-
sion coefficient of GFP was in good agreement with
experimental value; this is another important result
because this model did not include any tunable para-
meters. The authors concluded that the macromolecular
motions in vivo are likely to be dominated by steric
interactions and hydrodynamics. Additionally, they
observed that when non-specific attractive interactions
between particles (either molecular-shaped or spherical)
are included, the reduction of translational diffusion
coefficients depends much more on molecular sizes
in comparison with the simulations where HI were
enabled.
Both studies described above [37,43] are state of the art

applications of BD in the field of macromolecular diffu-
sion in biological systems, as they both take into account
the heterogeneity of the environment and intermolecular
interactions beyond simple excluded volume models.
Both are also closely connected to experimental data.

Concluding remarks
This short review focuses on the current status of the
particle-based Brownian dynamics technique and its
applicability to model diffusive phenomena in biological
environments. We described a few BD studies of three-
dimensional macromolecular diffusion in aqueous cellu-
lar compartments under molecular crowding conditions.
However, there are various other BD applications, not
presented here, that consider diffusive phenomena in
cellular architectures, such as the cytoskeleton [72] or
membranes [73].
We presented different modeling approaches, from

simple excluded-volume models to most sophisticated
atomic level descriptions of the in vivo-like systems. The
complexity of intra and extracellular environments, their
dynamics, and the number of different interactions that
influence the diffusive behavior of macromolecules,

make computational studies of crowding extremely diffi-
cult. While it is desirable to construct models that treat
biological systems at atomic resolutions and include
sophisticated interactions [42,43], the recent model of
the E. coli cytoplasm [37] shows that less elaborate,
coarse-grained approaches should not be disregarded, at
least as far as diffusive transport is concerned.
Obviously, current BD algorithms need development.

These include accurate and computationally efficient mod-
els of direct, both specific and non-specific, intermolecular
interactions as well as HI models that up to date have
been largely neglected in the simulations of biological
systems.
BD simulations should be (at least ideally) able to repro-

duce and predict the in vivo dynamics. However, the com-
putational cost of sophisticated BD simulations may be
too high, even with the growth of computing power and
available modern technologies. Thus, the long-term goal
should be to systematically develop efficient algorithms
interfacing different modeling approaches - from atomistic
to coarse-grained models of macromolecules, mesoscopic
models of biological environments, and appropriate
boundary conditions for different cell compartments. New
approaches and models should be verified experimentally
to establish their quality and predictive power.
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