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Abstract

Background: Antiretroviral therapy is essential for human immunodeficiency virus
(HIV) infected patients to inhibit viral replication and therewith to slow progression of
disease and prolong a patient’s life. However, the high mutation rate of HIV can lead to
a fast adaptation of the virus under drug pressure and thereby to the evolution of
resistant variants. In turn, these variants will lead to the failure of antiretroviral treatment.
Moreover, these mutations cannot only lead to resistance against single drugs, but also
to cross-resistance, i.e., resistance against drugs that have not yet been applied.

Methods: 662 protease sequences and 715 reverse transcriptase sequences with
complete resistance profiles were analyzed using machine learning techniques, namely
binary relevance classifiers, classifier chains, and ensembles of classifier chains.

Results: In our study, we applied multi-label classification models incorporating
cross-resistance information to predict drug resistance for two of the major drug
classes used in antiretroviral therapy for HIV-1, namely protease inhibitors (PIs) and
non-nucleoside reverse transcriptase inhibitors (NNRTIs). By means of multi-label
learning, namely classifier chains (CCs) and ensembles of classifier chains (ECCs), we
were able to improve overall prediction accuracy for all drugs compared to hitherto
applied binary classification models.

Conclusions: The development of fast and precise models to predict drug resistance
in HIV-1 is highly important to enable a highly effective personalized therapy.
Cross-resistance information can be exploited to improve prediction accuracy of
computational drug resistance models.
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Background
According to estimations by the World Health Organization (WHO) around 35 million
people are HIV infected in 2013 worldwide. Moreover, 2.1 million individuals were newly
infected in 2013. Although antiretroviral therapy has been steadily improved in the last
decades, resistance against antiretroviral drugs is still a serious clinical problem. Driving
force of drug resistance is the genetic variation of the virus caused by the high mutation
rate paired with a fast replication cycle [1].
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An HIV-1 therapy typically contains a combination of three or even four active
pharmaceutical ingredients from different drug classes, thus inhibiting different steps
in the replication cycle of HIV. Classical therapies employ two nucleoside reverse
transcriptase inhibitors (NRTIs) combined with one non-nucleoside reverse transcrip-
tase inhibitor (NNRTI) or one protease inhibitor (PI). New drug classes, such as
Integrase Inhibitors (INIs), and entry inhibitors, enable alternative therapies when resis-
tance mutations are already present. PIs prevent viral replication by inhibiting the
activity of HIV-1 protease, an enzyme used by the viruses to cleave nascent polypep-
tides into functional proteins. They are designed to have a high affinity to the cat-
alytic center of the HIV protease, thereby hampering its enzymatic activity. NRTIs
and NNRTIs inhibit the activity of the reverse transcriptase (RT). NRTIs are nucle-
oside analogs, and therefore compete for the RT with the natural nucleosides. An
incorporation of an NRTI leads to a premature termination of the viral genome repli-
cation. In contrast, NNRTIs are non-competitive inhibitors of the RT. They inhibit the
movement of protein domains of the RT that is needed to carry out the process of DNA
synthesis.
A combination therapy is highly effective in suppressing viral replication, how-

ever, the emergence of resistant HIV-1 variants frequently occurs. An important
aspect of resistance mutations, namely the occurrence of cross-resistance, has been
addressed only recently. Cross-resistance has been frequently found in HIV, lead-
ing to resistance not only against a drug from the current treatment, but also
to other not yet applied drugs from the same class. These cross-resistance muta-
tions have been described for almost all drug classes, e.g. for PIs, NRTIs, and
NNRTIs [2, 3].
In the recent years, machine learning algorithms have improved the development

of mathematical models to predict drug resistance, ranging from simple mutation
tables over decision trees [4], support vector machines [5], rule-based systems [6] to
random forests [7]. In another study, Brandt et al. [8] used multi-label approaches
to predict therapy outcome without genotypic information of the virus. Today, the
most widely applied tools for resistance prediction are geno2pheno [9] and HIVdb
[10]. Geno2pheno applies support vector machines to classify sequences as resis-
tant or susceptible. The HIVdb algorithm uses penalty scores for each mutation
within a sequence. The scores are summed up in order to reflect the level of
resistance against a certain drug with levels ranging from susceptible to high-level
resistance.
However, the use of cross-resistance profiles to improve resistance prediction was

hitherto rather neglected and have been only applied in a few studies so far [11, 12].
We were the first to exploit cross-resistance information to improve computational
drug resistance prediction by means of multi-label learning [11]. We demonstrated
an increased prediction accuracy for six nucleoside analogues by using multi-label
classification (MLC) methods, namely classifier chains (CCs) and ensembles of clas-
sifier chains (ECCs) in combination with cross-resistance information. In the cur-
rent study, we applied the MLC methods described in Heider et al. [11] on pro-
tease sequences and non-nucleoside reverse transcriptase sequences to investigate
whether higher prediction capabilities compared to binary classification could be
achieved.



Riemenschneider et al. BioDataMining  (2016) 9:10 Page 3 of 6

Methods
Data

Protein sequences of the HIV-1 protease (PR) and reverse transcriptase (RT) originated
from subtype B strains with data for seven PIs (RTV: Ritonavir, IDV: Indinavir, SQV:
Saquinavir, NFV: Nelfinavir, APV: Amprenavir, ATV: Atazanavir, LPV: Lopinavir) and
three NNRTIs (NVP: Nevirapine, EFV: Efavirenz, DLV: Delavirdine) with IC50 ratios
were collected from the HIV Drug Resistance Database [13]. The data was separated
into susceptible and resistant by drug-specific cutoffs according to Rhee et al. [13]. We
removed sequences from the datasets for which no resistance information was available
and excluded ATV and LPV from our classification approach, since too many sequences
lacked IC50 information, resulting in 662 PR sequences and 715 RT sequences with com-
plete resistance profiles. The protein sequences were then encoded and normalized by
Interpol [14] with default settings. The sequences can be found in Additional file 1.

Multi-label classification

In the current study, we used classifier chains (CCs) and ensembles of classifier chains
(ECCs) [15] according to Heider et al. [11]. The CC method learns m binary classifiers
linked along a chain, each time extending the feature space by all previous labels in the
chain. Realizing that the order of labels in the chain may influence the performance of
the classifier, and that an optimal order is hard to anticipate, Read et al. [15] propose the
use of an ensemble of CC classifiers. This approach combines the predictions of different
random orders and, moreover, uses a different sample of the training data to train each
member of the ensemble. ECCs have been shown to increase prediction performance over
CCs by effectively using a simple voting scheme to aggregate predicted relevance sets of
the individual chains. For MLC we applied random forests [16] and logistic regression
models as base classifiers. Classifiers were evaluated by the F-measure, the classification
rate and the AUC (Area Under the receiver operating characteristic Curve) obtained by
five-times 10-fold cross-validation. Moreover, we applied permutation tests on the AUC
values [17, 18]. The methodological set up of binary and multi-label classification predic-
tion is shown in Additional file 2. The phi coefficient, as well as the variable importance
measurements, i.e., the mean decrease in gini impurity, were calculated according to
Heider et al. [11].

Results and discussion
Cross-resistance phenomena can be frequently found during antiretroviral therapy and
thus have become important targets in research. Our analysis focused onMLC techniques
to evaluate the importance of HIV-1 cross-resistance information on drug resistance pre-
diction. Cross-resistance among drugs can be detected by calculating the phi coefficient
in a pairwise fashion. The pairwise associations between the labels of all drugs are strongly
positive for all PIs as well as for all NNRTIs, with RTV and IDV having the strongest
correlation (0.82). For NNRTIs, the strongest association can be observed between NVP
and EFV (0.86). Tables 1 and 2 report the phi coeffcients for all PIs and NNRTIs, respec-
tively. The positive correlation between all pairs is further reflected by the results of the
variable importance measurements, i.e., the mean decrease in gini impurity of the ran-
dom forests. A high co-occurrence of sequence peaks can be seen among the drugs in
both classes (see Additional files 3 and 4). In NNRTIs mainly three regions show up with
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Table 1 Phi coefficients of NNRTIs

DLV EFV NVP

DLV 1.0000 0.7396 0.7999

EFV 0.7396 1.0000 0.8652

NVP 0.7999 0.8652 1.0000

significant importance (besides regions with lower importance). Due to the interpola-
tion of sequence length with Interpol, the positions from the importance analyses have
to be translated back to sequence positions. Sequence positions 100 and 101 have a high
importance for all NNRTIs. For NVP and DLV resistance sequence position 181 seems
to be more important than for EFV resistance. Comparing NVP and EFV, also position
190 seems to play an important role in resistance. These findings are in good agreement
with known resistance mutations, as positions 100, 101, 181 and 190 are known to be
associated with NNRTI resistance in HIV-1. Peaks at multiple sequence positions in the
protease sequence can be observed, namely 10, 46, 54, 71, 82, 85 and 90, which are in good
agreement with known resistance mutations [19]. Positions 10 and 71 are known to be
compensatory, i.e., they compensate for the loss of enzyme activity due to major protease
mutations. In order to evaluate the importance of cross-resistance information for drug
resistance prediction, we compared three different models: (1) we computed binary mod-
els for all labels (one label corresponds to one drug). (2) We constructed CCs by using the
label orders according to AUC values of the binary models. (3) We generated ECCs with
thirty chains per ensemble with random subset sampling and distinct chain order. The
corresponding AUC values of the models are shown in Fig. 1. Results of the other met-
rics are in accordance with the AUC values (see Additional file 5). All metrics are given as
mean +/- sd (standard deviation). The AUC values based on the logistic regression mod-
els as well as those based on random forests are significantly higher for ECC compared to
BR and CC for all drugs. Moreover, the results of the permutation tests (see Additional
file 6) demonstrate the robustness of our models.
Taken together, we were able to demonstrate that cross-resistance information can be

exploited to improve drug resistance prediction of PIs and NNRTIs by applying MLC
techniques, i.e., ECCs. To the best of our knowledge, this is the first time informa-
tion about NNRTI and PI cross-resistance has been explicitly integrated in HIV-1 drug
resistance prediction models. Since we found promising results using MLC methods,
the concept could be enhanced in future work by applying alternative MLC methods,
including the probabilistic variant of CCs proposed by Dembczynski et al. [20], but also
approaches that are not based on the idea of chaining, such as multi-instance learning
(MIL) on sequence and structural information to further improve resistance prediction
accuracy. A few studies have already reported the use of structural information for drug

Table 2 Phi coefficients of PIs

APV IDV NFV RTV SQV

APV 1.0000 0.6726 0.5921 0.7061 0.6328

IDV 0.6726 1.0000 0.7889 0.8186 0.7040

NFV 0.5921 0.7889 1.0000 0.7465 0.6633

RTV 0.7061 0.8186 0.7465 1.0000 0.7137

SQV 0.6328 0.7040 0.6633 0.7137 1.0000
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Fig. 1 Performance of the different approaches for NNRTIs and PIs. AUC values are shown for NNRTIs (top)
and PIs (bottom), either for logistic regression models (left) and random forests (right). Significance levels
according to Mann-Whitney U test: ***: p < 0.001; **: p < 0.01; *: p < 0.05

resistance prediction [21–23], also for data from next-generation-sequencing [24–26].
However, these models neither make use of MIL techniques nor were combined with
multi-label approaches yet. Moreover, instead of modeling binary relevance problems,
the class membership representation could be expanded to susceptible, intermediate
resistance, and resistance, network based approaches [27], or multi-objective optimiza-
tion [28] could be employed, which might further contribute to refined prediction
performance.

Additional files

Additional file 1: Sequence data. All sequences used in the study with information on cross-resistance. (XLS 402 kb)

Additional file 2: Schematic illustration of the approach. The schematic setting of our MLC approach is shown for
PIs. We applied binary classification for each drug using random forests and logistic regression models. The AUC
values of binary classification (whereas RTV achieved the best prediction performance, APV the worst) were used to
define label order in the CC. For ECCs, ensembles of thirty chains with random order were generated. For training and
testing we applied a 10-fold cross-validation scheme. (PDF 20 kb)

Additional file 3: Gini impurity PIs. (PDF 8 kb)

Additional file 4: Gini impurity NNRTIs. (PDF 8 kb)

Additional file 5: Performance measures. (PDF 68 kb)

Additional file 6: Permutation tests. Performance of binary classifier (BR), classifier chains (CCs), and ensembles of
classifier chains (ECCs) for each protease inhibitor: The AUC values are shown for real-labeled data and randomized
class labels. AUC values are averaged of five runs and shown with standard deviations. light grey: random class labels;
dark grey: real-labeled data. (PDF 6 kb)
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