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Abstract

Background: CpG sites in an individual molecule may exist in a binary state (methylated or unmethylated) and
each individual DNA molecule, containing a certain number of CpGs, is a combination of these states defining an
epihaplotype. Classic quantification based approaches to study DNA methylation are intrinsically unable to fully
represent the complexity of the underlying methylation substrate. Epihaplotype based approaches, on the other
hand, allow methylation profiles of cell populations to be studied at the single molecule level.
For such investigations, next-generation sequencing techniques can be used, both for quantitative and for epihaplotype
analysis. Currently available tools for methylation analysis lack output formats that explicitly report CpG methylation
profiles at the single molecule level and that have suited statistical tools for their interpretation.

Results: Here we present ampliMethProfiler, a python-based pipeline for the extraction and statistical epihaplotype
analysis of amplicons from targeted deep bisulfite sequencing of multiple DNA regions.

Conclusions: ampliMethProfiler tool provides an easy and user friendly way to extract and analyze the epihaplotype
composition of reads from targeted bisulfite sequencing experiments. ampliMethProfiler is written in python language and
requires a local installation of BLAST and (optionally) QIIME tools. It can be run on Linux and OS X platforms. The software
is open source and freely available at http://amplimethprofiler.sourceforge.net.
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Background
Locus-specific DNA methylation analysis is used widely
in many research fields. Traditionally, Sanger sequencing
was used as the standard technique to quantify the
methylation state of a specific bisulfite-treated locus at
single nucleotide resolution. Nowadays, next-generation
sequencing techniques are used for high-throughput
sequencing of bisulfite polymerase chain reaction (PCR)
amplicons obtaining many thousands of sequences in a
single sequencing run [1, 2]. In such a way, the methyla-
tion heterogeneity of a given locus can be studied at the
single molecule level.

With high-throughput sequencing of bisulfite PCR
amplicons, it is possible to investigate methylation diver-
sity in a sample by looking directly at methylation profiles
(epihaplotypes) of the individual cells in a population,
rather than considering a single profile where CpG methy-
lation is analyzed as a mixture of methylated and
unmethylated CpGs [3]. Analysis of epihaplotype diversity
is applicable to fields as diverse as carcinogenesis, develop-
mental biology and plant biology [4–6].
Using this high-throughput approach, the epihaplo-

types of the pool of cells that comprise the study sample
can be treated as a population of haploid organisms.
When considered in this way, notions and techniques
derived from other fields, such as population genetics,
ecology and metagenomics can be incorporated into
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protocols. In particular, several metrics, statistical methods
and tools developed to analyze population structure can be
easily imported and adapted for the analysis of methylation
profiles generated from deep targeted sequencing. It is,
therefore, important to develop tools that are able to extract
locus-specific NGS methylation data in a format that can
be easily imported into already available statistical tools,
and that allow a user-friendly, basic statistical interpretation
of this particular kind of data.
Here, we present ampliMethProfiler, a pipeline for

the extraction and analysis of methylation profiles at
the single molecule level from deep targeted bisulfite

sequencing of multiple DNA regions. This tool provides
functions to demultiplex, filter and extract methylation
profiles directly from FASTA files. Among the various
output formats that are available for the representation
of methylation profile composition, ampliMethProfiler
provides the Biological Observation Matrix (BIOM) [7]
format, which allows the user to directly import methy-
lation profiles into a wide range of meta-genomics ana-
lysis software tools. Also, several core analyses of the
epihaplotype population structure of input samples can
be automatically performed by the pipeline using a local
installation of QIIME software [8].

Fig. 1 ampliMethProfiler workflow. Functional modules are represented as trapezes. Input and output files are represented as dashed and solid
rectangles, respectively
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Implementation
Input data
AmpliMethProfiler (Fig. 1) requires three types of input
files: a file containing the reads from the sequencer in
FASTA format, a comma-separated file containing informa-
tion on the sequenced regions, and a FASTA file containing
the reference sequences of the analyzed regions. Optionally,
a file containing metadata associated with each sample can
be provided to enable the tool to perform a series of basic
EpiHaplotype based Analyses (EHAs) on the pipeline
outcome.

Demultiplexing and filtering
Reads from targeted bisulfite sequencing of multiple
regions are demultiplexed by comparing their 5′ and
3′ ends with a list of provided PCR primers. The
demultiplexing procedure is based on a user-provided
percentage of similarity between the 5′ or 3′ end of a
read sequence and the corresponding PCR primer
sequences. Reads are filtered out if no match is found
between at least one of the read ends or if, given a
user-provided threshold, their length does not match.

Extraction of methylation profiles
First, amplicons from targeted bisulfite sequencing are
aligned to the corresponding bisulfite-converted reference
sequence using the locally installed BLASTn program [9].
Then, the tool inspects the C and CpG aligned positions
for each input read. Bisulfite efficiency for each aligned
read is computed as the percentage of conversion of non-
CpG cytosine residues (green Cs in the reference sequence
in the example below) to thymine residues (green Ts in
the reference and bisulfite-converted reference sequences
in the example below). If the percentage of non-CpG
deaminated C residues (red Cs in the read sequence in the
example below) over the total number of non-CpG C resi-
dues is below the given threshold, the read is discarded. In
this latter case, positions for which residues other than C
or T (A, G) or gaps are found are excluded from the assay
(purple characters in the read sequence in the example
below). A user provided threshold defines the minimum
percentage of reference non-CpG cytosine residues to be
assayed to consider the bisulfite efficiency estimate valid;
if this percentage is below the given threshold the read is
discarded. The methylation profile for each aligned read is
determined by evaluating the deamination of CpG sites as
a result of the bisulfite treatment.

For each CpG position in the aligned reference se-
quence (green Cs in the bisulfite-converted reference
sequence in the example below), the corresponding
position in the aligned read sequence is inspected. If a
C is found in that position, then that site is considered
methylated; if a T is found, then the site is considered
unmethylated; and if alignment gaps or other bases (A
or G) are found, the methylation state of the CpG site
is reported as uncertain (marked in purple in the
example below).

Methylation percentages for each site are then com-
puted as the number of non-deaminated bases mapped
on that site over the total number of non-ambiguously
mapped positions. The same procedure is used to com-
pute bisulfite efficiency for all C (non-CpG) sites. Then,
the abundance of each distinct methylation pattern is
evaluated for each sample. Such reports are created by
counting, for each of the possible 2NCpG epihaplotypes
(where NCpG stands for the number of CpG sites in the
analyzed region), the number of passing filter reads con-
taining the pattern.

EpiHaplotype based analysis
A series of exploratory EHAs are performed on the
sample profile abundances obtained in the previous
steps. These analyses are performed starting from the
BIOM file containing methylation profile abundances
and a metadata file reporting the characteristics for
each analyzed sample. A local installation of biom tool
[7] and QIIME software suite are employed for this
purpose.
Three kinds of analyses are performed to summarize

sample epihaplotype composition:

i) A series of summary statistics on the number of
passing filter profiles in each sample are performed
using the “biom summarize-table” command;

ii) A summary of samples’ taxonomic composition,
computed as the abundance of profiles stratified by
the number of methylated CpGs, is performed
through QIIME’s summarize_taxa_through_plots.py
module; and

iii)A heatmap, comparing relative abundances of
methylation profiles between samples, where profiles
(rows) are clustered by UPGMA hierarchical
clustering, is created with QIIME’s
make_otu_heatmap.py script.
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Within-sample diversity (Alpha diversity), for samples
and groups of samples in the study, is evaluated using
QIIME’s alpha_rarefaction.py workflow, which performs
the following steps:

1. Generate rarefied profile abundance tables for each
sample (multiple_rarefactions.py);

2. Compute measures of alpha diversity for each
rarefied OTU table (alpha_diversity.py);

3. Collate alpha diversity results (collate_alpha.py); and
4. Generate alpha rarefaction plots

(make_rarefaction_plots.py).

The between-sample diversity (Beta diversity) between
all pairs of samples in the study is evaluated using QIIME’s
beta_diversity_through_plots.py workflow, which performs
the following steps:

1. Rarefy profile abundance tables to remove sampling
depth heterogeneity (single_rarefaction.py);

2. Compute beta diversity metrics (beta_diversity.py)
using Bray–Curtis dissimilarity between methylation
profile abundances of samples;

3. Run Principal Coordinates Analysis
(principal_coordinates.py);

4. Generate 3D Emperor PCoA plots
(make_emperor.py) and 2D PCoA plots
(make_2d_plots.py); and

5. Compare distances within and between groups of
samples using boxplots (make_distance_boxplots.py).

Results
ampliMethProfiler pipeline
The ampliMethProfiler pipeline is composed of three
functional modules (Fig. 1), implemented in three python
modules: preprocessFasta.py, methProfiles.py, qiime_ana-
lysis.py. The preprocessFasta.py module generates, for
each sequenced region, a quality filtered FASTA file con-
taining the reads from that region that passed filtering.
Importantly, it creates a new FASTA file for each analyzed
region, whose entries are annotated with the ID of the re-
gion and of the sample. The methProfiles.py module runs
on each demultiplexed, filtered FASTA file generated by
preprocessFasta.py and computes CpG methylation profile
matrices, profile counts and several summary and quality
statistics. For each analyzed region, methProfile.py returns
the following output files.

Summary and quality statistics file
This file contains information about the number of reads
that pass the filtering, the methylation percentage of
each C in CpG sites, and the bisulfite efficiency for each
C in non-CpG sites (Fig. 2a).

Alignment file
These files contain BLAST-aligned sequences in the
standard BLAST XML output format and in plain text
format. The plain text format (Fig. 2b) allows the user to
easily inspect alignments. Each entry of this file contains
a filter-passed aligned read, represented by five rows that
provide the following information:

� read identification, read length, experiment
identification, region identification;

� bisulfite efficiency, calculated as the percentage of
deaminated Cs (non-CpG) over all Cs (non-CpG);

� alignment of the read sequence against its bisulfite-
converted reference sequence.

Methylation profiles file
This file contains the CpG methylation profile matrix
(Fig. 2c) in which columns and rows represent CpG sites
and single reads, respectively. The methylation status of
each CpG site in a read is coded 0 if the site is recog-
nized as unmethylated, 1 if the site is recognized as
methylated, and 2 if the methylation state could not be
assessed (i.e. because other residues other than C or T
or gaps are found). Row entries are reported in the same
order as in the “Alignment file”, and column order rep-
resents the CpG positions as they appear in the refer-
ence sequence. Each row can be considered as the CpG
methylation profile of a single read and defines an epiha-
plotype in subsequent analyses.

Profile abundance reports
These files contain counts of the occurrence of each epi-
haplotype in the sample. Such reports are provided in
two formats: tabular and BIOM. Each entry of the tabu-
lar file (Fig. 2d) represents a distinct methylation profile
along with the following information:

□id: sample identification;
□profile: string representation of the methylation

profile;
□count: number of times the profile has been found in
the sample; and
□n_meths: number of methylated cytosines

characterizing the profile.

The BIOM format is a common general-use format for
representing biological samples that uses observation
contingency tables. The format is designed for general
use in broad areas of comparative-omics and is based on
the JSON format [7]. Methylation profile abundances are
coded in the rich and sparse BIOM format (version
0.9.1). The methylation profiles are coded as taxonomic
units and the number of methylated cytosines constitut-
ing each profile, hereafter denoted as methylation class,
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is used as their first-level grouping factor in an ideal
phylogeny. Importantly, BIOM coded files from different
samples can be merged together in a single BIOM file
using suitable ad-hoc scripts.
Finally, qiime_analysis.py returns a first level of

exploratory EHAs on the input sample(s). For each ana-
lyzed region a folder is created containing the following
reports:

� A text summary file, containing summary statistics
about the number of profiles present in the set of
input samples. In particular, the file reports the
number of samples, the total number of
observations (distinct methylation profiles) in all
analyzed samples, the total read count, the table
density (fraction of epihaplotypes with non-zero
frequency), the summary of read counts per sample
(min, max, median, mean, standard deviation) and a
detailed list of read counts per sample.

� The profileSummary folder contains text reports
and plots reporting the distribution of
methylation classes among samples.

� The file heatmap.pdf contains a heatmap
representing the distribution of each distinct
epihaplotype among all the input samples.

� The Alpha folder contains information and plots
based on alpha diversity metrics for each provided
sample. Five alpha diversity metrics are computed
for each sample: number of different methylation
profiles in the sample, Shannon entropy, Simpson
index, Chao 1 index and number of singletons
(number of epihaplotypes characterized by only one
occurrence in the sample). Such metrics are
computed through a rarefaction procedure to
evaluate eventual biases deriving from different
sequencing depths.

� The Beta folder contains information and plots
based on beta diversity between the provided

Fig. 2 ampliMethProfiler output files. a Content example of a summary and quality statistics file. b Content example of a plain text alignment file.
c Content example of a methylation profiles file. d Content example of a methylation profile abundances file
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samples. All beta diversity analyses are based on a
distance function between samples. To achieve this,
Bray–Curtis dissimilarity among the epihaplotype
compositions of samples has been employed. The
files bray_curtis_dm.txt and bray_curtis_pc.txt
contain pairwise distances among samples and
principal component analysis data (eigenvalues,
Proportion explained, PCA values for each sample).
The bray_curtis_emperor_pcoa_plot and the PCA
folders contain principal coordinate analysis (PCoA)
plots in html format. The first plot shows the first
three components of the PCoA through an
interactive 3D html interface and relies on an
EMPEROR browser tool, the second plot shows
PCoA plots in 2D using combinations of the first
three components. Finally, the dist_boxplot folder
contains a series of boxplots reporting the
distribution of pairwise differences within and
between user defined groups of samples.

ampliMethProfiler pipeline
The whole set of analyses presented above can be exe-
cuted by running each module alone on each analyzed
sample or runs can be pipelined together. The ampli-
MethProfiler.py module implements the whole flowchart
described above by sequential application (and in parallel
when possible). The “Demultiplexing and Filtering” and
“Extraction of Methylation Profiles” steps are first
applied to each analyzed region and each provided sam-
ple separately. Thus, for each region, the module creates
a single methylation profile abundance file, in the two
formats described above, containing epihaplotype abun-
dances for the whole set of analyzed samples.
Finally, EHAs of each analyzed region are carried out

by this module using the BIOM file containing com-
puted abundances for each sample.

Case study
As a proof of concept, we report ampliMethProfiler
pipeline analysis of targeted deep bisulfite sequencing of
a genomic region in the promoter of the Ddo gene from
gut tissues of three newborn mice (P0 status) and three
adult mice (P90 status).
We analyzed the region spanning from −468 to −63 bp

upstream of the transcription start site of the Ddo-201 tran-
script (40630011 – ENSEMBLE GRCm38.p4 assembly).
To evaluate the methylation levels of the target region,

we used a double-step PCR strategy to generate an ampli-
con library of bisulfite DNA that could be sequenced by
an Illumina MiSeq Sequencer.
In the first PCR reaction, we designed primers to gener-

ate tiled amplicons. The 5′ ends of these primers contained
overhang adapter sequences (Fw: 5′ TCGTCGGCAGCGT-
CAGATGTGTATAAGAGACAG 3′, Rv: 5′ GTCTCGTG

GGCTCGGAGATGTGTATAAGAGACAG 3′) to be used
in the second PCR step to add multiplexing indices and
Illumina sequencing adapters.
Paired-end reads from Illumina MiSeq sequencing

were merged together using the PEAR tool [10] using as
threshold a minimum of 40 overlapping residues, then
quality filtered using as threshold a mean PHREAD
score of at least 33, and finally converted to FASTA for-
mat using PRINSEQ [11]. We then used the resulting
FASTA files as input to the ampliMethProfiler pipeline
using the following parameters:

� length ±50% compared with the reference sequence
length;

� at least 80% sequence similarity with the primer of
the corresponding target region; and

� at least 98% read bisulfite efficiency.

The whole analysis took 23 m 8.45 s on a 2 × 6-core
Intel Xeon X5660@2.3 GHz with 64 GB ram, running
the Ubuntu 12.04.5 LTS operating system.
Table 1 reports the characterization for each input

sample, along with the number of input and passing fil-
ter reads.
The obtained methylation profile compositions

(Additional file 1: Table S1) were then analyzed by
the qiime_analisys.py module to describe samples by
methylation class (Fig. 3a) and epihaplotype frequen-
cies (Fig. 3b). As expected, both analyses showed
clear differences between mice at stage P0 and mice
at stage P90. The analysis also revealed that profile
composition is consistent at a developmental stage in
different mice.
Within-sample diversity indices were then computed

by the qiime_analisys.py module through rarefaction at
the minimum depth found in the pool of input samples.
Figure 4 shows rarefaction curves computed by ampli-
MethProfiler for five different Alpha diversity metrics:
Observed Species, Shannon entropy, Simpson index,
Chao 1 index and number of singletons (profiles which
appear only once in the sample). Alpha diversity curves
are provided for each sample, as well as averages for the
two groups along with the corresponding confidence
intervals.

Table 1 Sample characteristics

Mouse Age Input reads Passing filter reads

M1_0 P0 114987 112283

M2_0 P0 48780 48288

M3_0 P0 90636 89114

M4_90 P90 5436 2498

M5_90 P90 28711 27750

M6_90 P90 117228 115069
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Also in this case, the analysis was able to identify dif-
ferences between the two groups of mice, and in particu-
lar which phenotype (newborn vs. adult) was richer in
terms of epihaplotype composition. In this case, P0 mice
showed a more heterogeneous composition than fully
developed mice. Finally, between-sample diversity was
computed for the two groups of samples. We let the tool
compute distances between epihaplotype composition of
input samples using Bray-Curtis distance.
Differences in epihaplotype composition between the

two developmental stages are represented by means of
PCoA plots. Figure 5a reports the layout of a 3D Em-
peror plot of the first three principal components from
PCoA with colors representing the two developmental
stages. Samples from the two groups clearly separate in
the 3D space and also tend to cluster together.
Distance boxplots of epihaplotype composition are a

useful graphical tool to validate this last statement. In
particular, the qiime_analisys.py module analyzes and
summarizes distances within and between user defined

groups of samples, reporting distributions of distances
through a series of boxplots.
The first two boxplots of Fig. 5b show how distances

between pairs of samples from the same group are ap-
preciably lower than distances between pairs from differ-
ent groups. Finally, the third and fourth boxplots show
that methylation profiles of P0 samples are on average
2-fold closer to each other compared with those of P90
samples.

Discussion
In this manuscript we present the ampliMethProfiler pipe-
line, a tool aimed at EpiHaplotype based analysis of data
from targeted deep bisulfite sequencing experiments.
Classic quantitative methylation analyses only consider

percentages of methylation by characterizing each CpG
site in a region, thus flattening the information on local
conformation heterogeneity carried in the pool of ana-
lyzed amplicons. These kinds of approaches unavoidably
mask the intrinsic complexity of the local methylation

Fig. 3 Profile abundances plots. a Profile composition summary charts. Bar charts representing relative abundances of profiles grouped by
number of methylated CpGs. b Heatmap representing methylation profile abundances in each sample
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Fig. 4 Alpha diversity rarefaction plots at sample level (right column) and developmental stage level (left column)
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patterns in each cell of an analyzed sample. Epihaplotype
based approaches, on the other hand, offer the possibil-
ity to study the methylation state of a sample from a
complementary point of view, namely by considering the
methylation conformation of each single molecule in the
pool of analyzed cells.
To perform such analyses with sufficient power for a

biological sample, it is essential to analyze the methylation
profiles of a very large number of sequences. This can
now be accomplished through targeted deep sequencing
of bisulfite-treated DNA.
Analyzing the methylation conformation of single reads

in a multi-clonal population, such as cells from cancer tis-
sues, offers the possibility to track the progression of dis-
tinct methylation patterns among different pathological
forms/stages. A similar approach has been adopted in the
study of driver and passenger DNA mutations in various
form of cancer [12]. Likewise, the proposed epihaplotype
based approach to study methylation patterns, if applied
at relevant selected genomic regions, such as promoters of
cancer-related genes, could lead to the discovery of driver
and passenger epi-mutations.

The approach proposed here is based on the idea that the
epihaplotype composition of a sample can be considered as
a biological community, were each distinct methylation
profile can be studied exactly as a distinct taxonomical unit
is studied in a metagenomics analysis. In this way, several
notions and metrics used in ecology and population genet-
ics can be exploited to describe the heterogeneous methyla-
tion patterns in a population of cells from a sample and to
assess the compositional differences between different sam-
ples. For example, the diversity and distribution of methyla-
tion profiles characterizing a sample can be described with
Alpha diversity metrics, such as the number of different
taxonomic units or the Shannon entropy index. Likewise,
differences among epihaplotype compositions of samples
can be measured through Beta diversity metrics, such as
Bray-Curtis distance or Euclidean distance.
The recent diffusion of metagenomics analyses, linked

to the advent of microbiome analysis from raw DNA se-
quencing data, was accompanied by the production of
multiple bioinformatics tools for the analysis of bio-
logical communities [13], as well as the development of
standards to represent biological communities. One of

Fig. 5 Beta diversity plots. a 3D Emperor plot snapshot representing the first three principal components of the PCoA. b From left to right are
reported: Bray-Curtis distance boxplots of pairwise distances computed between samples from the same developmental stage, pairwise distances
computed between pairs of samples from different developmental stages, distances within P90 mice, distances within P0 mice and distances
between pairs of P90 and P0 mice
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Table 2 Comparison of existing software programs for bisulfite sequencing analysis (Adapted from [14])

Software Programming
Language and
Implementation

Analysis Process Visual Output Input File Output File EHA Epihaplotype
Counts

Experiment
Quality Check

MethPat Python, pip
install,
URL available
to install files
locally.

Summarises Bismark
output.

Interactive HTML and
summary text file of
epihaplotype counts.
Scalable PNG file.

Bismark methylation extractor
output, user-defined BED
format file.

HTML and tab delimited
text file.

No Yes No, made by
Bismark.

Bismark Command line,
Python,
requires bwa.

Performs alignment
to bisulfite reference
genome.

None, generates
BAM files for
visualisation with
SeqMonk or IGV.

FASTQ file. BAM and tab delimited
text files.

No No Yes computes
C to T conversion.

BSPAT Java/JSP web
interface.

Visualization and
summarization
of Bismark output.

PNG file and UCSC
Genome Browser file.

Bismark output, FASTQ files. Text file summary, PNG
and UCSC Genome
Browser BED file.

No Yes No

MPFE R library,
Bioconductor.

Calculates probabilities
that epihaplotypes are
true.

R image outputs. Table of read counts from
bisulfite sequencing data.

Derived statistics and plots. No Yes Yes

Methylation
plotter

R library, shiny
interactive web
application.

Visualizes beta DNA
methylation values.

Interactive webpage with
setting options to adjust
a static image of DNA
methylation values for
each sample. PNG and
PDF output.

Text file containing matrix of
sample vs beta value at each
CpG of interest.

PDF and PNG image file. No No No

RnBeads R library,
Bioconductor.

Processes summary data
from other software for
visualization.

Interactive HTML and
UCSC Genome browser
track hub files. PNG files.

BED file HTML summary No No Yes

coMET R library,
Webserver
for analysis.

For EWAS studies.
Analyses derived matrix
files.

Image files of plots
with genomic locations.

Text matrix files Image files No No No

AmpliMethProfiler Python, BLAST
and QIIME

Filtering and
de-multiplexing
of the sequence,
generation of the
methylation status
and EpiHaplotype
composition analysis.

HTML plots and summary
text file. An heatmap in
PDF format. An Alpha and
a Beta diversity plot in
HTML and PDF format.

A fasta directory with all fasta
for each sample. A file containing
the reads from the sequencer. A
metaFile containing information
about the samples.

Filtered Fasta file. Blast
aligned sequences in XML
and TXT format. Summary
and quality statistics for region.
CpG methylation profile matrix.
BIOM file with number of
occurrences.

Yes Yes Yes, quality
statistic for
each analyzed
region.

Scala
et

al.BM
C
Bioinform

atics
 (2016) 17:484 

Page
10

of
12



the most widely used formats in this field is the BIOM,
which is recognized by the vast majority of tools for the
analysis of biological communities. In this regard, it can
be useful to represent epihaplotype compositions as bio-
logical observation matrices. In fact, this format gives
the possibility to carry out EHAs on methylation data by
taking advantage of the already available repository of
tools available for ecology and metagenomics.
The ampliMethProfiler tool provides a complete analysis

pipeline that, starting from FASTA files containing reads
from targeted bisulfite sequencing experiments, extracts
methylation profiles from the input samples along with a
series of exploratory analyses of their profile compositions.
It provides functions to demultiplex, filter and quality
check input reads along with the classic quantitative
assessment of CpG methylation percent per site.
By taking advantage of the local installation of the

QIIME suite, ampliMethProfiler enables a series of basic
exploratory analyses of the methylation profiles in the
given experimental samples. The core set of the analyses
provided by ampliMethProfiler were chosen to be instru-
mental for all studies investigating methylation patterns.
If more specific analyses are needed, the BIOM files
produced by the tool, in combination with the vast
collection of QIIME scripts, enable the user to easily
perform more sophisticated tasks depending on the
specific experimental design.
Table 2 presents a comparison of ampliMethProfiler

with state of the art tools for methylation analysis of bisul-
fite sequencing experiments. In particular, several tools
have been described in the literature for the analysis of bi-
sulfite sequencing data [14] but the majority of them were
designed to explicitly provide quantitative measurement
of methylation for each analyzed CpG site. Few of these
tools provide outputs containing a direct representation of
methylation profiles for each analyzed read and none pro-
vide output formats and statistical tools that are specific-
ally designed for EHA of methylation heterogeneity.
The computation and listing of epihaplotype abun-

dances are certainly important, but, especially when the
number of samples (and groups) begins to grow, it’s
essential to provide biologists with statistical tools able
to quantify and summarize the individual sample com-
position and the differences between samples.
Compared to existing tools, ampliMethProfiler pipeline

offers two main advantages:

1. It automatically provides a large number of statistical
analyses and representations of intra- and inter-sample
diversity in term of their epihaplotype composition;

2. It provides epihaplotype abundances in several
output formats, which, in turn, are easy to import in
other statistical and/or population genetics tools that
are borrowed from ecology.

Conclusions
In conclusion, our tool provides an easy and user friendly
way to extract and analyze the epihaplotype composition
of reads from targeted bisulfite sequencing experiments.
ampliMethProfiler is written in python language and
requires a local installation of BLAST and (optionally)
QIIME tools. It can be run on Linux and OS X platforms.
The software is open source and freely available at http://
amplimethprofiler.sourceforge.net.

Availability of data and materials
Project name: AmpliMethProfiler
Project home page: https://sourceforge.net/projects/

amplimethprofiler.
Operating system(s): Linux, MacOS X.
Programming language: Python.
Other requirements: Biom 2.1.5 or higher (optional),

QIIME 1.9 or higher (optional), Biopython 1.65 or higher,
Blast 2.2.25 or higher (suggested).
License: GNU GPL.

Additional file

Additional file 1: Table S1. The table reports for each possible
epihaplotype the number of methylated CpG and the number of filter-passed
aligned reads containing the epihaplotype in each sample. (DOCX 100 kb)
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