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Abstract

Background: Children with autism spectrum disorder (ASD) show marked impairment in social functioning and
poor adaptation to new and changing contexts, which may be influenced by underlying regulatory processes.
Oxytocin (OT) and cortisol are key neuromodulators of biological and behavioral responses, show a synergistic
effect, and have been implicated in the neuropathological profile in ASD. However, they are rarely investigated
together. The purpose of the pilot study was to evaluate the relationship between cortisol and OT in children
with ASD under baseline and physiological stress (hydrocortisone challenge) conditions. Arginine vasopressin
(AVP), structurally similar to OT, was also examined.

Methods: A double-blind, placebo-controlled, randomly assigned, crossover design was employed in 25 children
8-to-12 years with ASD (N = 14) or typical development (TD, N = 11). A low dose of hydrocortisone and placebo
were administered via liquid suspension. Analysis of variance (ANOVA) was used to examine the within-subject
factor “Condition” (hydrocortisone/placebo) and “Time” (pre and post) and the between-subject factor “Group”
(ASD vs. TD). Pearson correlations examined the relationship between hormone levels and clinical profile.

Results: There was a significant Time × Condition × Group interaction F (1.23) = 4.18, p = 0.05 showing a rise in OT
during the experimental condition (hydrocortisone) and a drop during the placebo condition for the TD group but
not the ASD group. There were no group differences for AVP. Hormone levels were associated with social profiles.

Conclusions: For the TD group, an inverse relationship was observed. OT increased during physiological challenge
suggesting that OT played a stress-buffering role during cortisol administration. In contrast for the ASD group, OT
remained unchanged or decreased during both the physiological challenge and the placebo condition, suggesting
that OT failed to serve as a stress buffer under conditions of physiological stress.
While OT has been tied to the social ability of children with ASD, the diminished moderating effect of OT on
cortisol may also play a contributory role in the heightened stress often observed in children with ASD. These
results contribute to our understanding of the growing complexity of the effects of OT on social behavior as
well as the functional interplay and differential regulation OT may have on stress modulation.
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Background
While many children find social interaction stress redu-
cing, children with autism spectrum disorder (ASD) often
find social interaction stress-inducing [1–3]. An appro-
priate response of the primary stress system, the limbic-
hypothalamic-pituitary-adrenal (LHPA) axis, is essential for
biological, behavioral, and psychosocial well-being. Con-
versely, inappropriate responsivity of the stress system may
result in impairments in development and contribute to a
variety of endocrine, metabolic, autoimmune, psychiatric,
and social disorders [4]. However, variations in stress
threshold and underlying regulatory mechanisms may con-
tribute to differences in responsivity. In regard to ASD,
social stress may be highly influenced by contextual (e.g.,
peers [5]) and neurohormonal (e.g., oxytocin) factors [6].
Social behavior is complex and so too is the socioemo-

tional profile of individuals with autism. Since Kanner’s
[7] earliest accounts of autism, a diverse set of social and
emotional response patterns have been described. Yet,
years later, the underlying mechanisms are elusive that
may be contributing to the atypical social responses that
are central to this disorder. The role of hormones is to
assist in the regulation, drive, and adaptation of the indi-
vidual to the dynamic internal and external environment,
including the social world. Key hormones involved in the
regulation of social and stress responses, specifically
oxytocin (OT) and cortisol, are both implicated in the
neuropathology of autism (e.g., [8–12]).
Cortisol is the primary glucocorticoid in humans released

from the adrenal cortices following activation of the LHPA
axis. The system can be activated by systemic stress (phy-
sical, context-independent, life-threatening) or processive
stress (psychological, context-dependent, perceived threat)
[13]. Cortisol maintains a diurnal pattern and produces a
variety of effects throughout the body including influences
on cardiovascular function, immunity, metabolism, and
neurobiology [14], which collectively allow optimal adap-
tation to changing environmental demands. In addition to
being involved in several vital biological processes and
interactions, cortisol is central to the physiological response
to physiological or perceived psychological stress [13, 15].
Importantly, the LHPA axis can be influenced by social
variables that can enhance or diminish the stress response
[16, 17], which is highly relevant for the study of ASD, a

disorder marked by impairment in social cognition, com-
munication, and interaction [18].
Current and ongoing research has shown that children

with ASD demonstrate heightened stress to various
benign and novel stimuli [9, 10, 19–21] and natural
social conditions [1, 22, 23]. However, there is significant
variability in response patterns of cortisol in children
with ASD, which led to a hypothesized Neuroendocrine
Spectrum Model in which social and arousal patterns
intertwine to form unique social stress profiles [2, 3].
The hyper-responsivity of the LHPA may contribute to
increased anxiety, neophobia, or even chronic stress. In
fact, associations have been reported between heightened
cortisol levels and self-reported trait anxiety [22, 24, 25].
Collectively, research shows that physiological arousal in
ASD is on a continuum of responsivity [26] and can affect
social interaction patterns [1, 3, 5].
Due to the known deleterious effects of frequent and

prolonged exposure to cortisol on mental and physical
well-being, continued study in persons with ASD who
evidence dysregulation of the LHPA axis is warranted.
Moreover, the significant variability in cortisol suggests
underlying differences in physiological response patterns
that may be linked to neurohormonal crosstalk. It is highly
plausible that cortisol, as an important modulator of
biobehavioral functioning, may provide important clues as
to associations with other key regulatory neurohormones,
including OT, that contribute to social stress in autism.
OT is a hypothalamic peptide crucial to the formation

of social bonds [27] (for a review, see [28]. Research in
animal (e.g., [12, 29–32]) and human models [33–35]
provides compelling evidence for the involvement of OT
in mediating complex social behavior. OT plays an
important role in stress buffering by reducing the respon-
siveness of the LHPA axis [33, 34, 36, 37]. Specifically, it
appears that OT is an important moderator of stress by, in
part, reducing activation of the medial amygdala [38] and
modulating activation of the amygdala in response to
facial expressions [39], which has been found to be dysre-
gulated in autism [40–44].
In humans, OT facilitates social approach and provides

anxiolytic effects [45], especially when combined with
social support as shown in studies comparing intranasal
OT vs. placebo [46, 47]. This blunting effect appears
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short-term and specific to cortisol response [48]. Osten-
sibly, OT can reduce the responsivity of the LHPA
axis to social stress by reducing uncertainty [39] and
enhancing trust [40, 49, 50], resulting in more social
approach [51]). Further, OT may restrict the LHPA by
making arginine vasopressin (AVP) less reactive [52] and
buffer the vasopressin-ACTH-cortisol response [53]. For
some stressors, OT has been shown to reduce corticotro-
pic releasing hormone gene expression in the paraven-
tricular nucleus, leading to reduction in ACTH and
cortisol [54]. The results support the hypothesis that OT
is a key moderator of social behavior and regulator of
stress reactivity [27, 55]. Although the results to date sup-
porting a reciprocal relationship between OT and stress
are compelling, some findings suggest that the interplay is
complex and influenced by individual differences [47, 56]
and social distress [57]. One of the roles of OT may be to
motivate people to find positive social affiliations [57].
Thus, OT is influenced by individual factors associated
with social affiliation and distress [58].
The neuropeptide OT has been associated with the

neurobiology of autism [8, 12, 59–64]. Individuals with
autism reportedly have impaired OT processing, resulting
in higher levels of plasma OT-X, a precursor to the
normal adult form of OT, and lower levels of OT [65–68].
In one study, elevated OT was associated with more soci-
ality in typically developing children but was associated
with less social behavior in children with autism, especially
those characterized as aloof. [67] Several studies have
shown genetic associations between the oxytocin receptor
gene (OXTR) and autism [60, 69–75].
Recent reports suggest that OT may be a novel thera-

peutic target for treating social impairments of autism
[58, 76–80]. OT treatments have been shown to increase
the ability of adults with autism to evaluate emotional
significance in speech [81, 82], reduce repetitive beha-
viors [11], and improve emotion recognition in youth
[44, 83, 84] and adults [85] with ASD.
There are many levels at which OT might impact

on autism, including through the capacity to influence
both sociality and to downregulate stress reactivity of
the LHPA axis [27, 86]. Given that OT interacts to
suppress cortisol and responses to psychosocial stress
[46], and is currently being considered as a possible
target treatment [58, 77, 79, 80], with potential long-
term risk [87], an integrated study examining the re-
lationship between these key regulatory hormones,
cortisol, and OT was conducted.
Based in part on the previous studies reviewed, it is

likely that these regulatory neurohormones, individually
and collectively, contribute to the variability and severity
of social stress profiles in children with ASD. Thus, the
current study was designed to investigate cortisol and OT
under baseline, pharmaceutical hydrocortisone challenge

(HCORT), and placebo (PLACEBO) conditions in children
8 to 12 years of age with high-functioning ASD or typical
development (TD). It was hypothesized that children in
both groups would show comparable baseline values of
cortisol and an increase in cortisol following hydrocortisone
challenge; however, it was predicted that children with ASD
as a group would show greater variability in cortisol expres-
sion. In regard to OT, it was predicted that children in both
groups would show comparable baseline values; however,
children with TD would show an increase in OT to
HCORT and a lack of change or decrease in OT to the pla-
cebo (PLACEBO). Conversely, it was predicted that chil-
dren with ASD would show a lack of change or decrease in
OT following both HCORT and PLACEBO suggesting that
endogenous OT would fail to serve as a stress buffer. Fi-
nally, it was predicted that cortisol and OT values would be
negatively and positively correlated with the social respon-
siveness profiles, respectively.

Methods
Ethics, consent, and permission
The Vanderbilt Institutional Review Board approved the
study. Informed written consent was obtained from both
parents, and assent was obtained from child participants
prior to inclusion in the study.

Participants
Inclusion criteria required all participants to be free of
prescribed medications and no known allergic reaction to
or current use of hydrocortisone or related pharmaceu-
tical agents. Participation in the study required three visits
to the University. During visit 1, the diagnostic and psy-
chological measures described below were administered
and the results are presented in Table 1. All enrolled
participants were provided with a research letter contain-
ing the results from the standardized measures.
Inclusion in the typically developing group required an

absence of any known neurological, medical, or psychi-
atric condition, an IQ ≥70 [88], and a score <10 on the

Table 1 Demographic and diagnostic information for children
with typical development (TD) and autism spectrum disorder
(ASD)

TD ASD

Measure Mean SD Mean SD t df p

AGE 9.37 1.58 9.70 1.93 −0.47 24 0.64

ADOS 13.82 4.56

SCQ 2.27 2.00 19.91 6.63 −8.45 20 0.00

SRS 45.82 6.60 77.73 12.08 −7.69 20 0.00

WASI 121.8 15.48 117.0 39.27 0.38 21 0.71

ADOS Autism Diagnostic Observation Schedule, ASD autism spectrum disorder,
SCQ Social Communication Questionnaire, SD standard deviation, SRS Social
Responsiveness Scale, TD typical development, WASI Wechsler Abbreviated
Scale of Intelligence

Corbett et al. Journal of Neurodevelopmental Disorders  (2016) 8:32 Page 3 of 12



Social Communication Questionnaire [89] described below.
Inclusion in the ASD group required a confirmed ASD
diagnosis based on the Diagnostic and Statistical Manual-5
[18] established by (1) a previous diagnosis by a psycho-
logist, psychiatrist, or behavioral pediatrician with autism
expertise; (2) current clinical judgment (BAC); and (3)
corroborated by the Autism Diagnostic Observation Sche-
dule (ADOS) [90], administered by research-reliable
personnel. Participants with ASD also had to have an
IQ >70 [88].
Independent sample t tests were conducted to assess

mean, standard deviations, and potential between-group
differences on the demographic variables. There were no
significant differences between the groups based on age
or IQ (see Table 1). As expected, there were significant
differences between groups on both social functioning
questionnaires (i.e., SCQ and SRS).

Diagnostic and psychological measures
Autism Diagnostic Observation Schedule (ADOS [90]) is
a semi-structured interview designed to assess behaviors
indicative of autism. A score of ≥8 on the social commu-
nication domain is required.
Wechsler Abbreviated Scale of Intelligence (WASI [88]

is a measure of cognitive ability that will be used to
obtain a quick, reasonable estimate of a child’s intellec-
tual functioning (IQ ≥70 required).
Social Communication Questionnaire (SCQ) [89] is a

screening tool for ASD. Scores of 15 or higher are highly
suggestive of ASD.
The Social Responsiveness Scale (SRS) [91] is a parent-

report measure covering several areas of behavior
characteristics of autism with good temporal stability
(males r = .85, females r = .77) and internal consistency
(Cronbach’s α > .90).

Hydrocortisone vs. placebo challenge protocol
Rationale
To specifically evaluate the relationship between cortisol
and OT, participants were exposed to a single-dose hydro-
cortisone (pharmaceutical cortisol) challenge. Although
dexamethasone has been explored in children with autism
[92–95], this approach is not warranted in the current
investigation. Dexamethasone is a synthetic glucocorticoid
20 to 30 times more potent than hydrocortisone that is
frequently used to evaluate the function of the LHPA axis
[96, 97]. Furthermore, the actions of dexamethasone in
the central nervous system are of longer duration (plasma
half-life), which can result in behavioral, psychological,
and cognitive changes including adverse effects [98]. For
this investigation, the aim was to evaluate the relationship
between hormones rather than assess the functionality of
the negative feedback mechanisms of the LHPA axis.
Finally, while glucocorticoids, such as hydrocortisone, can

impact social behavior such as reduction in phobic social
fear [99], the dose in the current study was comparatively
low.

Hydrocortisone study protocol
A double-blind, placebo-controlled, randomly assigned,
crossover design was employed. The protocol was con-
ducted at the Pediatric Clinic Research Center at Vander-
bilt University over two visits with 1-week intervals. The
order of HCORT or PLACEBO was randomly determined
by Vanderbilt Investigational Drug Service (IDS) phar-
macy. The investigative team and study participants were
blind to order assignment. Following a health status check
by medical staff, participants were administered hydrocor-
tisone during one visit (1) a low dose of hydrocortisone
and (2) placebo administration prepared by IDS. Hydro-
cortisone (5 mg per m2) or placebo was administered
via liquid suspension one syringe of liquid formulation
(15 mL). Blood samples were drawn by a pediatric
phlebotomist.

Dose
The dose of drug and placebo was determined by the par-
ticipant’s BSA. Prior to administration, height and weight
were assessed to calculate body surface area (m2) to deter-
mine appropriate hydrocortisone dose (mg/day) using the
Mosteller method [100] BSA (m2) = ([Height(cm) ×
Weight(kg)}/3600)1/2. Children determined to be obese
(have a bsa > the 95th %) were excluded from participation
in the study [101]. The administration of a single dose of
hydrocortisone was administered in one dose level, which
is considered to be mild (5 mg per m2) and placebo. This
is considered a low level of hydrocortisone, and behavioral
changes were expected to be subtle. Average pediatric
doses range from 10 to 25 mg/day [102]. In pediatric
patients, the initial dose of hydrocortisone for various
diseases is considerably higher than what was adminis-
tered in the current study with levels ranging from 20 to
240 mg per m2 bsa per day. Demonstrable effects are
detectable within 1 h; thus, sample collection of cortisol
and OT were taken at baseline and at 60-min post
administration.

Sample collection
For each blood draw, 6 ml was collected. Repeat blood
collection occurred at (1) baseline, approximately 15 min
after arrival and acclimation to the clinic setting and
immediately before hydrocortisone/placebo administra-
tion and (2) 60 min after the administration of the
pharmaceutical agent. Blood was collected on ice and
centrifuged at 4 °C, 3300 rpm for 12 min. Plasma was then
stored in a −80 °C freezer until assay. Serum and salivary
samples from 14 children with ASD (12 males, 2 females)
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and 11 neurotypical (10 males, 1females) children were
completed for hydrocortisone and placebo conditions.

Oxytocin assay
The oxytocin assay (Enzo Life Sciences, Farmingdale, NY)
has been validated for various species including humans
[103–105]. The assay was conducted at a dilution of 1:5
similar to other human studies. Samples were collected at
approximately the same time of day (1:00 to 4:00 p.m.).
The measurement of peripheral OT has been controver-
sial, in that its levels in plasma are not always correlated
with levels in cerebrospinal fluid [106, 107]. However, in
many recent studies, peripheral measures have been used
as a valuable reflection of OT system activity [108–110].
In addition, there is disagreement as to whether or not
plasma samples should be extracted before using commer-
cial enzyme immunoassay kits. The proponents of extrac-
tion believe that the high levels measured in unextracted
samples indicate that these readings include other sub-
stances in addition to OT [111, 112]. Proponents of
non-extracted samples believe that extraction removes a
portion of the OT which is sequestered in plasma proteins
[113]. Recent unpublished findings in mass spectrometry
support this view showing high levels of OT closer to
those in unextracted samples [114]. The c.v.s for assays
were intra-assay, 2.45 %, and inter-assay, 8.61 %.

Cortisol sample collection and assays
Salivary cortisol collection has been previously described
for home salivary samples (4× per day for 3 days for
2 weeks) and at arrival, baseline, 20, 40, and 60 min post
stress exposure [9, 10]. Assays were performed using
coated tube radioimmunoassay RIA kits (Siemens Medical
Solutions Diagnostics, Los Angeles) and modified to
accommodate overall lower levels of cortisol in human
saliva relative to plasma.

AVP assay
The AVP assay (Enzo Life Sciences, Farmingdale, NY) was
conducted at a dilution of 1.1 similar to other human
studies in the lab [61] and comparable to the field which
usually use dilutions between 1:1 and 1:2 [115, 116]. As
noted above, samples were collected at approximately the
same time of day (1:00 to 4:00 p.m.). The intra-assay cv
for the AVP assay is 4.63 %. The inter-assay cv is 11.60 %.

Statistical analysis
Independent sample t tests were conducted to assess
mean, standard deviations, and potential between-group
differences on the dependent variables. Analysis of
variance (ANOVA) was the primary statistical approach
to determine within and between subject effects on the
dependent variables (OT, cortisol, and AVP). The ANOVA
model included the within subject factors “Condition”

(hydrocortisone/placebo) and “Time” (pre and post) and
the between-subject factor “Group” (ASD vs. TD). Due to
skewed distribution, salivary and plasma cortisol were
log transformed prior to inclusion in the model. Paired
sample t tests were conducted to specify the meaning of
statistically significant interactions involving Condition
and Group. Finally, to examine the relationships between
hormone concentrations and subject characteristics, Pear-
son product moment correlations were conducted.

Results
Using independent sample t tests, there were no precon-
dition baseline between-group differences for OT, plasma
cortisol, and salivary cortisol (all p > 0.05; see means and
standard deviations in Table 2). However, there was a
trend for baseline differences for AVP t(23) = −2.01, p =
0.06 showing slight elevation in the ASD compared to
the TD group (see Table 2).
Using ANOVA to examine Time, Condition, and Group

effects, for OT, there was a significant difference for Time
F(1,23) 8.95, p = 0.007) indicating the expected difference
between pre and post for both groups based on the
HCORT levels. As predicted, there was a significant Time
× Condition × Group interaction F(1.23) = 4.18, p = 0.05
in OT (see Fig. 1).

Table 2 Means and standard deviations for oxytocin (OT)
(pg/ml), cortisol (ng/ml), and arginine vasopressin (AVP) (pg/ml)

Measure

Oxytocin TD mean TD SD ASD mean ASD SD

OT pre-HCORT 2009.92 813.83 2340.36 1145.38

OT post-HCORT 2148.55 777.79 2140.67 951.47

OT pre-PLACEBO 2566.98 921.75 2199.97 822.24

OT post-PLACEBO 2089.01 670.12 2074.19 886.10

Cortisol-P plasma

Cortisol-P pre-HCORT 0.91 0.30 0.93 0.16

Cortisol-P post-HCORT 1.53 0.44 1.68 0.19

Cortisol-P pre-PLACEBO 0.85 0.13 0.95 0.11

Cortisol-P post-PLACEBO 0.75 0.19 0.91 0.14

Cortisol-S saliva

Cortisol-S pre-HCORT 0.91 0.30 0.93 0.16

Cortisol-S post-HCORT 1.54 0.44 1.68 0.19

Cortisol-S pre-PLACEBO 0.85 0.13 0.95 0.11

Cortisol-S post-PLACEBO 0.75 0.19 0.91 0.14

Arginine vasopressin AVP

AVP pre-HCORT 1.94 0.26 2.16 0.28

AVP post-HCORT 2.05 0.27 2.12 0.19

AVP pre-PLACEBO 1.98 0.24 2.23 0.28

AVP post-PLACEBO 2.11 0.37 2.14 0.32
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To examine Condition effects, we conducted a paired t
test on the change scores of OT between conditions by
each group. There was a Condition effect in the TD group
(mean condition differences = 616.6; SD = 929.89, t(10) =
2.0; p = .05), but not in the ASD group (mean condition
differences = −73.91, SD = 760.56, t(13) = −.36, p = .72).
Given that the condition difference was in opposite direc-
tions between diagnostic groups, it is clear that the con-
dition effect is significantly different between diagnostic
groups.
Using ANOVA, the AVP results revealed no Time effect

F(1,23) 0.23, p = 0.64. Moreover, there was no Time ×
Group F(1,23) 2.52, p = 0.13, Condition × Group F(1,23)
0.80, p = 0.78 or Time × Condition × Group interaction
F(1,23) 0.26, p = 0.62.
Additional statistical approaches were employed to fur-

ther explore the measurement and change of cortisol.
Since hydrocortisone is pharmaceutical cortisol, analyses
focused on confirming expected differences across the
conditions and demonstrating the strong relationships
between plasma and salivary cortisol. Paired sample t tests
of logged data showed a significant difference in plasma
cortisol t(24) −8.21, p = 0.001, and salivary cortisol t(24)
−8.23, p = 0.001 following HCORT indicating an expected
rise in circulating cortisol in response to administration of
hydrocortisone. However, there was not a significant
difference in cortisol following PLACEBO t(24), 1.82, p =
0.08. Thus, plasma and salivary cortisol rose in response
to the pharmaceutical challenge but remained unchanged
showing comparable values across the groups for the
PLACEBO condition (see Fig. 2).
Levene’s Test for Equality of Variances was used to

examine variability for each of the hormones. Results
revealed a significant difference for cortisol plasma HCORT

F (1,23) = 4.31, p = 0.05; however, there were no significant
between-group differences on the salivary cortisol, OT, or
AVP levels.
Pearson product moment correlations were conducted

to examine associations between the hormones. For the
total sample, plasma and salivary cortisol were highly
correlated r = .99, p = 0.001, as expected. There were no
significant correlations between OT, cortisol, and AVP
during baseline, pharmaceutical challenge, or placebo
(all p > 0.05). In regard to within-group correlations, for
the ASD group, the only significant comparison was OT
and cortisol following HCORT r = −.47, p = 0.05. As Fig. 1
illustrates, the two groups showed opposing directional
effects. For the TD group, the only significant correlation
was between OT and cortisol at baseline r = .53, p = 0.05
(see Fig. 3).
In regard to hormone levels and symptom profile, there

were a few correlations. In the TD group, the SRS (impair-
ment scale of social functioning) was positively associated
with baseline plasma cortisol (r = .68, p = 0.02) and AVP
(p = 0.03). In the ASD group, there was a modest negative
trend for the SRS and AVP baseline (r = −.54, 0.08). There
were no significant correlations between the SRS and post
hydrocortisone or placebo administration (all p > 0.05).

Discussion
The current study was designed to investigate cortisol, OT,
and AVP under baseline, pharmaceutical HCORT, and
PLACEBO conditions in children with ASD and TD. In
regard to OT, it was predicted that children in both groups
would show comparable baseline values; however, children
with TD would show an increase in OT to HCORT and a
decrease in OT to the PLACEBO. Conversely, it was
predicted that children with ASD would show a decrease in

Fig. 1 Mean oxytocin change across conditions (hydrocortisone and placebo) and group (ASD and TD). The mean OT change between post
minus prehydrocortisone (HCORT, blue) and placebo (red) administration between children with ASD and TD. In the TD group, there was a
significant change in OT during HCORT compared to placebo condition. In contrast, the ASD group did not show a significant change in OT
between the conditions
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OT following both HCORT and PLACEBO suggesting that
endogenous OT would fail to serve as a stress buffer.
Finally, it was predicted that cortisol and OT values would
be negatively and positively correlated with the social
responsiveness profiles, respectively.
There were no between-group baseline differences for

OT which do not support the oxytocin-deficit hypothesis

model in autism [40, 67, 117] as children with and with-
out ASD showed comparable baseline OT plasma con-
centration prior to HCORT and PLACEBO supporting
our hypothesis. There were also no significant differ-
ences in AVP, which is similar to Miller and colleagues
[61] that challenged the prevalent notion that these neu-
ropeptides are lower in children and adolescents with

Fig. 2 Levels pre- and posthydrocortisone (HCORT) challenge across groups. The mean log salivary and plasma cortisol and plasma arginine
vasopressin (AVP) are shown for pre- and post-HCORT administration in children with typical development (TD; white) and autism spectrum
disorder (ASD; gray)

Fig. 3 Correlations between plasma cortisol and oxytocin (OT) following administration of hydrocortisone (HCORT) in children with TD (blue) and
ASD (red). As shown, there are opposing relationships between the groups. Within-group correlations in the ASD children revealed a negative
correlation between OT and cortisol following HCORT administration
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ASD. The findings are also in agreement with Parker
and colleagues [118] that showed no baseline plasma dif-
ferences in OT in a large sample of participants indicat-
ing similar circulating concentration between children
with ASD and non-ASD children.
Following the administration of hydrocortisone, an

inverse relationship was observed for the typically deve-
loping children such that OT increased during phy-
siological challenge and remained stable or decreased
during placebo administration. As predicted, these find-
ings suggest that OT played a stress-buffering role dur-
ing cortisol administration. The decrease in OT during
the placebo condition supports the idea that the lab
procedures were not inherently stress producing. Yet for
the ASD group, OT remained stable or decreased during
both the physiological challenge and the placebo condi-
tion, suggesting that OT failed to serve as a stress buffer
under conditions of physiological stress.
While OT has been tied to the social ability of children

with ASD [119], the diminished moderating effect of OT
may play a contributory role in the heightened stress
often observed in children with ASD especially during
social interactions [1–3]. In other words, in addition to
experiencing heightened stress in response to novel and
changing situations, it appears that oxytocin does not as-
sist in ameliorating stress once activated. Thus, the results
contribute to the growing complexity in our understand-
ing of the effects of OT on social behavior including indi-
viduals on the autism spectrum [87].
Even though AVP is structurally similar to OT, there

were no significant differences between the groups, over
time, or across conditions. Additionally, there were no
significant correlations between AVP and the other hor-
mones. It is important to note that there was significant
variability in the samples, especially in the TD group dur-
ing the placebo condition. It is possible that this larger
variability and rather small sample size may have pre-
vented the detection of plausible differences.
It was hypothesized that children in both groups would

show comparable baseline values of cortisol and an ex-
pected increase following HCORT, which was supported.
Participants evidenced a significant rise in both plasma
and salivary cortisol following the hydrocortisone chal-
lenge, which was not demonstrated in the placebo condi-
tion. Therefore, children with and without ASD showed
an adaptive rise in peripheral concentrations of cortisol
following controlled pharmaceutical administration sug-
gesting no systemic dysregulation of the LHPA axis under
such conditions.
Previous studies have shown a tendency for greater

variability in the expression of cortisol in children with
ASD [1, 3]. While the current findings showed significant
variability in plasma cortisol following the administration
of hydrocortisone, it was observed in the TD not the ASD

group. It may be the case that context and the type of
stressor play an important role in the individual expres-
sion of cortisol between and within groups as has been
previously suggested [1, 3].
In addition to the primary analyses described above,

associations between the hormones were explored.
While there was an inverse relationship between OT
and cortisol following the administration of hydrocor-
tisone in the ASD group, it did not reach significance.
Nevertheless, it appears to be consistent with the ob-
served interaction between the groups, time, and condi-
tion such that the children with ASD seemed to show a
down regulation of OT when physiologically challenged
which was opposite of the TD group. There was also a
trend level positive correlation at baseline between cor-
tisol and OT suggesting the expected synergistic rela-
tionship between arousal and stress buffering between
these hormones.
The current study induced a stress response via pharma-

ceutical challenge therefore removing individual differences
based on perceived stress. This allowed for the examination
of regulatory hormonal response under carefully controlled
dose and response conditions without the impact of influ-
ential processive factors [13]. Moreover, the randomized,
double-blind, crossover design limited bias and enabled
direct comparison between the participants across compa-
rable physiological conditions. As a result, alternative
explanations not related to the experimental condition
(HCORT) such as history, testing, or statistical effects
(e.g., regression to the mean) [120] were minimized or
removed. To our knowledge, this is the first experiment in
which cortisol levels were experimentally manipulated in
order to methodically examine the regulation of oxytocin
during stress induction.
Despite the strengths of the study, there are limitations

to acknowledge. Most notably, the pilot study included a
rather small sample of high-functioning participants
with ASD and TD within a rather narrow age range.
Thus, the generalizability of the findings may be limited
based on functioning level and age. We also acknow-
ledge that the measurement of peripheral OT, AVP, and
cortisol is only a proxy for underlying regulatory pro-
cesses. The extent to which these peripheral hormones
individually and collectively represent the underlying
physiological complexity is unclear. In particular, there
remains a controversy in the field regarding OT with
some proponents insisting on extraction methods [111,
112]. In consideration of this debate, our decision to not
extract OT may be considered an additional limitation
of the study.

Conclusions
These data build on previous models showing that the
interplay between OT and stress is complex and
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influenced by many factors {Heinrichs, 2008 #797; Tay-
lor, 2006 #736; Turner, 1999 #794}. These findings pro-
vide the foundation and justification for future work
exploring biobehavioral influences to elucidate the
heterogeneity in social functioning and stress modula-
tion in autism. Moreover, the findings emphasize the
complexity of not only the social presentation of chil-
dren with ASD but also the underlying associated hor-
monal profile that warrants critical consideration. The
future study of neurohormone regulation in general, in-
cluding the modulatory role of OT on physiology, is es-
sential especially as frequent and unregulated treatment
with OT is emerging [87]. Moreover, the impact of other
factors, such as context and social support will be import-
ant to explore as plausible mediating variables in the com-
plex interplay between oxytocin and cortisol regulation.
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