
RESEARCH Open Access

Analysis of TDMA scheduling by means of
Egyptian Fractions for real-time WSNs
Wim Torfs* and Chris Blondia

Abstract

In Wireless Sensor Networks (WSNs), Time Division Multiple Access (TDMA) is a well-studied subject. TDMA has,
however, the reputation of being a rigid access method and many TDMA protocols have issues regarding the
entering or leaving of sensors or have a predetermined upper limit on the number of nodes in the network. In this
article, we present a flexible TDMA access method for passive sensors, that is, sensors that are constant bitrate
sources. The presented protocol poses no bounds on the number of nodes, yet provides a stable framing that
ensures proper operation, while it fosters that every sensor gets its data on time at the sink and this in a fair
fashion. Even more, the latency of the transmission is deterministic and thereby enabling real-time communication.
The protocol is developed, keeping in mind the practical limitations of actual hardware, limiting the memory usage
and the communication overhead. The schedule that determines when a sensor can send can be encoded in a
very small footprint and needs to be sent only once. As soon as the sensor has received its schedule, it can
calculate for the rest of its lifetime when it is allowed to send.

I. Introduction
A Wireless Sensor Network (WSN) is an interesting
type of network which can be used for several objec-
tives. For instance, data monitoring is such application,
where sensors send data at regular intervals. Such net-
works consist of devices that are considered to be small,
low cost and with limited resources, such as a low
amount of working and program memory, low proces-
sing power and a low battery capacity. Such kind of net-
works are presumed to work in an unattended fashion
and it is often difficult or labor intensive to provide any
maintenance to the sensors.
It is a challenge to perform monitoring as efficiently as

possible due to the limited resources available in such
sensors. Since the sensors need to work in an unat-
tended fashion, it is favored that the battery lifetime is
as large as possible. However, data should be sent at
regular intervals, with the exception of event monitoring
where data is transmitted only if an event has been posi-
tively identified. Moreover, lengthy processor intensive
calculations, such as complex data processing, are dis-
couraged due to the drainage of the battery. Therefore,
we focus our research on the continuous monitoring

applications where no preprocessing of the sampled data
is performed on the sensors. As a consequence, every
sensor can be considered as a constant bitrate source, of
which the bitrate depends on the type of sampled data.
This results in a heterogeneous WSN that needs to be
able to cope with different rates in a flexible manner.
Algorithms specifically designed for WSNs, should

enable a sensor to enter a sleep state on a regular basis
to limit the battery drainage and hence preventing idle
listening and overhearing. Collisions during the trans-
mission of packets should be prevented, since a retrans-
mission leads to waste of battery power. TDMA is a
class of protocols that not only avoids collisions, but
also provides a sleep schedule. However, there are a few
issues concerning the use of TDMA in WSNs.
First, a WSN needs to be flexible with regard to the

number of sensors and the heterogeneous properties of
the network. TDMA on the other hand makes use of a
rigid frame structure. A variable slot size or a variable
number of slots in a frame is not desirable because of
this strict schedule that needs to be followed by every
sensor. Changing the slot size or number of slots every
frame, amounts to passing a new schedule to all nodes
every frame. Keeping in mind that the wireless medium
is lossy, there is no guarantee that all sensors adopt

* Correspondence: wim.torfs@ua.ac.be
University of Antwerp-IBBT, Middelheimlaan 1, 2020 Antwerp, Belgium

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

© 2011 Torfs; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81277601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wim.torfs@ua.ac.be
http://creativecommons.org/licenses/by/2.0

the same schedule since they might have missed its
announcement.
Secondly, TDMA-based protocols often pose an upper

limit on the number of sensor that can be supported in
the network. A protocol for a WSN should not have
such bounds. The area of interest where monitoring is
provided should be easy to extend, without any limita-
tion on the maximum number of sensors.
We propose a TDMA scheduling algorithm that com-

plies to the characteristics of both, that is, it is flexible,
but also makes use of a rigid framework. By means of
Egyptian Fractions and binary trees, we can compose a
TDMA schedule that allows sensors to send in specified
slots during certain frames, just enough to guarantee
their required bandwidth and hence minimizing the bat-
tery drainage. This schedule is periodic, resulting in a
TDMA schedule that needs to be sent only once, which
leads to a low protocol overhead. The protocol poses no
boundary on the number of nodes, only the available
bandwidth provides an upper bound. Due to the specific
construction of the schedule, additional bandwidth allo-
cations do not require other sensors to adjust their
schedule. A supplementary property of the schedule is
that the latency is perfectly predictable, which means
that the protocol is suited for real-time applications.
One of the goals is to keep the protocol as realistic as

possible, taking into account the hardware limitations
such as limited memory and processing power. To
prove the previous statement, an actual implementation
of the protocol on Tmotes was described in our pre-
vious paper [1]. It describes superficially the protocol
itself, and is more focused on an actual implementation
of the protocol than the analysis of the operation of the
protocol. On the contrary, in this article, we provide an
extensive explanation regarding the internal operation of
the protocol. Furthermore, this article analyzes in detail
the theoretical real-time behavior of our protocol and
deduces a formula that predicts the latency that can
be expected. The measurements in [1] verify whether
this formula also applies when using a practical
implementation.
In the next section, some of the related work is

described. The third section presents the algorithm.
After that, a thorough analysis of the algorithm is given,
based upon a perfect node and traffic. The fifth section
describes the effects of a bursty arrival of the data. And
the last section concludes our findings.

II. Related work
Energy efficiency is a frequently discussed topic in pro-
tocols for WSNs, such as S-MAC [2] and T-MAC [3],
where the available time is split up in an active time
and a sleep time. During the active time, the protocols
use the standard CSMA method to communicate. As a

result, these protocols still have problems regarding
overhearing, idle listening and collisions during their
active periods. TDMA-based protocols, such as L-MAC
[4], A-MAC [5], a dynamic TDMA scheme [6] and ped-
amacs[7], do not have such issues. These protocols use
the wireless medium only when it is required to receive
or send data. Otherwise, their transceivers do not need
to be enabled. The problem is that these protocols are
designed for a certain purpose. In other situations, these
protocols might not behave as well as they were
designed for. The biggest issue posed by these schemes
is while considering energy efficiency, the actual
required throughput is neglected, where a large amount
of energy can be saved.
Our algorithm allows every sensor to use the wireless

medium for a time, proportional to its requested band-
width. The Weighted Fair Queuing (WFQ) [8-10], also
known as packet-by-packet generalized processor shar-
ing (PGPS) [11], provides the capability to share a com-
mon resource, and gives guarantees regarding the
bandwidth usage. WFQ is a widely referred to protocol
in the scheduling theory to achieve a fair schedule. Our
algorithm uses a fractional representation of the
requested bandwidth in order to determine the number
of resources. WFQ uses a comparable method, as it is a
packet approximation of Generalized Processor Sharing
(GPS) [12], where every session obtains access to the
resource, but only for 1/Nth of the bandwidth, where N
represents the available bandwidth divided by the
requested bandwidth.
In [13], the requested bandwidth is also split up

according to some common factor, which forms the key
to find a schedule. The schedule is used to create an
allocation pattern, such that the obtained rate of the
allocation is larger than the requested rate. The schedul-
ing itself is done by means of Earliest Deadline First
(EDF) scheduling.
[14] claims too that bandwidth is being wasted by too

large slots. The concept of a shared real-time communi-
cation channel is introduced in this article. The slots
that belong to such a shared channel can be used by a
certain number of senders. These senders have the right
to send data during this slot. In order to resolve con-
flicts between the senders, the authors rely on the
underlying multiple access bus.
The concept of scheduling resources fractionally

is also used in [15], a protocol designed for video
conferencing.
In [16], we have already presented the basic idea for

the protocol described here, that is, the time divisioned
usage of a slot by multiple sensors. By means of calcula-
tion of the common factor between requested bitrates, a
scheduling scheme can be found that allows the sharing
of a single slot by multiple nodes through a round-robin

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 2 of 20

like scheme. We proposed in this article to use the
greatest common divider (gcd) as a common factor,
which is a valid solution for bitrates that have a low
least common multiple (lcm). However, since the peri-
odicity is determined by the value of the lcm, it results
in far too big cycles when the gcd is significantly
smaller compared to the bitrates. Another disadvan-
tage of this method is shown in [17], where it is men-
tioned that round-robin scheduling results in a fair
schedule if all data amounts are equally sized. If they
vary too much, nodes with more data are favored over
others.
GMAC [18] is a protocol that utilizes the geographical

position of its two-hop neighbors. It makes use of a
technique comparable to our algorithm to share the
medium by allowing nodes to use a certain slot in speci-
fied frames. It defines a superframe, which is split up
into c cycles. Each of these cycles is then split up into s
slots. One cycle represents a rotation in a geometric cir-
cle, that is, every slot represents 360

s degrees. A require-
ment of the protocol is that all nodes are synchronized
and rotate in the same direction. When a node is posi-
tioned along the current angle of another node, it may
send its data to this node. Depending on the density of
the network, it could happen that multiple nodes belong
to the same slot. The cycle in which a node is allowed
to use the slot is specified by cells.
The most interesting related work to our knowledge is

[19], which deals with most regular sequences. A most
regular binary sequence (MRBS) is used to express the
requested rates that form a rational fraction of the total
available bandwidth. This results in a cyclic and deter-
ministic sequence, which specifies for each session in
which slot data should be sent in order to achieve the
requested rate. However, the most regular sequences of
different sessions can try to allocate the same slot,
which needs to be solved by means of a conflict resolu-
tion algorithm. By means of a most regular code
sequence (MRCS), it is possible to share a single slot,
but the details about the allocation is neglected. The
MRCS creates exactly the same sequence as the MRBS,
with the exception that the ones and zeros are replaced
by codes, which are a power of two, respectively, higher
and lower than the requested fraction of the capacity.
This result in a rate that is too fast in some cases, too
slow in other cases, which leads to an average rate equal
to the requested rate.

III. The algorithm
The first goal of our protocol is to create a periodic
TDMA schedule at runtime. The schedule should allo-
cate bandwidth to the sensors, such that it approximates
the requested bandwidth. The periodicity of the sche-
dule ensures that the scheduling information needs to

be given only once. The second objective is to allow a
regular data flow from all sensors, both from high and
low bandwidth sensors. Furthermore, it is our aim that
any change in the network (and thus schedule), must
not have any impact on the already existing schedules.
All of these goals need to be fulfilled while restricting
the protocol overhead. Our solution to meet these
requirements is twofold. First, we approximate the frac-
tion of the requested bandwidth over the available band-
width per slot, by means of an Egyptian Fraction [20,21],
that is, a sum of distinct unit fractions. Second, in order
to guarantee a collision free operation, every unit frac-
tion is scheduled by means of a binary tree.

A. Methodology
In order to comply to a request for bandwidth, a suffi-
cient number of slots needs to be allocated. The number
of slots required to comply to the requested bandwidth
per frame, is equal to the division of the requested
bandwidth by the available bandwidth per slot. This
results in an integer part and a fractional part. In order
to make the most efficient use of the available band-
width, the fractional part is approximated by means of
an Egyptian Fraction, where the unit fractions have a
denominator equal to a power of two. The last fraction
needs to be the lowest possible unit fraction, which still
is big enough such that the approximation is at least
equal to the fractional part. For example, the fraction
435
116 can be approximated as: 3 + 1

2 + 1
4.

We also represent the remaining integer part as an
Egyptian Fraction, multiplied by the number of slots per
frame. Thus, the resulting unit fractions need to be the
representation of the integer number of slots, divided by
the total number of slots per frame. It is required that
the number of available slots per frame is equal to a
power of two, since we are working with Egyptian Frac-
tions that have a denominator equal to a power of two.
Hence, the fraction 435

116 would be approximated as:

2 + 1 + 1
2 + 1

4. The inverse of every unit fraction can be
considered as the number of frames that determine the
interval between two subsequent slots. Due to this cycli-
cal character, it is sufficient to indicate the start position
of the cycle in order to have a completely defined slot
schedule. The start position of each fraction, which is
defined as the offset relative to the start position of the
first fraction, is obtained through a binary tree, depicted
in Figure 1.
This is clarified by means of an example. The

positions for each of the following fractions
1
2 + 1

4 + 1
8 + 1

16 + 1
32 can be found by following the tree

until its level has been reached. The most restrictive
fraction, 1

2, uses the resource half of the time. Thus, it
can have 0 or 1 as start position. Both positions in the

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 3 of 20

binary tree at the level of 1
2 are still free. As a rule, first

the path with the 0 is followed, hence position 0 is pre-
served for the fraction 1

2. The next unit fraction that

needs to be scheduled, is the fraction 1
4. Fraction

1
2

already occupies position 00000 and 00010, the only
remaining positions at the level 1

4 are 00001 and 00011.
The rule to follow first the path with a 0 leads to the
reservation of position 00001 for the fraction 1

4. By
repeating the procedure for all unit fractions, a start
position can be found for each unit fraction, such that
no fraction interferes with another. The resulting alloca-
tion of the positions can be found in Figure 2.
The start positions of the fractions are determined by

means of a binary tree method, but can also be
expressed as a formula. Formula (1) depicts the start
position, Fposn, of a fraction fn, expressed as the offset
relative to the start position of the first fraction, f0.

Fposn =

⎧⎨
⎩
0 (n = 0)
n−1∑
i=0

1
2
1
fi
(n > 0)

(1)

with fi being the unit fractions. Knowing that the unit
of fi is

1
frames, the start position, Fposn, is expressed as

the number of frames. The Formula (1) denotes that the
offset is equal to the half of the sum of all periods of
previous fractions. From this can be derived that the
start position of fraction fi occurs in the middle of the
period of fraction fi-1.

B. Example
In order to illustrate the operation of the protocol, we
show the resulting slot allocation of the requested band-
width, equal to 2.75 bytes per frame, with eight slots of
one byte per frame. By dividing the requested rate
through the slot size, we obtain the number of slots per
frame necessary to provide part of the requested band-
width. Representing the resulting integer number as the
total number of slots per frame, multiplied by an Egyp-
tian Fraction, leads to: 8 × 1

4 = 2. This unit fraction

(1
2−1) is positioned at slot zero of frame zero, according
to the binary allocation formula, Formula (1).
Since the bandwidth of the scheduled slots is not yet

sufficient to handle the requested rate, extra slots need
to be scheduled. The remaining bandwidth, that needs
to be scheduled, is equal to 0.75. The fraction 0.75

1 ,

which can also be written as 3
4, needs to be represented

as an Egyptian Fraction. The resulting series is equal to
1
2 + 1

4.

The starting position for fraction 1
2 is equal to: 1

2 × 1
2,

according to Formula (1). Therefore, the fraction starts
in slot two, since the total number of slots per frame,
multiplied by the starting position, represents the start-
ing position as the slot number, instead of the frame
number. The calculation of the starting position for

fraction 1
4, reveals that the fraction starts at: 1

4 + 1
2 × 1

1/2,

which is equal to 1
4 + 1. This means that fraction 1

4 is

scheduled, such that it uses the same slot as fraction 1
2,

but in different frames, the starting position of fraction
1
4 is slot two in frame one.
The result is shown in Figure 3, where the requested

rate is represented as: 2 + 1
2 + 1

4. Fraction 2 is scheduled

in slots 0 and 4 in each frame. Fraction 1
2 is scheduled

in slot 2 in frames 0, 2, 4,... and fraction 1
4 is scheduled

in slot 2 in frames 1, 5, 9,....
The allocation of the slots provides a bandwidth of 11

bytes, each four frames. Converting this to the available
bandwidth per frame, results in 2.75 bytes per frame,
which is the requested bandwidth.

C. Discussion
We consider every requested bandwidth as being a frac-
tion of the total available bandwidth. Due to the
requirement of having a periodic slot allocation sche-
dule, we need to find a common factor between the
fractions that represent the requests of the different sen-
sors. The gcd can be considered as such a common fac-
tor. However, calculating the gcd of all fractions, yields
to a different schedule each time a new request is
added. This conflicts with our requirement that an
update of the schedule should not pose any conflicts

Figure 1 Binary tree.

Figure 2 Binary split allocation of 1
2+

1
4+

1
8+

1
16+

1
32.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 4 of 20

with the already existing slot allocations. As Figure 4
shows, unique unit fractions that have denominators
equal to a power of two can be easily combined without
resulting into conflicts. Additional unit fractions can be
fitted in the remaining space, without disturbing the
already allocated fractions.
The fraction of the requested bandwidth over the

available bandwidth can be approximated according to
such unit fraction. However, a simple approximating of
the fraction leads to a large quantization error. Hence,
the approximating of the requested fraction by an Egyp-
tian Fraction, where all unit fractions have a denomina-
tor equal to a power of two. By multiplying the resulting
Egyptian Fraction by the number of slots per frame, we
obtain the number of slots used per frame. The remain-
ing fractional terms indicate that a slot is scheduled
once during the period determined by the fraction. This
period, which is expressed in number of frames, is equal
to the inverse of the fraction.
In order to prevent an infinite series that results in an

unstable system, two constraints are introduced. First,
the largest possible denominator is bounded in order to
prevent infinite or very long sequences. Second, the
total number of slots per frame needs to be a power of
two, such that the fraction of the requested slots over
the total number of slots can be represented perfectly
by means of an Egyptian Fraction with a denominator
equal to the power of two.
An interesting property of this action is that the

requested bandwidth is split up into higher and lower
frequency parts. A sensor gets access to the medium at
least in periodic intervals equal to the highest frequency.
The lowest frequency determines the cycle.
By considering the requested bandwidth as a fre-

quency, it is possible to allocate the number of required
slots once during the period of that frequency. A band-
width request of half the bandwidth, would then have a
frequency of 1

2. Applying the proposed method would
allocate a slot every two slots for this request, resulting
in an evenly distributed allocation. This prevents a

sensor from monopolizing the wireless medium, and
thus obstructing other sensors.
Also, since every unit fraction of the approximation

can be considered as a frequency, we only need a start-
ing position to obtain a fully determined slot allocation
schedule. The use of a binary tree guarantees that any
additional fraction does not interfere with the already
scheduled fractions, but it also ensures that the fractions
are equally spread out over the available slots. From the
Formula (1), which represents the binary tree in a math-
ematical form, and Figure 3, it can be noticed that the
starting position of every fraction is in the middle of
two successive slot schedules of the previous fraction.
Hence, we obtain the interference free and equally
spreaded slot allocation. The scheduling problem is thus
reduced to merely following the path in a binary tree
and checking whether the path is still free.
The accuracy of the Egyptian Fractions, regarding the

fractional slots, depends on the smallest possible unit
fraction. The lower this unit fraction, the more accurate
the approximations are, but also the more frames a
cycle consists of. This will be discussed in detail in the
following sections.
Note that the approximation is a series of fractions of

which the denominator is equal to a power of two. This
information can be contained through a binary repre-
sentation by representing each fraction as a single bit.
Moreover, the advantage of using a periodic system, is
that there is only need for the frequency and the start
position. In this way, a lot of information can be given
with only a few bytes of data.
For example, if the precision of the fractions is 128

(the lowest possible fraction is 1
128), the sum of fractions

1
4 + 1

32 + 1
64 can be expressed as (128 × 1/4)+(128 × 1/

32)+(128 × 1/64), or simplified as 32+4+2. Putting this
in a binary representation results in 0010 0110. Only a
single byte is needed in order to represent the entire
Egyptian Fraction. For each unit fraction, the starting
position needs to be indicated, that is, the slot id and
the frame in which it is scheduled. The size of the slot

Figure 3 Allocation of 2.75 bytes per frame in a frame with a capacity of 8 bytes.

Figure 4 Binary split up.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 5 of 20

id is determined by the number of slots within a frame,
while the size of the frame information is determined by
the precision of the fractions. Altogether, for a network
with 8 slots per frame, and a fraction precision of 128,
one byte is required to represent the fractions and 3 + 7
bits per fraction for the slot id and the frame, respec-
tively. With a precision of 128, a maximum of 7 frac-
tions can be achieved, which means 7 × 10 + 7 bits,
which is equal to 77 bits, this is 10 bytes to send a com-
plete assignment information, which needs to be sent
only once to the requesting sensor.

D. Implementation
The aforementioned protocol is a centralized algorithm
to schedule slots in a TDMA-based MAC. Therefore,
the protocol can be combined with several TDMA
MACs. In [1], we provided an example implementation,
based upon a tree topology, where we first let the sen-
sors synchronize to each other. Afterwards, the new sen-
sor needs to announce its required bandwidth by
sending an identification packet to its parent, which it
forwards to the sink. Since this is the only moment
where a collision could occur, a backoff method needs
to be used, which allows a sensor to send this request
again after a variable number of frames, if it has not
received any acknowledgement yet. The sink uses the
scheduling protocol to calculate the slots that need to
be allocated and sends the slot allocation to this new
sensor. As soon as the sensor receives its slot allocation,
it can go into active mode, start transmitting its data
and start listening to new sensors as well.

IV. Scheduling analysis: ideal data arrival rate
In order to analyze the performance of the proposed
scheduling method, we simulate the scheduling on a sin-
gle sensor that has a maximum bandwidth of 19,200 bits
per second. Unless otherwise mentioned, all simulations
make use of a frame with a duration of one second,
consisting of eight slots, each having a capacity of 300
bytes and a duration of 125 ms. The bandwidth of a sin-
gle slot per frame is thus 300 bytes per second.
First, an approximation of the fraction of the

requested rate over the maximum capacity is made, i.e.,
representing the fraction as an Egyptian Fraction. The
unit fractions contained in this sequence are scheduled
one by one, and afterwards, an analysis is performed by
simulating the progress of time concerning the sensor
network operation. The simulations are performed for
various bandwidths, that is, every possible integer rate in
bytes per second, lower than the maximal capacity. The
resulting buffer size and latency are calculated for every
rate. Figure 5 depicts a flow of the scheduled outgoing
data by using our scheduling algorithm and the ideal
linear gradient of the data arriving at a certain rate. It

illustrates the definitions of latency and buffer size. The
latency is defined as the time between the ideal gradient
and the flow of our protocol. If we consider the ideal
flow to be the incoming data that needs to be processed
by our protocol, we can say that the latency is the maxi-
mum time that the incoming data needs to wait before
being processed. The buffer size can be defined as the
amount of data that needs to be stored, before it can be
processed. From these definitions, it is clear that the
latency is in direct relation to the buffer size, i.e.,
latency = buffer size

rate . Since the analysis is more intuitive
from a buffer size point of view, we first analyze the
buffer size to have an idea of the latency.

A. Maximum buffer size
According to the methodology of the protocol, slots are
allocated at periodic intervals, determined by a series of
frequencies that approximate the requested rate. The
allocations are made such that the reserved bandwidth
is lower than the requested bandwidth, until a slot is
scheduled according to the last frequency in the series.
The last slot allocation compensates the difference
between the requested bandwidth and the already allo-
cated bandwidth.
This design can also be found in Figure 6, which

depicts the ideal arrival of the data (blue dotted line)
and the scheduled transmission of the data (red line)
according to our scheduling protocol.
The requested arrival rate is 77 bytes per second and

is approximated by 1
4 + 1

128. The resulting Egyptian Frac-
tion signifies that one slot is used for 1/4th + 1/128th of
the time. According to our algorithm, slots need to be
allocated to the sensor in a periodic manner. Every 4
frames, a slot needs to be allocated to the requesting
sensor. And every 128 frames, one extra slot is reserved
to compensate the difference between the ideal arrival
rate and the previously reserved bandwidth.

 19100

 19200

 19300

 19400

 19500

 19600

 19700

 19800

 19900

 2016 2048

N
um

be
r o

f b
yt

es
 s

ch
ed

ul
ed

Slots

Latency

Buffer

scheduled flow
ideal flow

Figure 5 Latency and buffer size definitions.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 6 of 20

Since the sum of both fractions is less than the band-
width of a single slot per frame, the same slot is used
for the whole request. By means of the binary tree, the
first frame in which the slot is scheduled, can be calcu-
lated for each fraction. The slot is scheduled the first
time at frame zero for fraction 1

4. For fraction 1
128, the

slot is scheduled the first time at frame two.
Thus, the sensor can use the slot at frames 0, 4, 8,

12,... as a result of fraction 1
4. And the same slot can be

used by the sensor at frames 2, 130, 258,..., to realize
fraction 1

128.
Figure 6 shows the slotted operation, which can be

noticed by the resulting step format of the scheduled
data. The fact that the number of arriving data rises fas-
ter compared to the slotted transmission of the data, is
a result of the scheduled slots according to a unit frac-
tion that provides a lower bandwidth compared to the
requested bandwidth. The difference between the arriv-
ing and outgoing data increases, until slot 2064 (indi-
cated in the small figure on the top left corner of Figure
6), which is slot zero of the 258th frame. This is the slot
that is scheduled according to fraction 1

128 in order to
compensate for the difference between the ideal arrival
rate and the already reserved bandwidth.
This indicates that the protocol complies to our objec-

tive, there is a kind of periodicity in the behavior of the
protocol. From the figure it can be noted that the period
is 1024 slots, or 128 frames. The length of this period is
determined by the number of slots and the lowest frac-
tion which the approximation consists of. We elaborate
on this item later on.
Due to the representation of the requested bandwidth as

an Egyptian Fraction, which results in this periodicity, not
all available data is sent immediately. This can also be
seen in Figure 7, which depicts the buffer size during the

different slots for the request of 77 bytes, scheduled as
1
4 + 1

128. More data is arriving than being transmitted dur-

ing the scheduled slots for fraction 1
4. This explains why

the buffer size is increasing until the slot for fraction 1
128 is

scheduled. Based on the results that have been shown so
far, it can be expected that it is possible to calculate the
maximum buffer size. Within the period of 1

128, 32 slots

that represent fraction 1
4 are scheduled. 31 of them result

in an increase of the buffer size with 8 bytes (77 × 4 -
300). Hence, the data that has not been scheduled yet is
248 bytes (8 × 31). The scheduling of that extra slot
resolves the difference between fraction 1

4 and the ideal
arrival rate. This results in a periodic behavior of the buf-
fer size with an interval determined by the lowest fraction,
which is here 1

128. The maximum buffer size is obtained
when the last slot is scheduled that is not according to the
last unit fraction, i.e., it is the last slot before the schedul-
ing of a slot according to the last unit fraction. Since at
that moment a complete slot is yet to be transmitted, the
maximum buffer size is equal to the calculated amount of
data that has not been scheduled yet, increased by the size
of a slot. By adding the 300 bytes of the slot size, we get a
maximal buffer size of 548 bytes. If we compare this to the
figure, we see that this calculation is a perfect match to
the obtained maximum buffer size.
To generalize, we claim that by means of Formula (2),

the maximum buffer size can be calculated, based upon
the following parameters: the requested amount, the slot
size and the Egyptian Fraction that approximates the
requested amount.

Max buffk = R
1
f0

+
k∑
i=1

(
fi−1

fi
− 2

)
1
fi−1

(
R −

i−1∑
j=0

fjS

)
(2)

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 1024 1280 1536 1792 2048 2304 2560 2816

N
um

be
r o

f b
yt

es
 s

ch
ed

ul
ed

Slots

scheduled flow
ideal flow

 1984 2048 2112

Figure 6 Approximation with 8 slots, compared to linear
increasing function for 77/2400, approximated to 1/4 + 1/128.

 250

 300

 350

 400

 450

 500

 550

 1024 1280 1536 1792 2048 2304 2560 2816 3072

B
uf

fe
r s

iz
e

(B
yt

es
)

Slots

 128 160 192 224 256 288 320 352 384
Time (s)

Figure 7 Buffer occupation, total amount of resources is 2400
bytes per second, the requested amount is 77, approximated
to 1

4+
1

128.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 7 of 20

with R being the requested bandwidth (bytes per
frame), f0 ... fn being the unit fractions that form the
approximation and S (bytes) representing the slot size.
The proof can be found in Appendices A, B, and C.
As an example, we calculate the maximum buffer size,

according Formula (2) for the request of 77 bytes per
second, approximated as 1

4 + 1
128:

Max buffer = 4 × 77 +
(
128
4

− 2
)

× 4
(
77 − 300

4

)
= 308 + 30 × 4 × 2

= 548

(3)

The formula matches with the measured result. The
fact that the formula depends on the requested rate and
the Egyptian Fraction gives reason to investigate the rela-
tion between the maximum buffer size and the requested
rate. Figure 8 depicts the measured maximum buffer size
for all the possible integer rates that can be requested
from a resource with a maximal capacity of 2400 bytes
per second and 8 slots per frame. At first sight, the maxi-
mum buffer size seems to behave randomly in function
of the requested bandwidth, but there is a pattern. A
more detailed view of the figure reveals this.
Figure 9 zooms in on the section with requested

bandwidths between 150 and 230 bytes per second.
The full red lines in the figure indicate the maximum
buffer size needed for that request. The dotted
blue lines form the binary representation of the unit
fractions that appear in the approximation of the
requested amount. The top blue line is the smallest
fraction (1

128), the next blue line is the double of the
fraction of the previous line and so on, until we reach
the bottom blue line, that is fraction 1

2. Notice that the
approximation of the requested bandwidth of 185

bytes per second can be deducted from this figure, it is
represented as 1

2 + 1
16 + 1

32 + 1
64 + 1

128. The approxima-
tion of a requested bandwidth of 186 bytes per second
is 1

2 + 1
8.

From this figure can be noticed that the more frac-
tions are used to approximate the requested amount,
the higher the maximum buffer size is. The maximum
buffer size increases in a more steep gradient if an extra
fraction is added to the approximation. Another phe-
nomenon is that if a single larger unit fraction is used,
instead of using a series of unit fractions, the maximum
buffer size decreases. This observation can be made for
example if we compare rate 185 (approximated as
1
2 + 1

16 + 1
32 + 1

64 + 1
128) and rate 186 (approximated as

1
2 + 1

8), indicated by the dotted pink rectangle in the fig-
ure. These observations point out that every unit frac-
tion adds its own surplus to the maximum buffer size.
In summary, the formula and the figures indicate that

each fraction in the approximation adds a certain sur-
plus to the maximum buffer size. Therefore, in order to
decrease the maximum buffer size, the number of unit
fractions within an Egyptian Fraction could be con-
strained. On the other hand, this results in a higher
waste of the available resources since the approximation
is not a tight match, hence, the bandwidth usage effi-
ciency drops. Figure 10 illustrates the effect of limiting
the number of fractions. In the figure, the smallest frac-
tion used is 1

16 (instead of 1
128 in Figure 8). It can be

noted that limiting the number of fractions results in a
large decrease of the maximum buffer size, but also the
fine granulation has been lost. This signifies that the
approximations are not so precise anymore and a lot of
capacity is wasted in favor of the buffer size.

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Requested amount

Figure 8 Measured maximal buffer occupation, 8 slots.

0

200

400

600

800

950

 150 160 170 180 190 200 210 220 230
1/2
1/4
1/8
1/16
1/32
1/64
1/128M

ax
im

um
 b

uf
fe

r s
iz

e
(B

yt
es

)

Requested amount

Figure 9 Measured maximal buffer occupation, 8 slots and
approximation, rates 150 till 230 bytes per second.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 8 of 20

B. Maximum latency
As mentioned before, there is a direct relation between
the latency and the buffer size. This can be noticed when
comparing the gradient of the buffer size (Figure 7) to
the gradient of the latency (Figure 11). The maximum
latency can be considered as the time required to receive
a number of bytes, equal to the maximum buffer size, at
the requested rate (the maximum buffer size divided by
the requested amount equals the maximum latency). For
example, The maximum buffer size of the fraction 77

2400 is
548 bytes. The time needed to receive this data at a rate
of 77 bytes per second is 7.11688 s (548 bytes/77 bytes
per second). Converted to milliseconds, this gives 7116.88
ms, which can be verified in Figure 11.
Intuitively, we can predict that the latency for the

smaller requested amounts will be higher than for the
larger amounts. Requests that are smaller than the size
of a single slot need to share the resource with other

sensors. They get access to the resource once every x
frames, and need to wait relatively long, because they
need to gather enough data to send a large quantity at
once.
Figure 12 shows the maximum latency that occurs for

each integer requested bandwidth, with a maximum
capacity of 2400 bytes per second and 8 slots per frame.
We see that the smaller amounts indeed have a larger
latency. The highest maximum latency can be found at
the requested rate of one and two bytes per second.
Both have a latency of 128,000 ms. However, the latency
has a quadratic gradient and a rather low latency is
quite fast achieved for the requested amounts. The best
latency that can be noticed is 250 ms, which is two
times the slot duration. This is to be expected, because
the highest possible frequency, that can be obtained, is
half the number of slots in a frame. Slots are scheduled
according to this frequency in an interleaving manner,
thus at least every two slots data is sent. The result is
a minimum latency equal to two times the duration of
a slot.
Since the maximum latency can be calculated from

the maximum buffer size, there should be a similar pat-
tern in the gradient of the latency as the one that can
be seen at the gradient of the maximum buffer size,
caused by the sequence of fractions that an approxima-
tion consists of. In Figure 13, being a small section of
the previous figure, it can be seen that although the gra-
dient of the latency is descending, it still shows a similar
behavior as the maximum buffer. The full red lines indi-
cate the maximum latency for that request, the dotted
blue lines are the binary representation of the unit frac-
tions that the approximation of the requested rate con-
sists of, similar as in Figure 9.
The more fractions are used to approximate the

requested amount, the higher the latency is. However,

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Requested amount

Figure 10 Maximal buffer occupation, 8 slots, fractions limited
to 1/16.

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 1024 1280 1536 1792 2048 2304 2560 2816 3072

La
te

nc
y

(m
s)

Slots

Figure 11 Latency of a requested rate 77, approximated to
1
4+

1
128.

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000

La
te

nc
y

(m
s)

Requested amount

Figure 12 Maximal latency, 8 slots.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 9 of 20

we need also to take the data rate into account, which is
a linear increasing function. We can still see the small
inclinations when an extra fraction is added to the
approximation, such as we can see with the maximum
buffer size. But the rate has a big influence on the equa-
tion, such that the result is the quadratic gradient. For
example, the top maximum buffer size is at the request
of 1999 bytes per second (with 8 slots), while the maxi-
mum latency is small at that instance. This is because of
the high data rate of the request. It does not need to
take more time to fill a large buffer at a high data rate
than a smaller buffer at a lower data rate.

C. Latency control
As a consequence of the relation between the latency
and the buffer size, and due to the fact that the maxi-
mum buffer size can be controlled, it is possible to con-
trol the maximum latency. As previously discussed in
Section IV-A, the maximum buffer size can be lowered
by limiting the maximum number of fractions that an
approximation can consist of. The second parameter
that, according to Formula (2), has an influence on the
maximum buffer size, and hence the maximum latency,
is the slot size.
Up till now, we only discussed the results of a virtual

sensor that has a frame with a duration of one second
and is split into 8 slots, that is, a slot size of 300 bytes.
For sensors that do not need to send a lot of data, this
means that they have to wait a long time before they
have gathered enough data to send. Although it is possi-
ble to schedule such low rate sensors in the network, a
more efficient approach is possible. By increasing the
number of slots per frame, while keeping the frame
length constant, leads to a decrease in slot slot size,
hence, a decrease of the maximum latency.

Figure 14 depicts the maximum buffer size for all pos-
sible requests by using 16 slots during an equally sized
frame. We can notice that the figure has a similar gradi-
ent as Figure 8, but with a lower maximum buffer size.
The requested rates, that needed a half slot previously
by scheduling a single slot every two frames, are served
by one full slot now that is scheduled every frame. So it
is obvious that the sensors need to store twice less than
with the bigger slot size. Since a sensor that needed to
wait every two frames to send data, can send every
frame now, it is clear that the data is being forwarded
faster, hence, the latency should be lower. This can be
seen in Figure 15, where the maximum latency is
depicted for a frame that has been split in 16 slots. The
minimum latency, 125 ms, is two times the duration
of a slot.
We notice that, in theory, increasing the number of

slots leads to a lower buffer size and latency. However,
in practice, additional information needs to be sent
together with the data. This information can be about
the source of the data, the type or amount of data, per-
haps a Cyclic Redundancy Check (CRC) so that we are
able to verify whether the data is not corrupted while it
was transferred from one sensor to another. Further-
more, when sending data, the physical layer adds some
hardware dependent bits to the data packet. The size of
this information is independent of the amount of data,
hence, the smaller the slots are, the less efficient the
data throughput.

V. Scheduling Analysis: bursty data arrival
In the previous section, we analyzed our proposed sche-
duling protocol by considering a constant data stream
as the input data. We analyzed what kind of influence
has the requested rate upon the resulting buffer size and
latency. Since we use data slots of a certain size and we
calculated the most optimal time to send data at that

 0

 1000

 2000

 3000

 4000

 5000

 150 160 170 180 190 200 210 220 230
1/2
1/4
1/8
1/16
1/32
1/64
1/128

La
te

nc
y

(m
s)

Requested amount

Figure 13 Maximal latency and the approximation composition,
8 slots.

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Requested amount

Figure 14 Maximal buffer occupation, 16 slots.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 10 of 20

specific rate, we can imagine that if the data is arriving
in bursts, this would have a negative effect on the per-
formance of the protocol. In this section, we analyze the
influence of a bursty data arrival.
We simulate bursts with packet sizes from 1 to 2400

bytes for each rate, ranging from 1 to 2400 bytes per
second. The maximum rate of the virtual sensor is 2400
bytes per second, the frame is split up into 8 slots, and
the frame length is set to one second, resulting in a slot
size of 300 bytes.

A. Buffer size
Unlike the case of a continuous data arrival, when data
arrives in bursts, it can happen that a slot is scheduled
to process data, but there is no data available. This is
the worst case scenario. The general behavior is that
not as much data can be processed at the scheduled
times as expected, because the data arrives in bursts,
which does not need to match with the scheduled
slots.
In the previous section, we found that the buffer size

increases and decreases in a periodic cycle. The period
of this cycle, also called the scheduling period, is deter-
mined by the lowest fraction that the approximation
holds. If this period contains an integer number of arri-
val times of packets, it is equal to the scheduling period.
This feature can be seen in Figure 16. It depicts the
gradient of the buffer size at a request of 70 bytes per
second and a data arrival in bursts of 280 bytes.
On the other hand, if the scheduling period is not

divisible by the arrival times of the packets, we get a
sequence of scheduling periods that form a cycle on
their own. The number of scheduling periods that this
cycle will have, can be calculated. The arrival time of
the packets can be expressed by: arr_time = P/R where
P is the size of the packet and R the requested rate. The

demand that the scheduling period needs to be divisible
by the arrival time can be expressed by: modulo(B, arr_
time) = 0, where B is the scheduling period. Another
way to represent the demand that the scheduling period
is divisible by the arrival time is:

B|arr time

� arr time =
P
R

B × R|P
� P = x × gcd(R,P)

B × R|(x × gcd(R,P)

� x = y × gcd(B, x)

B × R|(y × gcd(B, x) × gcd(R,P))

We can say that the scheduling period is divisible by
the arrival time, if y equals to one. Even more, we can
say that y represents the number of times the scheduling
period needs to be repeated, before we start the periodic
cycle again. In order to calculate the length of the per-
iod, we can use the following formula:

P = y × gcd(B, x) × gcd(R,P)

� x =
P

gcd(R,P)

y =
1

gcd
(
B,

P
gcd(R,P)

) × P
gcd(R,P)

(4)

We can verify this formula, by observing Figures 16
and 17, where results are depicted from simulations
with 8 slots of 300 bytes, a packet size of 280 bytes and
with a requested rate of 70 and 77 bytes per second,
respectively. According to the calculations, the period
should be one for a rate of 70 bytes per second (gcd(70,

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000

La
te

nc
y

(m
s)

Requested amount

Figure 15 Maximal latency, 16 slots.

 250

 300

 350

 400

 450

 500

 550

 600

 1024 1280 1536 1792 2048 2304 2560 2816 3072

B
uf

fe
r s

iz
e

(B
yt

es
)

Slots

Figure 16 Buffer occupation, packet size 280 bytes, Total
amount of resources is 2400 bytes per second, the requested
amount is 70, approximated to 1

4+
1

128.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 11 of 20

280) = 70). It is clear that there is only one period dur-
ing the cycle. In Figure 17, for 77 bytes per second, we
can see that the scheduling period is equal to 1024 slots,
while the periodic gradient of the buffer size has become
5120 slots, this is five times the scheduling period. If we
calculate after how many scheduling periods the buffer
size starts a new cycle, we obtain five, as it should be
(gcd(280, 77) = 7 and gcd(128, 40) = 8, so the period is
280
56 = 5).
Figure 17 shows nicely that the packets arrive in

bursts (the sudden increase in buffer size), after which
the buffer size decreases gradually at each scheduled
slot. As the packet arrivals and the scheduling period do
not coincide, it can happen that a packet arrives right
before the scheduling period ended. At the end of the
scheduling period, the fraction is scheduled that should
compensate the difference between the sum of all other
fractions and the requested rate. Since the packet arrives
right before this fraction is scheduled, the maximum
buffer size increases, compared to the case where the
data arrives gradually.
Figure 18 depicts a 3D plot that represents the maxi-

mum buffer size versus the requested rate and the
packet size for a simulation with 8 slots, rate from 1 to
2400 bytes per second, which is the maximum capacity
and packet sizes from 1 to 2400 bytes. A first conclusion
is that the larger the packet size, the higher the maxi-
mum buffer size becomes.
The data in the figure is plotted every 50 lines to

enhance the visibility. Hence, a lot of the resolution has
been lost. To visualize the most optimal maximum buf-
fer sizes, Figure 19 provides a general overview of the
results that represent the lowest maximum buffer sizes,
shown by the dark lines. The darker the line is, the
lower the maximum buffer size. It can be noticed that

there are darker lines in the horizontal, vertical and
diagonal direction. The maximum buffer size increases
with an increasing packet size and increasing requested
rate.
The gradient of the maximum buffer size, as seen in

the previous section, can be recognized by the vertical
darker lines. They indicate the rates where the maxi-
mum buffer size is lower in comparison with other rates
at the same packet size. This indicates that when work-
ing with data arrival in bursts, the maximum buffer size
is lower when limiting the number of fractions of the
approximation.
The horizontal darker lines, on the other hand, are the

result of the relation of the packet size to the slot size.
In this simulation, we used slot sizes of 300 bytes. At
packet sizes that are a multiple of 300 bytes, there are
darker horizontal lines. This means that when the data
arrives, at a certain rate, in bursts of this packet size, it
requires a smaller maximum buffer size than with
another packet size. Intuitively, something like this
could be expected. If a packet size is a multiple of the

 200

 300

 400

 500

 600

 700

 800

 5120 6144 7168 8192 9216 10240 11264

B
uf

fe
r s

iz
e

(B
yt

es
)

Slots

Figure 17 Buffer occupation, packet size 280 bytes, Total
amount of resources is 2400 bytes per second, the requested
amount is 77, approximated to 1/4 + 1/128.

 0
 500

 1000
 1500

 2000 0
 500

 1000
 1500

 2000

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Rate (Bytes per second)

Packet size (Bytes)

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500

Figure 18 Maximum buffer size versus the rate and the packet
size.

Figure 19 Lowest maximum buffer size lines.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 12 of 20

slot size, we expect that this has a positive effect on the
maximum buffer size.
To get a deeper understanding, we plot the maximum

buffer size over the rate for two different packet sizes,
1190 bytes and 1200 bytes, in Figure 20. The packet size
of 1200 is one of those horizontal darker lines, thus the
maximum buffer size should be lower there. We can see
that the packet size of 1190 bytes has a similar flow as
with the gradual arrival of packets, but with an offset
that is the result of the packetized arrival of the data.
The flow of the packet size of 1200 bytes shows a maxi-
mum buffer size that looks quantized. This is actually
the effect of the packet size being a multiple of the slot
size. This effect is also noticeable if the slot size is divisi-
ble by the packet size.
This is even more clearly depicted in Figure 21,

which shows the maximum buffer size at a fixed rate
of 9 bytes per second for each simulated packet size.
Naturally, as we could notice in the 3D figure, the data
that arrives in bursts causes a higher buffer usage.
Here we can see that at certain packet sizes, the maxi-
mum buffer size is lower. Interesting to note is that
when using packet sizes between 0 and 300 bytes, for
which 300 bytes forms a multiple, all have the same
maximum buffer size. The same counts for packet sizes
between 300 and 600 bytes, and further. There is some
kind of repetition, determined by the slot size (which is
here 300 bytes), which is to be expected, since the slot
size of 300 bytes determines the packet sizes at which
a lower buffer size can be detected. We notice that the
maximum buffer size is not a nice linear function, but
we can determine an upper bound, namely the value
we calculated by means of the gradual arrival of the
data, increased by the packet size. If we look at Figure
22, where the lowest maximum buffer size equals 300
bytes, we notice that this upper bound function also
holds for this rate.

The only lines we did not explain yet are the diagonal
darker lines. The fact that they are diagonal, means that
for a certain rate-packet size combination, they form a
minimum. The cyclic character of the scheduling period
is the reason for this phenomenon. The number of sche-
duling periods that form a cycle is defined by Formula
(4). The number of periods depends on the packet size,
the rate and the scheduling period. This is our rate-
packet size relation. To give an example, one of the
packet sizes for which y of Formula (4) equals one, is
600 bytes (gcd(1200, 600) = 600 and gcd(2, 2) = 2). One
of the packet sizes for which y equals one at a rate of
1190 bytes per second, is 595 bytes (gcd(1190, 595) =
595 and gcd(64, 2) = 2). This gives our diagonal darker
line. Notice that there are many packet sizes that fulfill
the requirement, so there are more than one darker
diagonal line.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 500 1000 1500 2000 2500

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Rate (Bytes per second)

packet size = 1200 Bytes
packet size = 1190 Bytes

Figure 20 Maximum buffer size versus the rate with packet
sizes of 1190 and 1200 bytes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Packet size (Bytes)

measured (rate = 9Bps)
y=288+x

y=x

Figure 21 Maximum buffer size versus the packet size at 9
bytes per second.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500

M
ax

im
um

 b
uf

fe
r s

iz
e

(B
yt

es
)

Packet size (Bytes)

measured (rate = 1200Bps)
y=300+x

y=x

Figure 22 Maximum buffer size versus the packet size at 1200
bytes per second.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 13 of 20

B. Latency
Based on the relation between the maximum latency
and maximum buffer size, we expect that the maximum
latency behaves like the buffer size when the data arrives
in bursts. Figure 23 depicts the logarithmic function of
the maximum latency over the requested rate and the
packet size. We plotted the latency on a logarithmic axis
in order to reveal more details, since the maximum
latency of the lower rates is a lot higher than the maxi-
mum latency of the rest of the rates. The reason for this
characteristic, that we already noticed by means of the
gradual arrival of the data, is rather trivial. At lower
rates, it takes more time to fill the transmit buffer,
hence the slots are not so frequently scheduled, result-
ing in a high maximum latency.
The second characteristic that can be noticed, is that the

maximum latency increases as the packet size increases,
which is the same behavior as the maximum buffer size.
There is a difference though, the packet size has a bigger
influence at the lower requested rates, compared to the
higher rates. The most optimal minimum latency points
can also be found on horizontal, vertical and diagonal
lines. Since the latency can be derived directly from the
maximum buffer size, the reason why at these points a
minimum latency can be found is the same.
If we compare the maximum latency for two different

packet rates (Figure 24), we notice a similar behavior as
with the gradual arrival of the data. The number of frac-
tions that form the approximation plays again a factor in
the determination of the maximum latency, the less
fractions, the lower the latency. We can also see here
that the packet size is less important at high rates, com-
pared to lower rates.
The horizontal lines, which are the effect of the packet

sizes that happen to be multiple of the slot sizes, can be
seen in Figure 25. The maximum latency versus the
packet size is depicted for rates of 600 bytes per second
and 1200 bytes per second. Notice that at packet sizes
that are a multiple of the slot size, the maximum latency

reaches a minimum with packet sizes between 0 and
300, hence lower than the slot size. This phenomenon
repeats itself each 300 bytes. In the figure, it can also be
seen that the influence of the packetized arrival of the
data is bigger at low rates than it is at higher rates.

VI. Conclusion
In this article, we propose a slotted scheduling protocol,
aiming at energy preservation, real-time properties, fair-
ness and a periodic schedule. It is designed for energy
preservation. It is better to use the network for a small
unit of time and then utilizing the full bandwidth, than
sending each time just a bit of data. This is also more
efficient towards the overhead, generated by the physical
layer. The more data that is being sent at a time, the
smaller the header is in comparison to the amount of
data. The second goal is real-time behavior. When deal-
ing with time sensitive material, it is imperative to
receive the required data in time, otherwise the data

 0
 500

 1000
 1500

 2000 0
 500

 1000
 1500

 2000

 100
 1000

 10000
 100000
 1e+06
 1e+07

M
ax

im
um

 la
te

nc
y

(m
s)

Rate (Bytes per second)

Packet size (Bytes)

Figure 23 Maximum latency versus the rate and the packet
size, 3D plot.

 0

 1000

 2000

 3000

 4000

 5000

 0 500 1000 1500 2000 2500

M
ax

im
um

 la
te

nc
y

(m
s)

Rate (Bytes per second)

packet size = 1200 Bytes
packet size = 300 Bytes

Figure 24 Maximum latency versus the rate with packet sizes
of 300 and 1200 bytes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500

M
ax

im
um

 la
te

nc
y

(m
s)

Packet size (Bytes)

Rate = 1200 Bps
Rate = 600 Bps

Figure 25 Maximum latency versus the packet size at 600
bytes per second and 1200 bytes per second.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 14 of 20

could be worthless. A third objective of this protocol is
fairness. Even when the network is crowded with high
bandwidth sensors, the low bandwidth sensors should
still be able to send their data. The protocol also needs
to consider the feasibility to implement it on an actual
hardware platform. Last, it needs to take into account
that it can happen that a control packet gets lost.
The protocol takes several limitations into account in

order to comply to all previous demands. First of all, it
is designed in such a way that the slot allocation needs
to be sent only once during the whole lifetime of the
network. The design is based on a periodic cycle, which
allows to send the slot allocation, which is afterwards
repeated over and over again. Any subsequent changes
in the topology also do not influence the already sched-
uled slots. To inform sensors about the slot allocations,
only a small number of bytes is required.
We require every sensor to indicate how much band-

width it needs. The bandwidth request is split into the
number of full slots and a fractional representation of a
slot. The fraction of the number of full slots over the
total number of slots in a frame is represented by
means of Egyptian Fractions, where the denominators
are a power of two. By means of a binary tree, each unit
fraction is fit into a certain slot. The selection of slots
ensures that collisions are avoided. The fractional repre-
sentation of a slot, which is also an Egyptian Fraction, is
scheduled by means of a binary tree. The resulting allo-
cation indicates in which frame the slot may be used.
This scheme leads to a schedule that is cyclic, which
cycle length is determined by the lowest fraction in the
approximations. As can be noticed, this protocol is not
work conserving, as the time that no slots are scheduled,
can be used to put the sensors to sleep.
Because of its determined schedule, this protocol has

real-time properties. We can calculate the maximum
required buffer size a sensor needs for a given band-
width. This gives the possibility to calculate the maxi-
mum latency, thanks to the direct relation between the
buffer size and the latency. Therefore, the scheduling
protocol is capable to schedule real-time tasks.
The analysis shows that the maximum buffer size, and

hence the maximum latency, depends on the number of
fractions an approximation is made of. A lower number
of fractions results in a lower latency. In order to tweak
the protocol for certain operating requirements, the low-
est fraction that is contained in an approximation can be
tuned. This results in a network that has a lower latency,
but where the bandwidth efficiency is lower, some of the
bandwidth is wasted to ensure the timely arrival of the
data. The nice property of this tuning, is that it can be
done on a per node basis. It is for example possible to
have a node which is aiming at as low as possible latency,
by limiting the lowest possible fraction to approximate.

And at the same time, having a node that is aiming at as
much as possible bandwidth efficiency by using as much
fractions as possible in its approximation.
Another way to limit the latency, is the number of

slots that a frame is split into. By using more slots in a
frame, the frame is split into smaller pieces, hence at
the same rate, the sensors use the slots two times faster.
Getting an allocation that is two times faster, means
also a latency that is lower. However, this manner of
tuning is global, the whole network needs to have an
equal amount of slots per frame.
We also noticed that the latency is quite high when

the requesting rate is low. This is perfect if the goal is
to preserve energy. If the goal is to have a latency that
is as low as possible, then, either the lowest possible
fraction needs to be limited, or the total capacity of the
network needs to be downsized.
During our simulations with bursty data arrivals, we

noticed that it is interesting to have an approximation that
has only one or two unit fractions. It is also interesting if
the slot size is divisible by the packet size. It is not so
interesting to have a packet size that is bigger than the slot
size. And it is also good to have a certain rate-packet size
relation, according to Formula 4. These three cases give
the lowest possible buffer sizes. These conclusions are also
valid for the latency, but there the rate plays also a very
important role: the higher the rate, the lower the latency.

Appendix A
Proof of the remaining bandwidth formula
The requested rate divided by the slot size is approxi-
mated through a series of unit fractions with a denomi-
nator equal to a power of two:

R
S
=

m∑
i=0

1
2ni

(ni ∈ Z and ni < ni+1)

or
R
S
=

m∑
i=0

fi (with fi =
1
2ni

and fi > fi+1)

(5)

with R being the requested rate and S representing the
slot size. R is expressed as bytes per frame, while S is
expressed as number of bytes. Therefore, the unit of the
sum of fractions is 1

frames, that is, every fraction signifies

a frequency at which slots are scheduled. 1
fi denotes the

interval, expressed in number of frames, between suc-
cessive slot schedules according to fraction fi. Every frac-
tion, except the last one, results in the transmission of
part of the data. The data that has arrived during the
slot scheduling interval, determined by the specific frac-
tion, is equal to:

Ri
1
fi

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 15 of 20

with Ri being the remaining bandwidth per frame
(bytes per frame) and fi being the specific fraction. A
special case is the first fraction, f0, since the remaining
bandwidth, Ri, is there equal to R, the requested rate.
The scheduling of a slot, according to fraction fi, results

in the transmission of S bytes, with S indicating the slot

size. In other words, the remaining bandwidth after 1
fi

frames equals:

Ri
1
fi

− S

or expressed as the remaining bandwidth per frame,
we get:

Ri+1 = fi

(
Ri
1
fi

− S
)

(6)

We claim that the amount of data arriving during the
slot scheduling interval of a fraction fi at a rate of Ri,
the remaining bandwidth, is not larger than two times
the slot size. Thus, our claim is that:

Ri < 2fiS or
Ri

fi
< 2S (7)

with Ri being the remaining bandwidth per frame
(bytes per frame), that is, the bandwidth that is not cov-
ered yet by the fractions that represent a higher fre-
quency. S denotes the slot size and fi = 1

2ni , indicating
the unit fraction.
Proof:
We prove this statement through induction.
Step 1:
Since it is a requirement to have unit fractions and ni

<ni+1, we can state that the following expression is true:

k∑
i=1

1
2ni

<
1
2n0

(n ∈ Z and ni < ni+1) (8)

The combination of Formula (5) and Formula (8),
gives:

R

S
< 2

1
2n0

�
R
1
f0

< 2S (with f0 =
1
2n0

)

(9)

The remaining bandwidth, R0, is equal to the
requested bandwidth, R, since f0 is the first fraction.
Step 2:
We consider the following formula to be true for

fraction fk:

Rk

fk
< 2S (10)

We now prove that Formula (7) also counts for fk+1.
It is known that the amount of data arriving during

the slot scheduling interval of a fraction fk+1 at a rate of
Rk+1, is equal to:

Rk+1

fk+1

From 6, we know that:

Rk+1 = fk

(
Rk

1
fk

− S
)

The resulting amount of data arriving during the
interval determined by fraction fk+1 is:

1
fk+1

fk

(
Rk

1
fk

− S
)

which we can also write as:

fk
fk+1

(
1
fk
Rk − S

)

It is known that, according to Formula (6), Rk equals to:

Rk = fk−1

(
Rk−1

fk−1
− S

)

The substitution of Rk gives the following expression
as the amount of data arriving during the interval deter-
mined by fraction fk+1:

fk
fk+1

(
1
fk

(
fk−1

(
Rk−1

fk−1
− S

))
− S

)

Substituting all Ri, with 0 <i <k results:

fk
fk+1

(
fk−1

fk

(
· · · f0

f1

(
R0

f0
− S

)
− S · ··

)
− S

)

Since R0 equals to R, according to Formula (9):

fk
fk+1

(
fk−1

fk

(
· · · f0

f1

(
R
f0

− S
)

− S · ··
)

− S
)

Rewriting gives us:

1
fk+1

(R − fkS − fk−1S · · · −f1S − f0S)

which is equal to:

1
fk+1

(
R −

k∑
i=0

fiS

)
(11)

From Formula (5), we know that:

R

S
=

m∑
i=0

fi

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 16 of 20

which can also be formulated as:

R
S

−
k∑
i=0

fi =
m∑

i=k+1

fi (with 0 < k < m) (12)

Since fi equals to
1
2ni , with n <n + 1, we know that:

fk+1 >

m∑
i=k+2

fi (13)

The combination of Formula (12) and Formula (13)
gives:

R
S

−
k∑
i=0

fi < 2fk+1

which can also be written as:

1
fk+1

(
R −

k∑
i=0

fiS

)
< 2S (14)

From Formula (11) and Formula (14), we can con-
clude that:

Rk+1

fk+1
< 2S

Q.E.D.

Appendix B
The start position of a fraction
The fractions represent a certain period of time between
successive slot allocations. Due to this cyclical character,
it is sufficient to know at which moment it starts, also
called the start position, and its period in order to calcu-
late future slot allocation according to this fraction. The
start positions of the fractions is determined by means
of a binary tree method, but can also be expressed as a
formula. Formula (15) depicts the start position, Fposn,
of a fraction fn, expressed as the offset relative to the
start position of the first fraction, f0.

Fposn =

⎧⎨
⎩
0 (n = 0)
n−1∑
i=0

1
2
1
fi
(n > 0)

(15)

with fi being the unit fractions. Knowing that the unit
of fi is

1
frames, the start position, Fposn, is expressed as

the number of frames. The Formula (15) denotes that
the offset is equal to half the sum of all periods of pre-
vious fractions. From this can be derived that the start
position of fraction fi occurs in the middle of the period
of fraction fi-1.

Appendix C
Proof of the maximum buffersize formula
We claim that the maximum buffer size can be calcu-
lated according to the following formula:

Max buffk = R
1
f0

+
k∑
i=1

(
fi−1

fi
− 2

)
1
fi−1

⎛
⎝R −

i−1∑
j=0

fjS

⎞
⎠ (16)

with R being the requested bandwidth (bytes per
frame), f0 ... fn being the unit fractions that form the
approximation, and S (bytes) representing the slot size.
This formula can also be written as:

Max buffk =
1
fk

(
R −

k−1∑
i=0

fiS

)

+ 2S − 1
f0
R

+ 2S − 1
f1
(R − f0S)

...

+ 2S − 1
fk−1

(
R −

k−2∑
i=0

fiS

)
(17)

Proof:
We first prove this statement for a single fraction, fol-

lowed by the proof for two fractions and finally the
proof for k fractions.
Step 1: for a single fraction
A single fraction f0 is sufficient to transmit the
requested amount of data. This means that all data, col-
lected at the requested rate during the interval between
two subsequent transmissions, can be sent at once.
Hence, the maximum buffer size is equal to the dura-

tion, 1
f0, multiplied by the rate, R:

Max buff0 =
1
f0
R

Step 2: for two fractions
Since there are two fractions necessary to approximate
the requested bandwidth R, fraction f0 is not sufficient to

process all data. After each period, determined by 1
f0, the

amount of accumulated data, which has arrived at a rate
R, is larger than the slot size. Hence, not all data can be
processed by the scheduled slots according to fraction f0.

The amount of remaining data after a period of 1
f0 is:

Diff =
1
f0
R − S (18)

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 17 of 20

During the period, specified by fraction f1,
f0
f1
slots are

scheduled, which follow the allocation scheme of fraction
f0. The amount of data, which needs to processed, increases

each time with Diff during f0
f1

− 1 periods. The maximum

buffer size is reached at the moment that an amount of
data equal to S, is going to be sent in the slot that is sched-
uled according to f0, before the slot that is scheduled
according to f1. The maximum buffer size is equal to:

Max buff1 = S +
(
f0
f1

− 1
)

Diff

= S +
(
f0
f1

− 1
)(

1
f0
R − S

)

= S +
f0
f1

1
f0
R − f0

f1
S − 1

f0
R + S

=
1
f0
R +

(
2 − f0

f1

)
S +

1
f0

(
f0
f1

− 2
)
R

=
1
f0
R +

(
f0
f1

− 2
)

1
f0
(R − f0S)

(19)

We have proven that for f0 + f1, Formula (16) holds.
One can also consider a different approach in order to

prove Formula (16) for f1. The methodology of using a
series of fractions, uses the principle of splitting up the
requested rate in a number of smaller rates. Each fraction
is responsible for processing data at its own rate and thus
lowering the remaining rate that needs to be processed.
When starting from the highest fraction, the remaining
rate needs to be lower than the processing rate of the
fraction, otherwise, lower rates (fractions) will not be able
to deal with this rate. During the period determined by
the fraction fi, data is arriving at a rate Ri, which is equal
to the requested rate R minus the processing rates of the
previous fractions f0 ... fi-1. During this period, an amount
of data is accumulated, after which the fraction, fi, is
scheduled to lower the buffer size. The period of time
that is spent for this process, can not be used for the
accumulation of data. Hence, for fraction f1, the maxi-
mum buffer size can be regarded as the amount of data

arriving at a rate R1, during a certain period 1
f1, minus the

effort needed to lower the buffer size:

Max buff1 =
1
f1
R1 − effort1

Note that Formula (18) can be formulated as the
amount of bandwidth per frame that yet needs to be
scheduled by the second fraction. So the remaining
bandwidth for fraction f1, R1, equals to:

R1 =

(
1
f0
R − S

)
1
f0

=
(
1
f0
R − S

)
f0 (20)

Knowledge about the moment where the maximum
buffer size is reached is essential to understand the
effort to lower the buffer size. The position of the first
fraction, f0, is considered as the reference position. The
cyclic behavior of the slot allocation is defined by the
lowest fraction. If the first slot that is allocated accord-
ing to f0 is at slot 0 of frame 0, we can say that the
cycle starts at slot 0 of frames that are multiples of the
lowest fraction. Due to the fact that the first slot for a
certain fraction is allocated at the beginning of this
cycle, the effort is located at the start of the cycle. It is
the last fraction which ensures that all data is processed.
This fraction has only a single slot allocated within the
cycle, positioned at the beginning, since the cycle is
equal to the period of the fraction. Note that the slots
for every fraction fi are positioned in the middle of the
slots of the previous fraction fi-1. Hence, the amount of
data that arrived according to rate Ri-1, at the moment a
slot is scheduled according to fraction fi, is half the

amount of data that arrives during a period 1
ft−1

, that is:

1
2

1
fi−1

Ri−1

From Formula (7), we know that this amount is smal-
ler than the slot size S. Hence, the scheduling of fraction
fi results in a decrease of the buffer size. Since all these
fractions start at the beginning of the cycle, the maxi-
mum buffer size is reached right before the start of the
cycle. Since we have two halves, the next time a slot is
scheduled according to fi-1, another decrease of the buf-
fer size takes place. Applying this to the current case, f0
+ f1, the effort to diminish the buffer size is equal to:

effort1 = 2
(
1
2
1
f0
R0 − S

)

Therefore, the maximum buffer size is:

Max buff1 =
1
f1
f0

(
1
f0
R − S

)
− 2

(
1
2
1
f0
R − S

)

=
f0
f1

(
1
f0
R − S

)
− 1

f0
R + 2S

=
1
f0
R +

f0
f1

(
1
f0
R − S

)
− 2

1
f0
R + 2S

=
1
f0
R +

(
f0
f1

− 2
)(

1
f0
R − S

)
(21)

As can be seen, Formula (19) is equal to Formula (21).
Step 3: for k fractions
In order to calculate the maximum buffer size, we use
the same approach as in the previous section. The
maximum buffer size is the duration, determined by fk,
multiplied by the remaining bandwidth that needs to

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 18 of 20

be scheduled, minus the effort to diminish the buffer
size, i.e,:

Max buffk =
1
fk
Rk − effortk

First, we will calculate the remaining bandwidth Rk.
The remaining bandwidth R1 was:

R1 = f0

(
1
f0
R − S

)

During the period 1
f1, a single slot is scheduled accord-

ing to fraction f1. Therefore, the remaining bandwidth
per frame, R2 equals to

R2 = f1

(
1
f1

(
f0

(
1
f0
R − S

))
− S

)

= f1

(
1
f1

(
R − f0S

) − S
)

= R − f0S − f1S

For fk, we can say that the remaining bandwidth per
frame equals to:

Rk = R −
k−1∑
i=0

fiS (22)

Using this formula, we can write the maximum buffer
size for k + 1 fractions as:

Max - buffk =
1
fk

(
R −

k−1∑
i=0

fiS

)
− effortk

The effortk is a result of the scheduling of a slot, accord-
ing to fk, in the middle of two slots that are scheduled
according to fk-1, i.e. it is a result of the start positions of
the fractions. From Formula (1), we know that the start

position of fraction fk is located at an offset of
k−1∑
i=0

1
2
1
fi
, rela-

tive to the start of the first fraction, f0. So, fk starts in the

middle of the period 1
fk−1

, hence, the start position of fk is

equal to the start position of fk-1, incremented by 1
2

1
fk−1

,

that is, half the period according to fraction fk-1. Therefore,
we can say that the effort is equal to:

effortk = 2
(
1
2
1
f0
R0 − S

)

+ 2
(
1
2
1
f1
R1 − S

)
...

+ 2
(
1
2

1
fk−2

Rk−2 − S
)

+ 2
(
1
2

1
fk−1

Rk−1 − S
)

where R0 ... Rk-1 represents the remaining bandwidths
for each of the fractions. By using Formula (22), we can
write the effort as:

effortk = 2
(
1
2
1
f0
R − S

)

+ 2
(
1
2
1
f1

(
R − f0S

) − S
)

...

+ 2

(
1
2

1
fk−2

(
R −

k−3∑
i=0

fiS

)
− S

)

+ 2

(
1
2

1
fk−1

(
R −

k−2∑
i=0

fiS

)
− S

)

The resulting formula for calculating the maximum
buffer size is:

Max buffk =
1
fk

(
R −

k−1∑
i=0

fiS

)

− 2
(
1
2
1
f0
R − S

)

− 2
(
1
2
1
f1

(
R − f0S

) − S
)

...

− 2

(
1
2

1
fk−2

(
R −

k−3∑
i=0

fiS

)
− S

)

− 2

(
1
2

1
fk−1

(
R −

k−2∑
i=0

fiS

)
− S

)

Simplified, this result to:

Max buffk =
1
fk

(
R −

k−1∑
i=0

fiS

)

+ 2S − 1
f0
R

+ 2S − 1
f1
(R − f0S)

...

+ 2S − 1
fk−1

(
R −

k−2∑
i=0

fiS

)
(23)

Q.E.D.

Abbreviations
CRC: Cyclic Redundancy Check; EDF: Earliest Deadline First; GPS: Generalized
Processor Sharing; gcd: greatest common divider; lcm: least common
multiple; MRBS: most regular binary sequence; MRCS: most regular code
sequence; PGPS: packet-by-packet generalized processor sharing; TDMA:
Time Division Multiple Access; WFQ: Weighted Fair Queuing; WSN: Wireless
Sensor Network.

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 19 of 20

Competing interests
The authors declare that they have no competing interests.

Received: 13 March 2010 Accepted: 12 July 2011
Published: 12 July 2011

References
1. W Torfs, C Blondia, Binary TDMA Schedule by Means of Egyptian Fractions

for Real-time WSNs on TMotes, in Proceedings of Med-Hoc-Net 2010, Juan-
les-Pins, France (2010)

2. W Ye, J Heidemann, D Estrin, An Energy-Efficient MAC protocol for Wireless
Sensor Networks, in Proceedings of IEEE Computer and Communications
Societies (INFOCOM) (2002)

3. T van Dam, K Langendoen, An Adaptive Energy-Efficient MAC protocol for
Wireless Sensor Networks, in Proceedings of International Conference on
Embedded networked sensor systems (SenSys), Los Angeles, California, USA
(2003)

4. L van Hoesel, P Havinga, Collision-free Time Slot Reuse in Multi-hop
Wireless Sensor Networks, in Proceedings of International Conference on
Intelligent Sensor, Sensor Networks and Information Processing (2005)

5. RA Rashid, W Embong, A Zaharim, N Fisal, Development of Energy Aware
TDMA-Based MAC Protocol for Wireless Sensor Network System. Eur. J. Sci.
Res 30(4), 571–578 (2009)

6. V Turau, C Weyer, Scheduling Transmission of Bulk Data in Sensor Networks
using a Dynamic TDMA Protocol, in Proceedings of International Workshop
on Data Intensive Sensor Networks (DISN) (2007)

7. S Coleri-Ergen, P Varaiya, PEDAMACS: Power efficient and delay aware
medium access protocol for sensor networks. IEEE Trans. Mob. Comput. 5,
920–930 (2006)

8. http://en.wikipedia.org/wiki/Weighted_fair_queuing
9. http://www.sics.se/~ianm/WFQ/wfq_descrip/node21.html
10. A Demers, Analysis and Simulation of a Fair Queuing Algorithm, in

Internetworking Research and Experience (1990)
11. A Parekh, R Gallager, A generalized processor sharing approach to flow

control in integrated services networks: the single node case, in IEEE
INFOCOM (1992)

12. http://en.wikipedia.org/wiki/Generalized_processor_sharing
13. L Dong, R Melhem, D Mosse, Time slot allocation for Real-Time messages

with negotiable distance constraints, in Real-Time Technology and
Applications Symposium (1998)

14. M Mock, E Nett, Real-Time Communication in Autonomous Robot Systems,
in Proceedings of International Conference on Autonomous Decentralized
Systems (1999)

15. JJ Babka, System and method for fractional resource scheduling for video
teleconferencing resources. U.S. Patent 7,328,264 B2 (2008)

16. W Torfs, C Blondia, QoS support for a MAC with a TDMA tree topology on
the Magnetic Induction Radio IC, in Proceedings of Real-Time Systems
Symposium (RTSS 2008), Barcelona, Spain (2008)

17. http://en.wikipedia.org/wiki/Round-robin_scheduling
18. J Lessmann, GMAC: A position based energy efficient QoS TDMA MAC for

Ad Hoc Networks, in Proceedings of IEEE International Conference on
Networks (ICON) (2007)

19. CS Chen, WS Wong, Bandwidth allocation for wireless multimedia systems
with most regular sequences. IEEE Trans. Wireless Commun 4(2), 635–645
(2005)

20. K Gong, Egyptian Fractions, in Math 196 Spring, UC Berkeley (1992)
21. Algorithms for Egyptian Fractions http://www.ics.uci.edu/~eppstein/numth/

egypt/intro.html

doi:10.1186/1687-1499-2011-37
Cite this article as: Torfs and Blondia : Analysis of TDMA scheduling by
means of Egyptian Fractions for real-time WSNs. EURASIP Journal on
Wireless Communications and Networking 2011 2011:37.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Torfs and Blondia EURASIP Journal on Wireless Communications and Networking 2011, 2011:37
http://jwcn.eurasipjournals.com/content/2011/1/37

Page 20 of 20

http://en.wikipedia.org/wiki/Weighted_fair_queuing
http://www.sics.se/~ianm/WFQ/wfq_descrip/node21.html
http://en.wikipedia.org/wiki/Generalized_processor_sharing
http://en.wikipedia.org/wiki/Round-robin_scheduling
http://www.ics.uci.edu/~eppstein/numth/egypt/intro.html
http://www.ics.uci.edu/~eppstein/numth/egypt/intro.html
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	I. Introduction
	II. Related work
	III. The algorithm
	A. Methodology
	B. Example
	C. Discussion
	D. Implementation

	IV. Scheduling analysis: ideal data arrival rate
	A. Maximum buffer size
	B. Maximum latency
	C. Latency control

	V. Scheduling Analysis: bursty data arrival
	A. Buffer size
	B. Latency

	VI. Conclusion
	Appendix A
	Proof of the remaining bandwidth formula

	Appendix B
	The start position of a fraction

	Appendix C
	Proof of the maximum buffersize formula
	Step 1: for a single fraction
	Step 2: for two fractions
	Step 3: for k fractions

	Competing interests
	References

