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Abstract The memristor is postulated by Chua (IEEE

Trans Circuit Theory, 18(5):507–519, 1971) as the fourth

fundamental passive circuit element and experimentally

validated by HP labs in 2008. It is an emerging device in

nano technology that provides low power consumption as

well as high density. In this paper, the staircase memristor

model is discussed and investigated with the HP memristor

model. By connecting HP memristor models in series or

parallel, a staircase memristor model could be constructed

and demonstrate staircase behavior. By comparing the

staircase memristor model to the general HP memristor

model, distinctions between them are demonstrated and

this lends themselves to different applications. Further to

the memristor-based cellular neural network (CNN), the

structure is modified and applied to the echo state network

(ESN) where memristors are used as local connections. By

this means, the ESN benefits from the simple structure,

non-volatility and low power feature of memristors and

therefore the complexity and size of the original ESN

architecture can be reduced. Meanwhile, the simpler

structure still has satisfactory performance in applications

compared with the original ESN.

Keywords Nano technology � Memristor � Staircase �
Delayed-switching effect � Ferroelectric memristor �
Bio-inspired circuits � Cellular neural networks � Echo state

networks

1 Introduction

Since the claim that the missing memristor was found [24],

memristive devices have become one of the leading areas

in nano technology because of its promising attributes of

nano-scale size, low power feature and simple structure.

Indeed, it also has been considered as one of the potential

candidates to substitute the CMOS technology which is

reaching the bottleneck in terms of size.

The memristor was first postulated as the fourth funda-

mental passive circuit element by Chua [8]. Following his

concept, there are four fundamental circuit elements and

each element represents a two-variable relationship

between the four basic circuit variables, namely, charge q,

current i, flux u and voltage v. In addition to the known

links which are the resistor, capacitor and inductor, the

postulate of the memristor reveals the missing link between

flux u and charge q. However, a physical relation between

u and q is not necessary [9].

Since the memristor represents the relation between u
and q, it could also be expressed by the derivative of u
(voltage v) and the derivative of q (current i). For a charge-

controlled memristor, the voltage across it is given by

vðtÞ ¼ MðqðtÞÞ � iðtÞ
MðqÞ ¼ duðqÞ=dq

�
ð1Þ

where M(q(t)) is called memristance and has the unit of

Ohms. Likewise, a memristor can be controlled by the flux,

which gives

iðtÞ ¼ GðuðtÞÞ � vðtÞ
GðuÞ ¼ dqðuÞ=du

�
ð2Þ

where GðuðtÞÞ is called memductance which has the unit

of Siemens. Thus, the memristance or memductance is
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determined by the time integral of voltage or current. A

typical memristor has polarity which influences its mem-

ristance. A boarder class called memristive system was

proposed later by Chua, in which, memristor is just a

special case [10].

Beyond the postulate, the memristor has been found in

nano scale by several research groups utilizing different

materials such as the titanium-dioxide based memristor

[24], the ferroelectric memristor [5], the tungsten-oxide

based memristor [4] and the diamond-like carbon based

memristor [6]. The memristor with staircase behavior is

firstly introduced by Chua [8] and emulated by non-linear

resistors and Zener diodes. However, with the development

of the memristor, several multi-state memristors were

found with intrinsic multilevel resistance, such as the FeOx

based memristor which can be tuned and controlled by

external electric conditions [3]. Moreover, the CuxO based

memristor can also provide multilevel resistive switching

[27]. Especially in the ferroelectric memristor, the variation

of its state variable is like a staircase by applying a con-

secutive pulse signal. Such memristors with staircase

behavior is distinct from general memristors and exhibit

several delays during the switching. In ferroelectric mem-

ristors, it is argued that the ferroelectric domain dynamics

dominates the variations and thus the wavy variation sig-

nals the presence of several areas with different dynamics.

In this case, the peculiar delay behavior is caused by

nucleation effects in ferroelectric barriers since nucleation

centers need to be activated, which yields delays.

Such memristors are particularly useful in some appli-

cations which are introduced in [30] where it presents using

staircase memristors in generating staircase waveform and

cellular neural networks (CNN). In more general cases,

applications of the memristor lie in the fields of hybrid

dynamic random-access memories (DRAM), content-ad-

dressable memories (CAM), programmable logic circuits

and neural networks. One of HP laboratories [2] announced

the development of the memristor crossbar in computer

memory and its ability of operating logic computation,

which leads researchers to pursuing more potential appli-

cations of memristors. Recently, a memristor based CAM

cell [7, 14] was proposed to improve the density and power

consumption of CAM. Beyond CAM, the memristor is a

potential element to mimic the synapses in neural networks

with the benefits of nano-scale structure and non-volatility

[19, 20, 29]. It works as the connection sites and represents

the connection strength between neurons.

In this paper, the staircase memristor model is further

investigated with the HP memristor model to develop two

distinct models. In order to show distinctions between the

staircase memristor model and the HP memristor model, a

comparison is taken by programming both models to some

specific resistance values in software simulations. Further

to the proposed CNN structure with memristive connec-

tions, the structure is modified and applied to echo state

networks (ESN) as the local connections of neurons in the

reservoir which is a collection of states of neuron activa-

tions between input and output layers. By utilizing mem-

ristor-based CNN structure as local connections between

neurons, the connectivity complexity can be significantly

reduced while maintaining a satisfactory performance.

2 The HP memristor model

Although there is a plenty of variations of memristor

models, the primary one in use is the memristor model

proposed by Strukov et al. [24]. The HP memristor is

fabricated by two Pt nodes and a thin semiconductor film

which is sandwiched between nodes as shown in Fig. 1.

Within the semiconductor film, it consists of an undoped,

insulating TiO2 layer and a doped oxygen-poor TiO2�x

layer. In this case, the effective transport mechanism in

titanium-dioxide based memristor devices is through the

drift of oxygen vacancies originating within an oxygen

deficient layer of TiO2�x and therefore shifts the dividing

boundary between TiO2 and TiO2�x layers. Specifically, the

semiconductor has a region with a high concentration of

dopants having low resistance Ron and conversely the

remainder has a low dopant concentration having much

higher resistance Roff . By applying an external bias voltage,

the boundary between doped and undoped regions will

move towards the undoped region and therefore the width

w of the doped region will increase until it reaches the total

width D of the semiconductor film and switches to low

resistance Ron.

Based on observations and experiments, the following

Eq. (3) is proposed by Strukov et al. [24] to model the HP

memristor.

vðtÞ ¼ Ron

wðtÞ
D

þ Roff 1 � wðtÞ
D

� �� �
iðtÞ ð3Þ

where w(t) is the width of doped region at time t. D is the

full width or thickness of the semiconductor film. i(t) and

v(t) imply the applied current and voltage which pass

through the memristor. However, it is not sufficient to

describe the behaviors of HP’s memristor since the term

Fig. 1 Schematic of the titanium-dioxide based memristor proposed

by HP

264 Analog Integr Circ Sig Process (2016) 87:263–273

123



w(t) is unknown. Hence, another Eq. (4) was given to

define w(t)

dwðtÞ
dt

¼ lv
Ron

D
iðtÞ ð4Þ

where lv is the average ion mobility.

Since lv, Ron and D are constant parameters, it exhibits

linear ionic drift in the film. However, in nano-scale

devices, a small voltage can produce significant non-lin-

earities in ionic transport. Thus, to model the boundary

condition and non-linear drift when w is approaching either

boundaries of the device, a window function f(x) is often

multiplied to (4) which gives

dwðtÞ
dt

¼ lv
Ron

D
f ðxÞiðtÞ ð5Þ

By multiplying the window function f(x), w will drift non-

linearly when w is approaching either boundary of 0 or D. In

order to model different and more sophisticated memristor

dynamics, several models were proposed in the literature

based on the HP memristor with different window functions

such as Joglekar’s model [16], Biolek’s model [1], the

boundary condition memristor (BCM) model [13] and the

threshold adaptive memristor (TEAM) model [18]. However,

the window function used by HP is investigated in this paper.

2.1 The HP memristor with a single stair

Based on the experimental results of the existing HP

memristor model with non-linear drift, it exhibits the

staircase behavior because of the boundary effect. There-

fore, by applying the window function wð1 � wÞ=D2 pro-

posed in [24] to replace f(x) in the right side of (5), it leads

to the following equation

dw

wð1 � wÞ ¼ lv
Ron

D
i

1

D2
dt ð6Þ

Then, both sides could be integrated which yields

� ln
�wþ 1

w

����
����þ C ¼ lv

Ron

D3
q ð7Þ

Since D is normalized to 1 and 0\w\1, the absolute

symbol can be removed. If we assume that the initial value

of charge q is q0 ¼ qð0Þ ¼ 0, we have

�wþ 1

w
¼ e

�qlv
Ron

D3 þC ð8Þ

Finally, by simplifying (8), the state variable s is obtained

and has the following relation with charge q

s ¼ w ¼ 1

1 þ e�qkpþq
ð9Þ

where kp ¼ lv
Ron

D3 and q is the constant C. In this case, the

state variable s models the boundary effect of the mem-

ristor and will be used in the proposed staircase memristor

model.

The derivative of (9) gives the change rate of state

variable s

ds

dq
¼ kpe

�qkpþq

ð1 þ e�qkpþqÞ2 ð10Þ

where kp denotes the propagation speed of charge in

memristor. q=kp is a constant term which determines the

middle point of the transition period of the memristor

between ON and OFF. By substituting (9) into

RðqÞ ¼ sRon þ ð1 � sÞRoff ð11Þ

and

vðtÞ ¼ RðqÞiðtÞ ð12Þ

the HP memristor model is obtained with a single stair

which is controllable by varying the parameters kp and q. If

kp is a large number, it requires less charges to change the

state of the memristor. By varying q, a virtual threshold

(where the state begins to change much more) is controlled

and therefore a larger q results in that more charges are

required to switch the memristor. Because of the boundary

effect, state of the HP memristor slowly evolves when it

approaches either boundary. This effect is useful in mod-

eling a staircase memristor since it could mimic a single

stair in a staircase memristor.

3 The staircase memristor model

The concept of the staircase memristor model derives from

the ‘‘delayed-switching effect’’ of piece-wise linear mem-

ristors [25]. This effect indicates that switching in a

memristor takes place with a time delay because the

memristor possesses certain inertia [26]. A staircase

memristor model is considered to have a delayed-switching

effect between several somewhat stable resistance levels,

and hence the variation of its state is like a staircase. In

practice, memristors with multi-level resistance are

observed in [3, 5, 27] and a theoretical SPICE model was

proposed in [28]. In particular, in ferroelectric memristors,

significant delays of resistive states are observed. These

delays are beneficial to some applications, such as pro-

gramming or maintaining a memristor at a specific and

stable value. Therefore, in this section we demonstrate

a staircase memristor model inspired by the ferroelectric

memristor. The advantage of the proposed model is it could

show the explicit relation between flux / and charge

q which is very important for memristor studies.
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3.1 Modelling a staircase memristor

A staircase memristor model is obtained by dividing the

q� u curve into several linear segments, which imple-

ments a piece-wise linear memristor. Since the slope of the

q� u curve denotes the memristance of the memristor, the

same number of stairs on its memristance can be observed

as shown in Fig. 2(a).

If the transition period from ON to OFF or OFF to ON

of a memristor consists of a number of linear segments, the

same number of stairs on its memristance or memductance

can be observed. Therefore, the q� u curve can be parti-

tioned into several segments with different slopes, as

shown in Fig. 2(a), and staircase behavior is observed. The

resulting curves such as I–V curve shown in Fig. 2(b) is

better than practical memristors with multilevel resistance

such as [3, 5, 27] because of the limitation of theoretic

studies. Due to the lack of data of practical memristors, the

comparison between the model and practical memristors is

limited. However, the staircase behavior shown in

the ferroelectric memristor can be reproduced by proposed

model as shown in Fig. 2(c).

In case of a staircase memristor, there will be several

such regions which leads its state varies like a staircase.

Hence, assuming all the regions have the same character-

istics, for example the same width and propagation speed,

it gives the following equation:

s ¼
XN
i¼1

i
Smax

N
þ sðiÞ

¼
XN
i¼1

i
Smax

N
þ Smax

N

1

1 þ e�qkpþqþQi
min

ð13Þ

where s is the state variable of a staircase memristor and

varies from ‘‘0’’ to ‘‘1’’. Theoretically, more than one

region is prohibited to activate at same time in order to

produce proper staircases.

Therefore, a heaviside function is multiplied to (13)

which gives

s ¼
XN
i¼1

HðiÞði Smax
N

þ Smax

N

1

1 þ e�qkpþqþQi
min

Þ ð14Þ

where

HðiÞ ¼ Hðj � kpqj � Qi
minÞ ð15Þ

Smax is the maximum value of the state variable s. N is the

number of the regions in the memristor. Qi
min denotes the

minimum quantity of charge required to enter current

region i. If the total charge exceeds Qi
min, region i is acti-

vated. In particular cases where the regions have different

proportions of total thickness, the term i Smax
N

will be

replaced by a varied number according to the proportion of

the region i.

3.2 The series and parallel forms of staircase

memristor models

Following the equations of the state variable s, there are

two distinct approaches to construct a staircase memristor

model. In order to demonstrate the two distinct approaches,

a simplified conceptual schematic diagram is shown in

Fig. 3, several HP memristor models with a single stair

could be connected in series or parallel to construct a

staircase memristor model. This schematic diagram gives

Fig. 2 Simulation results of the staircase memristor model. a A q� u
curve is divided into five segments which represent five memristance

values. It means this staircase memristor has 4 regions which are

region 1:f1 ! 2g, region 2:f2 ! 3g, region 3:f3 ! 4g, region

4:f4 ! 5g. b A pinched hysteresis loop of current and voltage of

staircase memristor. c By applying a periodic sinusoidal signal, the

state variable s of the staircase memristor varies like a staircase.

Parameters used here are: N ¼ 4;Q1
min ¼ 0;Q2

min ¼ 14;Q3
min ¼

28;Q4
min ¼ 42; kp ¼ 20; q ¼ 10;Roff ¼ 40;Ron ¼ 1:
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the idea of the two approaches rather than actual circuit

implementations. In practice, a numerical simulation is

applied by using Python and Numpy instead of Spice.

In Fig. 3(a), it demonstrates a staircase memristor model

with 6 resistance levels, and each HP memristor model is

activated one by one. At the first, switch s12 is turned on

and s11 is turned off and therefore only the memristor M1

is connected to the voltage source. When M1 is switched

from ON to OFF, switch s12 is turned off. Then the

switches s11 and s22 are turned on, which only connects

M2 to the voltage source besides M1. Until all the mem-

ristors are connected and switched to the OFF state, a

staircase memristor model with 6 resistance levels is

achieved. This mechanism could be described by the fol-

lowing equation.

RðqÞ ¼ sRon þ ð1 � sÞRoff ð16Þ

In contrast, HP memristor models are connected in parallel

in Fig. 3(b). In this case, the switch s1 is connected to the

voltage source initially. When M1 is switched from ON to

OFF, switch s2 is turned on to connect M2 to the voltage

source. Until all the memristors are connected and switched

their states, a staircase memristor model is achieved. Since

the memristors are connected in parallel, it could be

described by

GðqÞ ¼ sGon þ ð1 � sÞGoff ð17Þ

In a word, the conceptual circuit works somewhat like a

digital potentiometer which is built by the classical HP

memristors.

3.3 Comparisons of HP and staircase memristor

models

A comparison between a staircase memristor model and a

general HP memristor model is shown in Table 1, which

describes the errors between the expected resistance levels

and the actual resistance levels obtained by applying the

same pulse signal with an amplitude A ¼ 5V and a duty

cycle Dc ¼ 0:5. The errors � is measured by

� ¼ jRa � Rej
Re

� 100 ð18Þ

where Ra is the actual resistance obtained and Re is the

expected resistance. The HP memristor model proposed in

[24] and described by (3) and (4) is used for comparison

with parameters Ron ¼ 1X, Roff ¼ 400X, lv ¼
5 � 10�2 m2s�1V�1 and the width D is normalized to 1. In

contrast to general HP memristor model, a staircase

memristor model proposed in this paper and defined by

(14) with 5 resistance levels is used. It models a staircase

memristor containing five resistance levels according to the

ferroelectric memristor and other multi-level memristive

devices which exhibit five-level resistance states [5, 27].

Both the staircase memristor model and the general HP

memristor model are programmed towards the expected

Fig. 3 Schematic of conceptual circuits of staircase memristor

models in series and parallel forms

Table 1 Staircase memristor

model vs general HP memristor

model. It measures differences

between expected resistance

values and actual resistance

values of both staircase and

general HP memristor models in

percentage. The base frequency

f of the applied pulse signal is 1
2p

with a duty cycle Dc ¼ 0:5

Resistance Expected R = 100 X R = 200 X R = 300 X

Frequency Staircase HP Staircase HP Staircase HP

(Hz) (%) (%) (%) (%) (%) (%)

10f 0.74 1.5 0.245 0.5 0.017 0.167

9f 0.74 6.5 0.245 1.0 0.007 1.33

8f 0.74 7.0 0.245 2.25 0.003 0.67

7f 0.74 4.5 0.245 3.0 0.1 2.33

6f 0.74 4.0 0.245 4.75 0.11 1.5

5f 0.74 1.0 0.245 0.495 0.1 0.0

4f 0.74 14.5 0.245 2.25 0.11 3.33

3f 0.72 13.5 0.245 4.5 0.1 1.33

2f 0.71 14.5 0.245 10.0 0.11 8.5

f 0.72 13.5 0.185 25.5 0.1 8.33
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resistance levels R ¼ 100X, R ¼ 200X and R ¼ 300X. By

decreasing the frequency of the pulse signal from 10f to f,

the error of the general HP memristor grows significantly.

It shows that the general HP memristor model is very

sensitive to the frequency, however, the staircase memris-

tor model’s resistance is very reliable with a much smaller

fluctuation around the expected resistance level. By vary-

ing the expected resistance level, the staircase memristor

model still has reliable performance. In contrast, the errors

of the general HP memristor model fluctuate a lot because

of the non-linearity. As mentioned previously, the change

rate of memristance is a non-linear function with respect to

charge q and therefore if the expected resistance is quite far

from either boundary, the memristance changes signifi-

cantly. In this case, since a small increment in charge q will

result in a large increment in actual resistance, low fre-

quency signal yields large error.

In this comparison, the frequency range from 1
2p to 5

p is

selected to show the significant difference between HP and

staircase models. In fact, the staircase model can work in

a much higher frequency and the accuracy will be

improved for both the HP model and the staircase model as

observed in Table 1 when the frequency increases. How-

ever, staircase model still outperforms HP model in this

case. The comparison result implies that the staircase

memristor is more reliable than the general HP memristor

if a specific resistance level is required.

4 Staircase memristors in CNN circuits

CNN is biologically motivated neural networks and

important for applications in practice [11, 12]. The mainly

uniform processing elements, called cells or artificial

neurons, are placed on a regular geometric grid (with a

square, hexagonal, or other patterns). The structure of CNN

is defined as ‘‘Any cell in a cellular neural network is

connected only to its neighbor cells’’ [12]. Using staircase

memristors in CNN circuit is worth investigating because it

allows a easier way to program the CNN template as well

as high density. Figure 4 shows the schematic diagram of

using staircase memristors in a CNN circuit.

Staircase memristors are used as the templates of the

CNN circuit and represent the connections or the weights

between CNN cells. In Fig. 4, all the inputs and outputs of

neighbor cells are weighted by staircase memristors and

then summed separately. The weighted and summed inputs

and outputs of neighbor cells will contribute to the state of

the cell (i, j). In order to program the staircase memristor

according to different applications, the switch S3 and S4

will be disconnected to isolate staircase memristors from

the CNN circuit. It avoids the influence from the CNN cell.

S1 and S2 will be turned on to connect the required stair-

case memristor and the provided pulse signal. Hence, the

memristance of staircase memristor can be varied by con-

trolling the duration of the pulse. After all, the CNN cell

interacts with its neighbors via the programmed memristive

templates until the template has to be changed again.

Based on the CNN circuit in Fig. 4, the software based

simulation was presented in [30] to simulate the CNN

circuit with staircase memristors in typical machine vision

tasks of noise removal and edge detection. The proposed

circuit structure with memristors can be adapted to other

networks such as echo state networks and therefore the

neurons are locally connected by memristors.

5 The memristor-based CNN structure
in reservoir computing

Reservoir computing is an exciting approach that aims to

overcome the training problem that exists in traditional

recurrent neural networks (RNNs). It is well-known that

training RNNs is inherently difficult even with the impor-

tant yet powerful error back-propagation (BP) algorithm. It

is a time-consuming and computationally expensive job to

train RNNs, however there is still a possibility that the

training may fail to converge. In the paradigm of reservoir

computing, a ‘‘reservoir’’ is a collection of states of neuron

activations between the input and output layers. It is gen-

erated with random connection weights and used to extract

features from the input signals. Distinct from other neural

networks, only the readout weights between the ‘‘reser-

voir’’ and the output layer are trained. The term ‘‘reservoir

computing’’ comes mainly from the echo state network

(ESN) [15] and the liquid state machine (LSM) [22] which

share the concept of a ‘‘reservoir’’. In principle, a

Fig. 4 A schematic of using staircase memristors in the CNN circuit.

Each staircase memristor is a connection between the cell (i, j) and

one of its neighbors. Cell (i, j) receives all the weighted and summed

inputs and outputs from its neighbors and propagate its input Vij and

output Yij to all its neighbors. When programming a staircase

memristor, S3 and S4 will be turned off to isolate staircase memristor

to avoid influence from CNN circuit. S1 and S2 will be turned on to

connect staircase memristors to the programming circuit
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‘‘reservoir’’ is an excitable, dynamical medium and plays

an important role in reservoir computing networks. Theo-

retically, any dynamical systems with rich dynamics are

capable of building a reservoir. Since a memristive system

is also a non-linear dynamical system, using memristors as

reservoir components in the ESN has been investigated by

[17]. The graph-based approach is used to represent the

reservoir network implemented by memristors. However,

we propose an echo state network that is based on the

memristive CNN structure where memristors are used as

the local connections between nodes in the reservoir.

5.1 The reservoir with memristor-based local

connections

In the original ESN, the given training input signal and

target output signal are defined by uðnÞ 2 RNu and

ytargetðnÞ 2 RNy respectively. n is the discrete time in the

dataset with values n ¼ 1; 2; 3; 4; � � �. Nu and Ny are the

number of inputs and outputs in the network respectively.

The components of the reservoir are RNN type units with

leaky-integrated discrete-time continuous values. The typ-

ical update equations are

~xðnÞ ¼ tanhðWin½1; uðnÞ� þWxðn� 1ÞÞ ð19Þ

where ~x denotes the update of reservoir components, which

collects both the inputs and the states of other units.

½1 ; uðnÞ � denotes the vertical vector concatenation of

vectors 1 and uðnÞ.
The new states of the units are defined by

xðnÞ ¼ ð1 � aÞxðn� 1Þ þ a~xðnÞ ð20Þ

where xðnÞ 2 RNx is a vector of reservoir neuron activa-

tions at time step n. a is the leaking rate of the neuron,

which is normally within the range (0, 1]. Win is the input

weight matrix containing the connection weights between

inputs and the reservoir neurons, thus it has the size of

Nx � ð1 þ NuÞ. W is the recurrent weight matrix which

consists of connection weights between the reservoir neu-

rons and has the size of Nx � Nx, which implies that the

reservoir neurons are fully connected.

The output yn is defined by

yn ¼ Wout½1; uðnÞ; xðnÞ� ð21Þ

Thus, the output weight matrix Wout has a size of

Ny � ð1 þ Nu þ NxÞ. So far, the work-flow of original ESN

is defined, and there are 3 main differences compared to the

CNN:

1. the network is randomly connected instead of locally

connected

2. the network weights are randomly generated instead of

a space-invariant template

3. the output is a linear function instead of a piece-wise

linear function

Since the memristor-based CNN structure is used as the

reservoir, only the reservoir network is adjusted to adopt

the proposed structure.

From the definitions of the states of the units in (20) and

the its update in (19), the state vector xðnÞ is determined by

its previous state xðn� 1Þ, the input uðnÞ and states of

other units. Thus, according to the definition of CNN, the

reservoir network is redefined to have a regular geometric

grid and local connections by

XM
k¼1

XN
l¼1

Wxði; j; k; lÞxðn� 1Þ ð22Þ

where we assume that the reservoir cell (i, j) has a neigh-

borhood size of M � N neighbors and then the update

equation (19) can be rewritten as

~xðnÞ ¼ tanhðWin½1; uðnÞ�

þ
XM
k¼1

XN
l¼1

Wxði; j; k; lÞxðn� 1ÞÞ
ð23Þ

where Wx is the matrix that denotes the local connections

and is implemented by the memristors. This structure is

slightly different from the traditional CNN which has a

feedback loop containing the outputs of the CNN neurons.

The feedback loop in traditional CNN is taken out because

the reservoir size is independent of the input size or output

size which may not have neighbors. Based on the proposed

approach, the basic network is illustrated in Fig. 5 where

the reservoir is implemented using local connections. If a

reservoir has 100 neurons, the original ESN has 100 � 100

connections, however, this approach only has 100 � 8

connections. Therefore, the required connections are sig-

nificantly reduced.

5.2 The benchmark task

In order to evaluate the performance of the proposed

memristor-based reservoir with CNN structure, we use the

Mackey–Glass time series dataset in this task. The dataset

Fig. 5 A reservoir with local connections which are implemented by

memristors
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is generated from the Mackey–Glass equation which is a

non-linear time delay differential equation defined by

dm=dt ¼ b
ms

1 þ mn
s
� cm ð24Þ

where ms is the value of m at the time ðt � sÞ and s denotes

the delay of the Mackey–Glass system. This equation is

used by [23] to describe the physiological control system

where m denotes the concentration of circulating blood

cells. However, we only focus on the data itself rather than

the physiological representations. The parameters selected

to generate the required dataset are b ¼ 0:2, c ¼ 0:1, n ¼
10 and s ¼ 17 which gives mild chaos. In this task, the

network aims to learn the generated dataset and predict the

future values after training.

5.3 Experimental setup

Before the experiment, the dataset is divided into two

separate parts which are the training set and test set. Each

set contains 2000 values but only the values in the training

set are used for training the network. The test set is used for

comparing the actual results, thus evaluating the perfor-

mance of the network in this prediction task. The whole

process of the experiment of memristive ESN is:

1. generating a reservoir with the size of 32 � 32

2. programming the memristive connections to random

values in the range of ½�0:5; 0:5Þ
3. running the training set and collecting the activation

states of reservoir neurons using (23) and (20) with a

leakage rate a ¼ 0:4

4. training the readout weights using ridge regression

with a regularization coefficient 1:0 � 10�8

5. running the test set and evaluating the performance

using mean-squared error (MSE)

Since the Mackey–Glass equation only generates a time-

series dataset, the network only has one input and one

output. For the purpose of comparison, the original ESN is

generated using the Python code developed by Mantas

[21].

5.4 Results

In order to evaluate the performance of the memristor

based ESN with CNN structure (MCNN ESN), 10 running

results are obtained for the proposed ESN with memristive

CNN structure, the original ESN structure with memristive

connections and the original ESN as shown in Table 2

using Python 2.7, Oger toolbox 1.1.3 and script developed

by Mantas [21]. The results are measured using mean-

squared error (MSE) as shown in (25) which computes the

differences between the predicted results and the test set of

Mackey–Glass dataset.

MSE ¼ 1

Ntest

XNtest

i¼1

ðŶi � YiÞ2 ð25Þ

It is noticed that, in Fig. 6(a), the predicted signal is

somewhat shifted from the target signal and thus a rela-

tively large error is expected in this experiment. For all

cases, the average MSE is around 2:0 � 10�2 in Table 2.

Therefore, the average root-mean-squared error (RMSE) is

around 1:4 � 10�1. In order to measure the average RMSE

to the scale of the target signal, the normalized RMSE can

be obtained by

RMSE

jmmax � mminj
ð26Þ

where mmax and mmin are the maximum and minimum

values of the target signal respectively. It gives that the

normalized RMSE is approximately 17:5% which confirms

the observed error in Fig. 6(a).

By setting the same reservoir size with 1024 neurons

and the same leaking rate a ¼ 0:4, it shows that the original

ESN has a better performance than both the ESN with

memristive connections and the proposed ESN. The

potential reasons for the reduced accuracy might be three-

fold. First, due to the weight accuracy of memristive con-

nections, actual weights of memristive connections are

slightly different from expected values as shown in

Table 1. By comparing the results of the original ESN and

the same ESN with memristive connections, the limitation

in weight accuracy explains that the original ESN has

better performance than the ESN with memristive con-

nections since there is no difference in the network

Table 2 Simulation results of all ESN networks in 10 trials

MCNN Memristive

Test no. MCNN ESN ESN Original ESN

1 2:04 � 10�2 2:95 � 10�2 1:57 � 10�2

2 1:11 � 10�2 2:02 � 10�2 1:94 � 10�2

3 1:69 � 10�2 1:46 � 10�2 1:16 � 10�2

4 2:15 � 10�2 1:00 � 10�2 1:60 � 10�2

5 3:61 � 10�2 1:84 � 10�2 9:22 � 10�3

6 1:93 � 10�2 1:40 � 10�2 1:29 � 10�2

7 2:12 � 10�2 3:22 � 10�2 3:02 � 10�2

8 2:34 � 10�2 1:47 � 10�2 2:74 � 10�2

9 3:06 � 10�2 1:50 � 10�2 2:16 � 10�2

10 1:93 � 10�2 3:03 � 10�2 1:67 � 10�2

Average 2:20 � 10�2 1:99 � 10�2 1:81 � 10�2

In all cases, connection weights are randomly generated in the range

of ½�0:5; 0:5Þ. Results are measured by mean-squared error (MSE)
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structure. Second, this might be caused by the simplified

CNN structure of the proposed reservoir. Since the pro-

posed ESN is conceptually simple and computationally

inexpensive, successfully applying ESN is sometimes

empirical. Therefore, the further simplified ESN with a

memristor-based CNN structure may lead to more stability

problems than the original ESN and yield a slightly worse

performance. Third, in this comparison, the weight matrix

of the reservoir in original ESN is optimized through

normalizing and setting its spectral radius. However, in the

proposed ESN, the weight matrix of the reservoir is not

optimized thus there are opportunities to improve its per-

formance by a proper optimization.

By investigating the example results shown in Fig. 6(c),

(d), the readout weights Wout of the memristive reservoir is

very similar to the original ESN’s range ð�2; 2Þ. However,

in some trials, the readout weights of the memristive

reservoir is obviously greater than the original ESN’s for

example in the range ð�6; 6Þ. According to the practical

guide [21], large output weights Wout may imply that the

solution is sensitive and unstable because a tiny difference

will be amplified by the output weights and lead to large

deviations from the expected values. Therefore, the aver-

age performance of proposed ESN is slightly sensitive than

the original ESN. For the purpose of improving the per-

formance, a practical approach is selecting the parameters

Fig. 6 Bechmark task results of the memristive ESN and the original ESN. a, b Demonstrate the deviation between target signal and predicted

signal. c, d Show the distribution of the readout weights
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carefully and tuning the parameters manually or automat-

ically through grid search which exhaustively searches for

proper parameters by comparing the performance metric.

Considering the very simplified CNN structure with

memristors, the proposed ESN structure is promising for

some specific tasks which require smaller size and less

computation, and it is worth further investigation.

6 Conclusion

By deriving the HP memristor with a single stair, the

staircase memristor model is investigated in this paper

based on the delayed-switching effect and the experimental

results of discovered memristors. The simulation results are

very similar to the recently discovered ferroelectric mem-

ristors. A comparison of the staircase memristor model and

HP memristor model is given to inspect the distinctions

between them. The staircase memristor model is assumed

to have multiple regions and each region has a delayed-

switching effect. Before the threshold of a region is

reached, the staircase memristor model remains at a

somewhat stable state. By varying the parameters, the

features of regions can be modified according to different

characteristic of staircase memristors which will result in

different staircase scenarios. The proposed CNN structure

with memristor-based local connections is adapted to ESNs

in order to reduce the connection complexity. By modify-

ing the connections, neurons in the reservoir of a ESN are

locally connected in the form of the proposed CNN

structure rather than randomly or fully connected. Without

optimization of the proposed memristive ESN, its perfor-

mance in the benchmark test is comparable with the orig-

inal ESN. However, there exists some limitation of

practical memristors and staircase memristors. In fact,

current practical staircase memristors, such as [3, 5, 27]

can only have limited multilevel resistance. Therefore, for

resistance beyond these levels, the accuracy must be con-

cerned and evaluated in the future. Another example of

limitations is the switching frequency. Because of the

delayed-switching effect of staircase memristors, switching

a memristor takes place with a time delay which will affect

applications which require a high switching frequency.

Since the memristor is still in the early stage compared to

other emerging technology, these limitations might be

improved and overcomed in the future. Therefore, using

memristors in building local connections in CNN and ESN

circuits is worth discussing to enjoy the benefits of mem-

ristors such as high density and low power consumption.

Overall, the results given in this paper demonstrate the

potential of memristors in bio-inspired electrical and

electronic circuits.
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