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Abstract We consider the random-bond ±J Ising model on a square lattice as a function
of the temperature T and of the disorder parameter p (p = 1 corresponds to the pure Ising
model). We investigate the critical behavior along the paramagnetic-ferromagnetic transition
line at low temperatures, below the temperature of the multicritical Nishimori point at T ∗ =
0.9527(1), p∗ = 0.89083(3). We present finite-size scaling analyses of Monte Carlo results
at two temperature values, T ≈ 0.645 and T = 0.5. The results show that the paramagnetic-
ferromagnetic transition line is reentrant for T < T ∗, that the transitions are continuous
and controlled by a strong-disorder fixed point with critical exponents ν = 1.50(4), η =
0.128(8), and β = 0.095(5). This fixed point is definitely different from the Ising fixed
point controlling the paramagnetic-ferromagnetic transitions for T > T ∗. Our results for the
critical exponents are consistent with the hyperscaling relation 2β/ν − η = d − 2 = 0.
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1 Introduction

The ±J Ising model represents an interesting theoretical laboratory, in which one can study
the effects of quenched disorder and frustration on the critical behavior of spin systems.
While originally introduced to describe magnetic systems with disordered couplings [1], it
has been shown recently to be also relevant for quantum computations [2, 3]. It is defined
by the lattice Hamiltonian [1]

H = −
∑

〈xy〉
Jxyσxσy, (1)

where σx = ±1, the sum is over all pairs of lattice nearest-neighbor sites, and the exchange
interactions Jxy are uncorrelated quenched random variables, taking values ±J with proba-
bility distribution

P (Jxy) = pδ(Jxy − J ) + (1 − p)δ(Jxy + J ). (2)

In the following we set J = 1 without loss of generality. For p = 1 we recover the standard
Ising model, while for p = 1/2 we obtain the bimodal Ising spin-glass model.

The T -p phase diagram of the two-dimensional (2D) square-lattice ±J Ising model has
been extensively investigated [4–46]. The resulting phase diagram, which is sketched in
Fig. 1, presents two phases at finite temperature: a paramagnetic and a ferromagnetic phase.
They are separated by a transition line, which starts at the pure Ising transition point at
p = 1 and TIs ≈ 2.269 and ends at the T = 0 transition at p0 ≈ 0.897. The point where
this transition line meets the so-called Nishimori (N) line [13], at T ∗ = 0.9527(1) and p∗ =
0.89083(3) (we derive these estimates in the present paper), is a multicritical point (MNP)
[36, 37].

The MNP divides the paramagnetic-ferromagnetic (PF) transition line in two parts. The
PF transition line from the Ising point at p = 1 to the MNP is controlled by the Ising fixed
point: disorder gives only rise to logarithmic corrections to the standard Ising critical be-
havior [11]. On the other hand, the presence of the MNP on the transition line suggests that
the PF transitions for T < T ∗ belong to a different strong-disorder universality class. This is

Fig. 1 (Color online) Phase
diagram of the square-lattice ±J

Ising model for 1 − p ≤ 1/2. SDI
labels the critical transition line
associated with the
strong-disorder fixed point
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confirmed by the renormalization-group (RG) calculations of [43] and [30], using domain-
wall and Migdal-Kadanoff RG transformations, respectively, which found that the RG flow
along the critical line for T < T ∗ was attracted by a different fixed point.

In this paper we investigate the critical behavior along the low-temperature transition
line from the MNP to the T = 0 axis. We perform Monte Carlo (MC) simulations at two
temperature values below the MNP, i.e., at β ≡ 1/T = 2 and β = 1.55. As we shall see, our
finite-size scaling (FSS) analyses show that the PF transition line for T < T ∗ is reentrant
and that the transitions are continuous. Moreover, the estimates of the critical exponents
and of several RG invariant quantities for these two values of T are consistent, supporting
the hypothesis that the PF transition line below the MNP belongs to a unique universality
class. The values of the critical exponents, ν = 1.50(4), η = 0.128(8), and β = 0.095(5)

are clearly different from the Ising values ν = 1, η = 1/4, β = 1/8. Therefore, these results
show the existence of a strong-disorder fixed point associated with a PF transition. Note
that this strong-disorder fixed point does not violate hyperscaling. Indeed, our results are
consistent with the hyperscaling relation 2 + 2β/ν − η = d = 2 (our estimates of the critical
exponents η and β give 2 + 2β/ν − η = 2.00(1)). The transitions for T < T ∗ are no longer
in the basin of attraction of the Ising fixed point, which is the relevant one for small disorder
and determines the critical behavior along the transition line for T > T ∗.

The paper is organized as follows. In Sect. 2 we review the main features of the T -p
phase diagram of the square-lattice ±J Ising model. The MC results and their FSS analyses
are presented in Sect. 3. In Sect. 4 we draw our conclusions. Some technical details on the
simulations are presented in Appendix A, while the quantities we compute are defined in
Appendix B. In Appendix C we present a reanalysis of the critical behavior at the MNP,
using the additional data we have collected in this work. Moreover, we also present analyses
which take into account the analytic corrections, which had been neglected in our previous
work [15]. This allows us to obtain improved estimates of the critical parameters at the MNP.

2 The Phase Diagram of the Square-Lattice ±J Ising Model

The phase diagram of the square-lattice ±J Ising model is sketched in Fig. 1. It is symmetric
for p → 1 − p and thus we only report it for 1 − p ≤ 1/2. For sufficiently small values of
the probability of antiferromagnetic bonds pa ≡ 1 − p, the model presents a paramagnetic
phase and a ferromagnetic phase, separated by a transition line. The PF transition line starts
at the Ising point XIs = (T = TIs,p = 1), where TIs = 2/ ln(1 + √

2) = 2.26919 . . . is the
critical temperature of the 2D Ising model, and extends up to a T = 0 transition at [44, 45]
X0 = (T = 0,p = p0 ≈ 0.897).

The slope of the transition line at p = 1 is exactly known [47]; for small 1 − p we have

Tc(p) = TIs

[
1 − 2

√
2

ln(1 + √
2)

(1 − p) + · · ·
]

. (3)

In the T -p phase diagram an important role is played by the Nishimori (N) line [4, 13]
defined by the equation (p ≥ 1/2)

T = TN(p), TN(p) = 2

lnp − ln(1 − p)
. (4)
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Along the N-line several rigorous results can be proved [4, 13, 48]. The energy density is
given by

EN(p) ≡ 1

V
[〈H〉TN(p)] = 2 − 4p, (5)

and the spin-spin and the overlap correlation functions are equal

[〈σ0σx〉] = [〈σ0σx〉2]. (6)

Here the angular and square brackets refer to the thermal average and to the quenched aver-
age over the bond couplings {Jxy}, respectively. As argued in [36, 37, 40, 41] and verified
numerically [15, 18–20, 22, 33], the critical point XMNP = (T ∗ ≈ 0.953,p∗ ≈ 0.891) along
the N line is a multicritical point (MNP).

Along the transition line from the Ising point XIs to the MNP, the critical behavior is
analogous to that observed in 2D randomly dilute Ising (RDI) models [11]. It is controlled
by the pure Ising fixed point and disorder is marginally irrelevant, giving rise to a universal
pattern of logarithmic corrections, see, e.g., [11, 49–54] and references therein.

The location of the MNP and the corresponding critical exponents can be obtained by
FSS analyses of MC data along the N line. The new analysis reported in Appendix C gives

T ∗ = 0.9527(1), p∗ = 0.89083(3). (7)

In the absence of external fields, the MNP is characterized by two relevant RG operators
with RG dimensions y1 = 0.66(1) and y2 = 0.250(2). Moreover, the magnetic exponent η

is given by η = 0.177(2). Other estimates of T ∗, p∗, and of the critical exponents can be
found in [14–16, 18, 22].

As a consequence of the inequality [13]

|[〈σxσy〉T ]p| ≤ [|〈σxσy〉TN (p)|]p (8)

(the subscripts indicate the values of T and p at which the thermal and disorder average
are performed), ferromagnetism can only exist in the region p ≥ p∗. Thus, the PF boundary
lies in the region p ≥ p∗ and, at the MNP, the transition line is tangent to the line p = p∗,
hence parallel to the T axis. As a further consequence, at T = 0 the ferromagnetic phase
ends at p = p0 with p0 ≥ p∗. In [4, 34, 35, 39] it was argued that the PF transition line
from the MNP to X0 = (0,p0) is only related to the frustration distribution; hence, it should
not depend on temperature and should coincide with the line p = p∗, so that p0 = p∗.
Numerical estimates of p0 have shown that this argument is not exact. Indeed, numerical
analyses [12, 18, 22, 44–46] give p0 ≈ 0.897;1 this suggests that the transition line below
the MNP is reentrant, i.e. pc > p∗ for any T < T ∗. The difference is however quite small,
p0 − p∗ ≈ 0.006.

Our FSS analyses confirm that the PF transition line is reentrant for T < T ∗. Indeed,
we find pc = 0.8915(2) at T = 1/1.55 ≈ 0.645 and pc = 0.8925(1) at T = 0.5. The PF
transitions are of second order and show the same critical behavior with critical exponents
ν = 1.50(4), η = 0.128(8), and β = 0.095(5), which are consistent with hyperscaling. These
results confirm the existence of a strong-disorder fixed point, different from the Ising fixed
point which controls the PF transitions above the MNP, i.e. for T ∗ < T < TIs.

1The most precise estimates are apparently [44] p0 = 0.897(1) and [45] p0 = 0.8969(1).
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At variance with the three-dimensional case, there is no evidence of a finite-temperature
glassy phase. Glassy behavior is only expected for T = 0 and p < p0. The critical behavior
for T → 0 has been much investigated for p = 1/2 [6–10]. In particular, simulations found
that the correlation length increases as T −ν with ν ≈ 3.5. A natural hypothesis is that a T = 0
glassy transition occurs for any p < p0, with a critical behavior in the same universality class
as that of the bimodal model with p = 1/2.

The point X0 = (0,p0), where the low-temperature transition line ends is a multicritical
point: it is connected to three phases and it is the intersection of two different transition
lines, the PF line at T > 0 and the glassy line at T = 0. At T = 0 the critical point X0

separates a ferromagnetic phase from a T = 0 glassy phase, while for T > 0 the transition
line separates a ferromagnetic from a paramagnetic phase. Therefore, on general grounds,
the critical behavior when varying p at T = 0 differs from that along the PF transition line
at T > 0, unless the magnetic and glassy critical modes are effectively decoupled at the
T = 0 multicritical point. The latter scenario is apparently supported by the fact that the
estimates of magnetic critical exponents at T = 0 (see, e.g., [18, 43–45]) are quite close and
substantially consistent with those found along the PF transition line for 0 < T < T ∗.

3 Monte Carlo Results

We investigate the critical behavior along the PF line that starts at the MNP and ends at
T = 0. Since the transition line below the MNP is expected to be almost parallel to the
T axis, we study the FSS behavior of several quantities at fixed T as a function of p.
We consider two values of T , β ≡ 1/T = 2 and β = 1.55, which are quite far from the
two endpoints of the line. For each of these two values we perform MC simulations on
square lattices of linear size L with periodic boundary conditions, for several values of L:
L = 8,12,16,24,32,48,64. In our MC simulations we employ the Metropolis algorithm,
the random-exchange method (often called parallel-tempering or multiple Markov-chain
method) [55–57], and multispin coding. Some details are reported in Appendix A.

3.1 The Critical Point pc and Exponent ν

We first focus on the data at β = 2, for which we have most of the statistics. In order to
estimate pc and ν, we perform a FSS analysis of the renormalized couplings Rξ , U4, U22,
which are defined in Appendix B and are generically denoted by R in the following. MC
estimates are shown in Fig. 2. We clearly observe a crossing point for 0.8920 < p < 0.8930,
indicating pc ≈ 0.892-0.893, which is larger than the value at the MNP, i.e. pc = p∗ =
0.89083(3). This already suggests that the transition line is reentrant.

To obtain more precise estimates we perform a careful FSS analysis, following [58]. In
the FSS limit any RG invariant quantity obeys the scaling law

R = fR(u1L
y1), (9)

where fR(0) = R∗, y1 ≡ 1/ν, and we have neglected scaling corrections. Here u1 is the
nonlinear scaling field associated with the leading relevant operator, which has RG dimen-
sion y1. The scaling field is an analytic function of the system parameters which vanishes
along the critical line. Thus, for p → pc(β) at fixed β we can write

u1 = A0(β)(p − pc) + A1(β)(p − pc)
2 + · · · (10)
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Fig. 2 (Color online) MC
estimates of Rξ ≡ ξ/L, U4, U22
at β = 2 vs. p. The lines
connecting the data at given L

are drawn to guide the eye. The
dashed vertical lines correspond
to the MNP location
p∗ = 0.89083(3). The dotted
vertical lines indicate our final
estimate of pc , pc = 0.8925(1)
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where the coefficients Ai(β) are analytic functions of β . The terms of order (p − pc)
2,

(p − pc)
3, etc., give rise to corrections of order L−ny1 as L → ∞. They are named analytic

corrections, because they arise from the analytic dependence of the scaling fields on the
model parameters. See [58] for a thorough discussion of their origin. In pure ferromagnetic
systems, in which ν � 1 and y1 � 1, they are usually negligible, and the nonanalytic correc-
tions, which behave as L−ω , ω � 1, play a much more important role. This is not the case
here, since, as we shall see, at the transition line y1 ≈ ω < 1.

Since our data are sufficiently close to the critical point, p − pc is small and thus we can
take u1 ∼ (p − pc). Moreover, also the product (p − pc)L

y1 is small, so that we can expand
fR(x) in powers of x. Thus, we fit the numerical data to

R = R∗ +
nmax∑

n=1

an(p − pc)
nLny1 , (11)

keeping R∗, the coefficients {an}, pc , and y1 as free parameters. Here we neglect scaling
corrections. To monitor their role, we repeat the fits several times, each time only including
data satisfying L ≥ Lmin. For a given Lmin, χ2/DOF (DOF is the number of degrees of
freedom of the fit) changes significantly as we increase nmax from 1 to 2, and only marginally
as we change this parameter from 2 to 3. This indicates that the range of values of p we are
considering is too large to allow for a linear approximation of the scaling function fR(x).
Instead, a quadratic approximation seems to be accurate enough. Thus, the results we present
below correspond to nmax = 2.

In Table 1 we give the estimates of R∗, pc , and y1 from combined fits of Rξ , U4,
and U22. All quantities, except y1, show a significant—much larger than the statistical
errors—variation with Lmin. Moreover, the χ2 is very large. Clearly, scaling corrections
are not negligible. In order to take them into account, we fit the MC data to

R = R∗ +
nmax∑

n=1

an(p − pc)
nLny1 + L−ω

kmax∑

k=0

bk(p − pc)
kLky1 , (12)

taking ω as a free parameter. Results for kmax = 1 and nmax = 2 are also reported in Table 1.
The χ2 is now significantly smaller and χ2/DOF ≈ 1, indicating that the fitting form (12)

Table 1 Estimates obtained from the analysis of the data at β = 2. Above we report the results of the
combined fits of Rξ , U4, and U22 to (11) with nmax = 2. Below we report the results of the fits to (12) with
nmax = 2 and kmax = 1

Lmin χ2/DOF ω R∗
ξ U∗

4 U∗
22 pc y1

8 9846/166 1.1865(3) 1.09028(5) 0.07287(4) 0.892163(5) 0.674(3)

12 3689/130 1.1996(4) 1.08867(6) 0.07293(5) 0.892294(6) 0.678(4)

16 1522/94 1.2068(4) 1.08792(8) 0.07327(7) 0.892348(8) 0.673(6)

24 441/61 1.2129(8) 1.08734(12) 0.07355(11) 0.892389(11) 0.676(8)

32 96/25 1.2172(16) 1.08695(22) 0.07350(20) 0.892431(19) 0.661(21)

8 212/159 0.58(4) 1.265(5) 1.0810(6) 0.0724(2) 0.89265(2) 0.677(17)

12 96/123 0.64(8) 1.249(6) 1.0836(7) 0.0741(3) 0.89254(3) 0.667(22)

16 77/87 0.63(13) 1.246(9) 1.0842(9) 0.0746(5) 0.89251(3) 0.660(30)

24 48/54 0.50(43) 1.254(38) 1.0840(37) 0.0752(25) 0.89251(11) 0.46(12)
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describes the data at the level of their statistical accuracy. The results are stable and the
estimates for Lmin ≥ 12 are consistent within errors. These fits also provide an estimate of
the correction-to-scaling exponent ω. We find

ω = 0.6(1). (13)

The estimates of ω and y1 indicate that ω ≈ y1, so that analytic and nonanalytic corrections
behave analogously. Therefore, we should also consider the analytic corrections. For this
purpose, we also performed fits to

R = R∗ +
nmax∑

n=1

an[1 + c(p − pc)]n(p − pc)
nLny1 , (14)

which corresponds to including the quadratic term in the expansion of the nonlinear scaling
field u1. The parameter c is a new fitting parameter which is independent of the quantity one
is analyzing. Fits to (14) are substantially equivalent to those to (11). For instance, the χ2

of the combined fit for Lmin = 8 is 9846, which is identical to that reported in Table 1 for
the same value of Lmin. The coefficient c is small and we estimate |c| � 0.3. Since our data
satisfy |p − pc| ≤ 0.0030, the analytic term gives a tiny correction and does not influence
the fit results.

Comparing the results of the different fits we arrive at the final estimates

y1 = 0.67(2), ν = 1/y1 = 1.50(4), (15)

pc = 0.8925(1), (16)

R∗
ξ = 1.25(3), (17)

U ∗
4 = 1.084(3), (18)

U ∗
22 = 0.074(1). (19)

The central value corresponds to the result of the fit to (12) with Lmin = 12; the errors are
such to include the results of the fits to (11) and Lmin = 32, and should take into account
the systematic error due to further scaling corrections which have been neglected in our
analyses.

We repeat the same type of analysis at β = 1.55. We report in Table 2 the results of the
fits to (11) and (12). In the latter case the data do not allow us to perform fits in which ω

is a free parameter. Thus, we only report results of fits in which ω is fixed to 0.4, 0.6, and
0.8, consistently with the estimate ω ≈ 0.6 presented above. Fits without scaling corrections
are characterized by large values of χ2/DOF and by a systematic trend of the results. Fits
with scaling corrections are significantly better. The estimates of y1 and U ∗

22 are in perfect
agreement with those obtained at β = 2. Those of U ∗

4 and R∗
ξ are substantially consistent:

the difference between the estimates (17), (18) and the results of the fit with ω = 0.6—this
is the fit which, in principle, should be more reliable—is of the order of two error bars and
can thus be explained by the presence of residual scaling corrections which are not taken
into account in our error estimate. Therefore, our analyses of the renormalized couplings are
consistent with a critical transition line whose nature is T independent: for T < T ∗, the PF
transition belongs to a unique universality class.

The estimate (15) is different from the Ising value ν = 1. Therefore, the PF fixed point
associated with the transitions along the line T < T ∗ is a new one, clearly distinct from
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Table 2 Estimates obtained from the analysis of the data at β = 1.55. Above we report the results of the
combined fits of Rξ , U4, and U22 to (11) with nmax = 2. Below we report the results of fits to (12) with
nmax = 2, kmax = 1, and ω fixed to 0.4, 0.6, 0.8

Lmin ω χ2/DOF R∗
ξ U∗

4 U∗
22 pc y1

8 2099/88 1.1362(8) 1.0984(1) 0.0756(1) 0.89107(2) 0.580(10)

12 1045/73 1.1457(8) 1.0969(1) 0.0753(1) 0.89122(2) 0.626(12)

16 556/58 1.1508(10) 1.0962(2) 0.0753(1) 0.89128(2) 0.636(13)

24 236/43 1.1543(15) 1.0959(3) 0.0755(2) 0.89131(3) 0.623(17)

8 0.4 77/82 1.213(3) 1.0878(5) 0.0739(4) 0.89160(3) 0.663(52)

8 0.6 88/82 1.190(2) 1.0908(4) 0.0744(3) 0.89153(2) 0.662(37)

8 0.8 111/82 1.178(2) 1.0904(3) 0.0746(2) 0.89148(2) 0.659(29)

the Ising one, which controls the critical behavior for weak disorder. Analogously, our esti-
mates of the critical value of the renormalized couplings differ from the Ising values [11, 59]
R∗

ξ = 0.9050488292(4), U ∗
4 = 1.167923(5), U ∗

22 = 0, and from those at the MNP (see Ap-
pendix C), which are R∗

ξ = 0.997(1), U ∗
4 = 1.1264(4), and U ∗

22 = 0.0817(3).
Our analyses also give an estimate of pc for β = 1.55:

pc = 0.8915(2). (20)

Therefore, for both values of β we find pc > p∗ = 0.89083(3). Thus, the PF transition line
is reentrant, contradicting the conjecture of [4, 34, 35, 39].

3.2 The Exponent η

We determine the critical exponent η from the critical behavior of the susceptibility χ . As
discussed in [58] in the context of the three-dimensional paramagnetic-glassy transition,
close to the critical point the susceptibility χ behaves as

χ = ū2
hL

2−ηfχ [(p − pc)L
y1 ], (21)

where ūh is a function of p related to the magnetic nonlinear scaling field. Note that we have
approximated u1 with p − pc , because, as already discussed, the analytic dependence of the
scaling field u1 is negligible for our data.

Since we are very close to the critical point, we can expand all quantities in powers of
(p − pc). For this reason we perform fits to

lnχ = (2 − η) lnL +
nmax∑

n=0

an(p − pc)
nLny1 +

mmax∑

m=1

bm(p − pc)
m . (22)

As before, we first analyze the data at β = 2. To understand the role of the analytic correc-
tions, we first perform fits of the data in which we fix pc = 0.8925 and y1 = 0.67, which are
the estimates obtained above. If we do not include the analytic correction (we set bm = 0 for
any m) and we use nmax = 2, we obtain χ2/DOF = 633/55, 297/43 from the analysis of the
estimates of χ corresponding to lattices such that L ≥ Lmin = 8, 12, respectively. If instead
we include the analytic corrections taking mmax = 1, we obtain χ2/DOF = 42/54, 30/42.
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Table 3 Estimates of η from fits
to (22) with nmax = 2 and
mmax = 1. We fix y1 = 0.67(2)

in both fits. The reported error
takes into account the error bar
on y1 and on pc (for the fit in
which this quantity is fixed).
Analyses of the data at β = 2

Lmin pc = 0.8925(1) pc free parameter

χ2/DOF η χ2/DOF η pc

8 42/54 0.1235(13) 41/53 0.1236(4) 0.89249(2)

12 30/42 0.1235(15) 28/41 0.1241(5) 0.89245(4)

16 21/30 0.1234(16) 20/29 0.1243(8) 0.89244(5)

24 15/19 0.1233(20) 14/18 0.1254(20) 0.89238(11)

32 8/7 0.1232(23) 7/6 0.1278(40) 0.89227(20)

The improvement is clearly significant, indicating that the analytic corrections cannot be
neglected.

In Table 3 we report the results of the fits corresponding to nmax = 2 and mmax = 1. In all
cases we fix y1 to 0.67(2), as indicated by (15). This is not crucial, since the estimates of
the exponent η are quite insensitive to this parameter. The results show instead a significant
dependence on pc and thus, we present fits in which pc is fixed to the value (16) and fits in
which pc is a free parameter. The estimates of the two fits are substantially consistent and
show a tiny dependence on Lmin. Also the estimates of pc are consistent with the value (16).

We also considered nonanalytic scaling corrections, performing a fit of the form

lnχ = (2 − η) lnL +
nmax∑

n=0

an(p − pc)
nLny1 +

mmax∑

m=1

bm(p − pc)
m + cL−ω. (23)

We fix pc = 0.8925, y1 = 0.67, ω = 0.6, nmax = 2, mmax = 1, and obtain η = 0.1234(13),
c = 0.000(3) for Lmin = 8: there is no evidence of nonanalytic scaling corrections.

To avoid the use of pc , note that (9) can be inverted to give u1L
y1 ≈ (p − pc)L

y1 as a
function of R. Thus, (21) can also be rewritten as

χ = ū2
hL

2−ηgχ (R)[1 + O(L−ω)], (24)

where R is a renormalized coupling. A polynomial approximation for ūh(p) and gχ(R)

gives the fitting form

lnχ = (2 − η) lnL +
nmax∑

n=0

anR
n +

mmax∑

m=1

bmpm. (25)

Fits to this form have a quite large χ2, which is not unexpected since we already found
that the renormalized couplings show significant scaling corrections. Moreover, the results
depend significantly on the minimum lattice size Lmin of the data included in the fit. Scaling
corrections must therefore be included. We thus consider

lnχ = (2 − η) lnL +
nmax∑

n=0

anR
n +

mmax∑

m=1

bmpm + L−ω

kmax∑

k=0

ckR
k. (26)

The results of these fits are reported in Table 4. The χ2 is good; moreover, the results do
not depend on which quantity is used in the fit, are stable with Lmin, and are consistent with
those reported in Table 3.

Analogous analyses can be performed at β = 1.55. Also in this case the analytic correc-
tions cannot be neglected and thus we only consider fits with mmax = 1. The results of the
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Table 4 Estimates of η from fits
to (26) with nmax = 2, mmax = 1,
kmax = 0, ω free parameter. On
the left we use R = U4, on the
right we use R = Rξ . Analyses
of the data at β = 2

Lmin U4 Rξ

χ2/DOF η χ2/DOF η

8 72/52 0.1247(5) 47/52 0.1245(14)

12 57/40 0.1250(8) 40/40 0.1253(22)

16 54/28 0.1255(9) 36/28 0.1255(48)

Table 5 Estimates of η from fits
to (22) with nmax = 2 and
mmax = 1. We fix y1 = 0.67(2)

in both fits. The reported error
takes into account the error bar
on y1 and on pc (for the fit in
which this quantity is fixed).
Analyses of the data at β = 1.55

Lmin pc = 0.8915(2) pc free parameter

χ2/DOF η χ2/DOF η pc

8 25/28 0.1336(26) 23/27 0.1342(7) 0.89145(3)

12 23/23 0.1335(30) 22/22 0.1341(9) 0.89145(4)

16 21/18 0.1335(33) 20/17 0.1341(12) 0.89146(6)

24 16/13 0.1330(38) 16/12 0.1315(23) 0.89158(12)

32 10/8 0.1330(42) 10/7 0.1361(46) 0.89133(21)

fits to (22) are reported in Table 5. The dependence of the results on Lmin is tiny. Moreover,
the estimates of pc obtained in the analyses in which this quantity is a free parameter are
perfectly consistent with the estimate (20). Similar, though less stable, results are obtained
by fitting the data to (26). We fix ω = 0.6(1) as in the case of the analyses of the renormal-
ized couplings. For Lmin = 8 we obtain η = 0.1304(5) and η = 0.1340(5) by using U4 and
Rξ , respectively; for Lmin = 12 we obtain instead η = 0.1317(8) and η = 0.1329(8).

Collecting all results, from the analyses of the data at β = 2 we would estimate η =
0.125(3). The analyses at β = 1.55 give a slightly different value, η = 0.132(4). The dif-
ference is tiny—less than two combined error bars—but indicates that there are corrections
which are not fully taken into account by our analyses. As final estimate we report the aver-
age of the two results,

η = 0.128(8). (27)

The error we quote is quite conservative and essentially includes the estimates of all fits for
both values of β .

3.3 The Critical Exponent β and a Check of Hyperscaling

The critical exponent β (not to confused with the inverse temperature) can be determined
from the critical behavior of the magnetization. RG predicts

m = ūhL
−β/νfm[(p − pc)L

y1 ], (28)

where ūh is the same function which appears in (21) and fm(x) is a universal function.
Expanding this scaling relation around the critical point we obtain the fitting form

lnm = −β

ν
lnL +

nmax∑

n=0

an(p − pc)
nLny1 +

mmax∑

m=1

bm(p − pc)
m . (29)

As before we fix nmax = 2, mmax = 1, and use the best available estimates of pc . For β = 2
a fit of the data satisfying L ≥ Lmin = 24 gives β/ν = 0.0613(11); for Lmin = 32 we obtain
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Fig. 3 The specific heat at β = 2
and p = 0.8925 ≈ pc versus

L−2/3. The dashed line is
obtained by fitting the MC data to
a + bL−2/3

instead β/ν = 0.0614(12). For β = 1.55 and Lmin = 32 we obtain β/ν = 0.0661(22). As in
the case of η, we observe a tiny difference between the estimates obtained at the two values
of the temperature. It probably indicates the presence of additional scaling corrections which
are not taken into account by our scaling Ansatz. A conservative estimate of the critical
exponent which is consistent with all results is

β

ν
= 0.063(3) β = 0.095(5). (30)

We can now check hyperscaling. If it holds, we should have 2β/ν − η + 2 = d = 2. We find

2β

ν
− η + 2 = 2.00(1). (31)

Hyperscaling is verified quite precisely.
Finally, we consider the specific heat. At p = pc we expect

Cv = a + bLα/ν, (32)

where a is due to the analytic contribution to the free energy. If hyperscaling holds, we
should have α = 2 − 2ν, so that

α

ν
= 2

ν
− 2 = 2y1 − 2 = −0.66(4). (33)

A precise determination of α/ν from the data is quite difficult, because α/ν < 0—the singu-
lar part decreases as L → ∞. Thus, we have only checked that our data are consistent with
hyperscaling. In Fig. 3 we show the specific heat for β = 2 and L ≥ 24 versus L−2/3. The
results are consistent, supporting hyperscaling.

3.4 The Derivative dpc/dβ

As a final test of our results we consider the derivative with respect to β of a renormalized
coupling R. In the FSS limit R behaves as

R = fR(u1L
y1) + uωL−ωfR,ω(u1L

y1) + · · · (34)
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where the scaling fields u1 and uω are functions of the system parameters, hence of β and p.
Moreover, u1 vanishes on the critical line. From (34) we obtain

∂R

∂β
= ∂u1

∂β
Ly1

[
f ′

R(u1L
y1) + uωL−ωf ′

R,ω(u1L
y1)

] + ∂uω

∂β
L−ωfR,ω(u1L

y1) + · · · . (35)

If the critical value pc is β independent, ∂u1/∂β vanishes on the critical line, so that ∂R/∂β

behaves as L−ω for L → ∞, i.e. the derivative vanishes in the critical large-L limit. This is
not surprising, since for p = pc = p∗ and any β we would have R = R∗ +O(L−ω), with R∗
independent of β . On the other hand, if the transition is reentrant, ∂R/∂β diverges as Ly1 .

We have checked the validity of (35) by using the data at β = 2. The fits of the renor-
malized couplings R give us estimates of the expansion of R around pc . In particular, fits
to (12) give us estimates of the coefficients an. We have thus fitted ∂R/∂β to the following
expression:

∂R

∂β
= k0L

y1 [a1 + 2a2(p − pc)L
y1 ] + k1L

y1−ω. (36)

We take y1 = 0.67(2), pc = 0.8925(1), ω = 0.6(1), and a1 and a2 from the fits of R to
(12); k0 and k1 are free parameters. The estimates of k0 do not vary significantly with Lmin.
Moreover, results obtained by using ∂Rξ/∂β and ∂U4/∂β are fully consistent. Comparing
all results we obtain the estimate

k0 = −0.0020(3). (37)

To interpret this result, note that (9), (10), and (12) allow us to identify

a1 = A0(β)f ′
R(0). (38)

Instead, comparing (36) with (35) we obtain

k0a1 = ∂u1

∂β

∣∣∣∣
pc

f ′
R(0). (39)

Now, (10) gives

∂u1

∂β

∣∣∣∣
pc

= −A0(β)
dpc

dβ
. (40)

It follows

dpc

dβ
= −k0 = 0.0020(3) . (41)

Again, this result shows that the transition is reentrant. It is also consistent with the crude
estimate

dpc

dβ
≈ pc(2) − pc(1.55)

2 − 1.55
≈ 0.0022. (42)

4 Conclusions

In this paper we have studied the nature of the transition line which starts from the MNP and
ends at T = 0 and which separates the paramagnetic phase from the ferromagnetic phase.
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For this purpose, we have presented FSS analyses of MC data on lattices of linear size L up
to L = 64 for β ≡ 1/T = 2 and β = 1.55.

Our main results are the following.

(i) The PF transition line below the MNP is reentrant. Indeed, we find pc = 0.8915(2) at
T = 1/1.55 ≈ 0.645 and pc = 0.8925(1) at T = 0.5. Therefore, pc > p∗ = 0.89083(3)

for any T < T ∗ = 0.9527(1), where X∗ = (T ∗,p∗) is the location of the MNP.
(ii) The PF transitions are of second order with a standard power-law behavior.

(iii) The estimated values of the critical exponents and of the large-L limit of the RG invari-
ant quantities U4, Rξ , and U22 at two different points of the line (β = 1.55 and β = 2)
suggest that the PF transitions for 0 < T < T ∗ belong to a unique universality class. In
particular, the corresponding critical exponents are

ν = 1.50(4), η = 0.128(8), β = 0.095(5). (43)

They satisfy the hyperscaling relation 2β/ν−η = d −2 = 0. Our MC data are also con-
sistent with the hyperscaling relation α = 2 − dν = 2 − 2ν, which gives α = −1.00(8).
Using the scaling relation γ = (2 − η)ν, we derive γ = 2.81(8). The estimates (43) are
definitely different from the Ising values ν = 1, η = 1/4, β = 1/8. We note that they
are consistent with the simple rational expressions ν = 3/2, η = 1/8.

(iv) The above results show that in two dimensions there are two fixed points which control
the PF transitions in disordered random-bond Ising systems: besides the standard Ising
fixed point, which is relevant for small disorder and controls the critical behavior along
the PF transition line for T ∗ < T ≤ TIs, there is also a strong-disorder fixed point which
controls the critical behavior along the PF transition line for 0 < T < T ∗. The resulting
phase diagram is consistent with the results of [30, 43]. Note that frustration and not
simply disorder is the relevant property, which gives rise to the new fixed point. Indeed,
in randomly-dilute Ising systems, in which there is dilution but not frustration, there is
no evidence of a new strong-disorder fixed point [11].

It is interesting to compare our results with those obtained at T = 0. McMillan [43]
extrapolated the RG results to T = 0 (this is correct under the assumption that the limit
T → 0 is regular) and obtained ν = 1.42(8). Wang et al. [45] obtained ν = 1.46(1) from the
scaling of the failure probability. Amoruso and Hartmann [44] found ν = 1.55(1) from the
analysis of the Binder cumulant and the magnetization exponent β = 0.09(1).2 They also
analyzed the domain-wall energy, obtaining E = Lρf ((p − p0)L

y1) with ρ = 0.12(5)

and y1 = 0.75(5). This gives ν = 1/y1 = 1.33(9). The exponent η associated with the spin-
spin correlation has been estimated in [18], obtaining η ≈ 0.13. Note that these estimates
are consistent with the hyperscaling relation 2β/ν − η = d − 2 = 0. Therefore, even if these
results refer to a T = 0 transition, the magnetic exponents are consistent with hyperscaling.

The T = 0 results are very close to ours. Note also that, at T = 0, the relation U ∗
4 =

U ∗
22 + 1 holds.3 This relation is approximately satisfied by our finite-T data, see (18) and

(19); the slight discrepancy might be due to the presence of neglected additional scaling cor-
rections. All results are therefore consistent with a single magnetic fixed point that controls

2Amoruso and Hartmann [44] report β = 0.9(1). Alexander Hartmann communicated to us that the correct
result is β = 0.09(1).
3Indeed, assuming a nondegenerate ground state (this should be the case in two dimensions), we have μ4 =
μ2

2 (see Appendix B for the definitions), from which the relation follows.
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Fig. 4 The phase diagram of the
square-lattice ±J Ising model.
The estimates of the critical
points for T > T ∗ are taken from
[11, 22]. The estimate of the
T = 0 transition point is taken
from [44, 45]. The dashed lines
are interpolations discussed in
Appendix C, while the dotted
line starting at the Ising point
corresponds to the
approximation (3)

the magnetic critical behavior both at T > 0 and at T = 0. At the multicritical T = 0 point,
glassy and magnetic modes are apparently effectively decoupled.

Finally, we have improved the estimates of the critical parameters at the MNP by a new
FSS analysis of MC simulations up to L = 64 along the N line. We obtain p∗ = 0.89083(3)

and T ∗ = 0.9527(1), y1 = 0.66(1) and y2 = 0.250(2) for the RG dimensions of the two
relevant operators in the absence of external field, and η = 0.177(2) for the magnetic critical
exponent associated with the spin-spin correlation function.

In Fig. 4 we report the available estimates of the critical points and report simple inter-
polations, discussed in Appendix C, which take into account all theoretical predictions and
numerical results.

Acknowledgements Discussions with Marco Picco and correspondence with Nihat Berker and Alexander
Hartmann are gratefully acknowledged.

Appendix A: Some Details on the Monte Carlo Simulations

In our parallel-tempering simulations we consider NT systems at the same value of p and
at NT different inverse temperatures βmin ≡ β1, . . . , βNT

≡ βmax, where βmax is chosen to be
either 2 or 1.55. To avoid repeating the runs twice, for L = 48 and 64, βmax is always chosen
to be 2, while one of the βi corresponds to 1.55. Moreover, for all values of L, we choose
βi = βN(p) for some i, where βN(p) is given in (4), so that the corresponding point lies
on the N line. This choice gives us estimates along the N line, which can be compared with
exact and previous numerical results. They provide a check of the numerical simulations and
allow us to improve the estimates of the critical parameters of [15], see Appendix C.

The elementary unit of the algorithm consists in Nex = 20 Metropolis sweeps for each
configuration followed by an exchange move. We consider all pairs of configurations cor-
responding to nearby temperatures and propose a temperature exchange with acceptance
probability

P = exp{(βi − βi+i )(Ei − Ei+1)}, (A.1)

where Ei is the energy of the system at inverse temperature βi . We generate Ns disorder
samples, and for every sample we perform a MC run of Nrun Metropolis sweeps for each βi

value. The first Ntherm iterations are discarded for thermalization (see [15] for a discussion of
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Table 6 Parameters of the
random-exchange MC runs for
L ≥ 32

L p βmin βmax NT Ns/64 Nrun/103 Ntherm/103

32 0.8910 0.800 1.55 5 15625 800 240

32 0.8915 0.800 1.55 5 15625 800 240

32 0.8920 0.800 1.55 5 15625 800 240

32 0.8925 0.800 1.55 5 15625 800 240

32 0.8930 0.800 1.55 5 15625 800 400

32 0.8915 0.800 2 6 15625 800 240

32 0.8920 0.800 2 6 15625 800 240

32 0.8925 0.800 2 6 15625 800 240

32 0.8930 0.800 2 6 15625 800 240

48 0.8915 0.740 2 9 31250 2000 400

48 0.8920 0.740 2 9 31250 2000 400

48 0.8925 0.740 2 9 31250 2000 400

48 0.8930 0.740 2 9 31250 2000 600

64 0.8915 0.710 2 13 7813 3000 900

64 0.8920 0.710 2 13 7813 3000 900

64 0.8925 0.710 2 13 7813 3000 900

64 0.8930 0.710 2 13 7813 3000 900

the thermalization issues). The parameters of the runs with L ≥ 32 are reported in Table 6.
Finally, note that the determination of U22 requires the computation of a disorder average of
the square of a thermal average. We use an essentially bias-free estimator discussed in [60].

Appendix B: Definitions

The two-point correlation function is defined as

G(x) ≡ [〈σ0 σx〉], (B.1)

where the angular and the square brackets indicate the thermal average and the quenched
average over disorder, respectively. We define the magnetic susceptibility χ ≡ ∑

x G(x)

and the correlation length ξ ,

ξ 2 ≡ G̃(0) − G̃(qmin)

q̂2
minG̃(qmin)

, (B.2)

where qmin ≡ (2π/L,0), q̂ ≡ 2 sinq/2, and G̃(q) is the Fourier transform of G(x). We also
consider the magnetization m defined as

m = 1

V

[〈∣∣∣∣
∑

x

σx

∣∣∣∣

〉]
,

where V is the volume, and the specific heat Cv

Cv = 1

V

[〈H2〉 − 〈H〉2
]
,
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where H is the Hamiltonian.
We also consider quantities (we call them renormalized couplings) that are invariant un-

der RG transformations in the critical limit. Beside the ratio

Rξ ≡ ξ/L, (B.3)

we consider the RG invariant quantities

U4 ≡ [μ4]
[μ2]2

, U22 ≡ [μ2
2] − [μ2]2

[μ2]2
, Ud ≡ U4 − U22,

where

μk ≡
〈(∑

x

σx

)k〉
. (B.4)

Appendix C: Critical Exponents at the Multicritical Point

In each parallel-tempering simulation we fixed p and considered several values of β from
βmin < β∗ up to βmax which was either 2 or 1.55, hence larger than the multicritical value β∗.
In all runs we were careful to include a point on the N line. Since the energy is known exactly
on this line, this choice allowed us to test the correctness of the simulation code. Moreover,
we were able to collect a significant amount of new data, which can be combined with the
old ones presented in [15]. As we shall see, the FSS analyses of this new set of data allow
us to improve the estimates of the critical parameters.

As in [15] we perform combined fits of the renormalized couplings to (11) and (12). The
new results are reported in Tables 7 and 8. The estimates of y1 are quite stable and essentially
independent of Lmin, of the observable, and of the scaling corrections. We thus quote

y1 = 0.66(1), (C.1)

where the error is chosen quite conservatively, and is such to include all results. This result is
fully consistent with the estimate y1 = 0.655(15) of [15]. The estimates of p∗ vary between
0.89081 and 0.89086, so that we quote

p∗ = 0.89083(3). (C.2)

Table 7 Estimates of p∗ and y1
at the MNP. Results from
combined fits of three different
renormalized couplings to (11)
with nmax = 2. Here
Ud ≡ U4 − U22

Lmin χ2/DOF p∗ y1

Rξ ,U4,U22 12 383/289 0.890864(4) 0.659(2)

16 207/220 0.890844(4) 0.658(2)

24 120/151 0.890828(6) 0.658(3)

32 58/82 0.890822(8) 0.651(5)

Rξ ,U4,Ud 12 424/289 0.890853(3) 0.660(1)

16 248/220 0.890856(4) 0.660(2)

24 194/151 0.890850(5) 0.659(5)

32 100/82 0.890848(7) 0.653(5)
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Table 8 Estimates of p∗, y1,
and ω at the MNP. Results from
combined fits of three different
renormalized couplings to (12)
with nmax = 2 and kmax = 1

Lmin χ2/DOF p∗ y1 ω

Rξ ,U4,U22 6 283/318 0.890822(7) 0.665(3) 1.79(13)

8 232/300 0.890814(9) 0.660(10) 1.98(25)

Rξ ,U4,Ud 6 396/318 0.890864(3) 0.662(2) 3.18(10)

8 332/300 0.890857(4) 0.660(2) 4.41(27)

This estimate agrees with that we obtained in [15], i.e. p∗ = 0.89081(7). Moreover, it is
in full agreement with the recent calculations of [14]: Two different approximations gave
p∗ ≈ 0.890822 and p∗ ≈ 0.890813.

Our analyses also provide estimates of the critical-point value of the renormalized cou-
plings:

R∗
ξ = 0.997(1), (C.3)

U ∗
4 = 1.1264(4), (C.4)

U ∗
22 = 0.0817(3). (C.5)

Scaling corrections are particularly weak and apparently decay as L−2 or faster. Note that
this does not necessarily imply the presence of nonanalytic corrections associated with RG
irrelevant operators with ω ≈ 2. Indeed, in all cases we expect contributions due to the
regular part of the free energy, which decay as Lη−2 ≈ L−1.8.

The critical exponent y2 is derived from the critical behavior of R′ ≡ ∂R/∂β , where R is
a renormalized coupling [15]. Neglecting scaling correction, its FSS behavior is given by

R′ = ∂u1

∂β
Ly1f1(u1L

y1 , u2L
y2) + ∂u2

∂β
Ly2f2(u1L

y1 , u2L
y2), (C.6)

where u1 and u2 are the nonlinear scaling fields associated with the two leading relevant
operators. In general, we expect [36, 37] u2 to vanish on the N line, so that

u2(β,p) = S(β − βN(p),p − p∗), (C.7)

where βN(p) = 1/TN(p), TN(p) is defined in (4), and the function S(x, y) is such that
S(0, y) = 0 and ∂S(0,0)/∂x �= 0. Since the transition lines must be tangent to the line p =
p∗ as a consequence of a general rigorous inequality [13], we also have

u1(β,p) = p − p∗ + quadratic terms. (C.8)

The independence of u1 on β at leading order, implies that the first term in (C.6) vanishes at
the MNP, so that R′ ∼ Ly2 for L → ∞ at p = p∗.

In order to compute y2, we perform three different fits of our data on the N line. In the
first one, we neglect the p dependence of ∂u2/∂β and set ∂u1/∂β = 0. Then, setting u2 = 0
and expanding in powers of u1L

y1 ∼ (p − p∗)Ly1 , we obtain

lnR′ = y2 lnL +
nmax∑

n=0

an(p − p∗)nLny1 . (C.9)
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Table 9 Estimates of y2 at the
MNP. We fix y1 = 0.66(1) and
pc = 0.89083(3). Results from
fits of the derivative of the
renormalized couplings Rξ

and U4. On the left the results
refer to the fit to (C.9) with
nmax = 2, on the right to the fit
to (C.10) with nmax = 2 and
mmax = 1. The error in
parentheses is the sum of the
statistical error and of the error
due to uncertainty of y1; the error
in brackets gives the variation of
the estimate as pc varies by one
error bar

Lmin χ2/DOF y2 χ2/DOF y2

R′
ξ 8 90/102 0.2533(6)[5] 57/101 0.2521(5)[5]

12 88/96 0.2535(7)[5] 56/95 0.2519(6)[6]

16 60/73 0.2530(9)[6] 45/72 0.2514(8)[7]

24 37/50 0.2531(13)[7] 31/49 0.2515(13)[8]

32 16/27 0.2528(21)[8] 15/26 0.2523(21)[8]

U ′
4 8 158/102 0.2492(9)[18] 90/101 0.2480(4)[17]

12 148/96 0.2496(11)[19] 89/95 0.2478(5)[18]

16 95/73 0.2450(14)[21] 65/72 0.2480(7)[21]

24 53/50 0.2509(18)[25] 42/49 0.2490(11)[24]

32 32/27 0.2514(23)[28] 29/26 0.2500(19)[27]

In the second fit we include the nontrivial dependence of u2 on β and p. We fit the results to

lnR′ = y2 lnL +
nmax∑

n=0

an(p − p∗)nLny1 +
mmax∑

m=1

bm(p − p∗)m. (C.10)

Finally, note that u1 may depend on β at quadratic and higher orders, so that on the N line
one may have

∂u1

∂β
∼ p − p∗ + O[(p − p∗)2]. (C.11)

Hence, the first term in (C.6) may give rise to corrections of order (p −p∗)Ly1−y2 . Thus, we
also perform fits to

lnR′ = y2 lnL +
nmax∑

n=0

an(p − p∗)nLny1 + L−y2

kmax∑

k=1

bk(p − p∗)kLky1 . (C.12)

In Table 9 we report the results of the fits of R′
ξ and U ′

4 to (C.9) and (C.10). The inclusion
of the analytic corrections significantly reduces the χ2 and changes slightly the estimates
of y2. Fits to (C.12) give results which are essentially equivalent to those obtained by fitting
to (C.10). Comparing all results we obtain the estimate

y2 = 0.250(2), (C.13)

which is identical to that reported in [15].
Finally, we determine η. We compute it from the critical behavior of χ and, as in [15],

from that of Z ≡ χ/ξ 2. The results of the fits with and without analytic corrections are
reported in Tables 10 and 11. The most stable results are obtained from fits of χ which take
into account the analytic corrections. As final result we quote

η = 0.177(2), (C.14)

where the error is such to include the estimates of η obtained from the analysis of lnZ. This
result is consistent with the estimate η = 0.180(5) reported in [15], but significantly more
precise.
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Table 10 Estimates of η at the MNP. We fix y1 = 0.66(1) and pc = 0.89083(3). Results from fits of lnZ

and lnχ to (22) with nmax = 2 without analytic correction (in the case of lnZ the coefficient of lnL is of
course −η). The error in parentheses is the sum of the statistical error and of the error due to uncertainty
of y1; the error in brackets gives the variation of the estimate as pc varies by one error bar

Lmin lnZ lnχ

χ2/DOF η χ2/DOF η

8 393/102 0.1736(6)[12] 2653/102 0.1752(2)[5]

12 272/96 0.1747(7)[13] 2340/96 0.1749(3)[5]

16 146/73 0.1760(8)[14] 1342/73 0.1751(3)[5]

24 68/50 0.1776(10)[16] 761/50 0.1752(4)[6]

32 30/27 0.1782(12)[18] 110/27 0.1761(4)[7]

Table 11 Estimates of η at the
MNP. We fix y1 = 0.66(1) and
pc = 0.89083(3). Results from
fits of lnZ and lnχ to (22) with
nmax = 2 and mmax = 1. The
error in parentheses is the sum of
the statistical error and of the
error due to uncertainty of y1; the
error in brackets gives the
variation of the estimate as pc

varies by one error bar

lnZ lnχ

Lmin χ2/DOF η χ2/DOF η

8 300/101 0.1745(3)[11] 83/101 0.1767(1)[5]

12 117/95 0.1763(3)[12] 79/95 0.1768(1)[6]

16 60/72 0.1776(4)[14] 50/72 0.1774(1)[6]

24 32/49 0.1791(5)[15] 36/49 0.1771(1)[7]

32 15/26 0.1794(9)[17] 20/26 0.1771(2)[7]

The results obtained here allow us to predict the behavior of the different transition lines
close to the MNP. Standard scaling arguments predict that, close to the MNP, the transition
lines are given by

u1|u2|−φ = X±, (C.15)

where X+ and X− are two constants that refer to the lines which satisfy T > T ∗ and T < T ∗,
respectively. They can be determined by considering the estimates of the critical points
pc,Tc close to the MNP. The crossover exponent φ is equal to the ratio y1/y2. In the present
case we have

φ = y1

y2
= 2.64(5). (C.16)

We can use (C.15) to obtain an interpolation of our results up to T = 0, which represents
our best guess of the transition line, given the estimates of the critical points we have. For
this purpose, we choose

u2(p,T ) = tanh(1/T ) − 2p + 1, (C.17)

so that u2 = 0 along the N line, cf. (4). Thus, the critical line is given by the approximate
expression

pc − p∗ + a2(Tc − T ∗)2 = X−u2(pc, Tc)
φ. (C.18)

The left-hand side corresponds to the expansion of u1, cf. (C.8), close to the MNP. Since
2 < φ < 3 the quadratic term proportional to (Tc − T ∗)2 is more relevant than the nonana-
lytic term which appears in the right-hand side of (C.18) and which therefore represents a
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next-to-leading contribution. Since pc − p∗ ∼ (Tc − T ∗)2, the other quadratic terms appear-
ing in the expansion of u1 are subleading. The free parameters a2 and X− are fixed by requir-
ing the line to go through the points (pc = 0.8925(1), Tc = 0.5) and (p0 = 0.897, T = 0).
We obtain a2 = −0.0061 and X− = 0.0386. The corresponding line is reported (dashed
line) in Fig. 4. The interpolation (C.18) gives pc = 0.89159 at β = 1.55, and the deriv-
ative dpc/dβ = 0.00180 at β = 2 which are in good agreement with the MC estimates
pc = 0.8915(2) at β = 1.55, and dpc/dβ = 0.0020(3) at β = 2 obtained in Sect. 3.

We have also determined an interpolation of the available numerical data [11, 22] valid
for T > T ∗. A simple expression, which satisfies (C.15) and (3), is

pc = p∗ + (β∗ − β)2.64(1.41484 − 4.25764β + 5.67965β2 − 2.77095β3), (C.19)

with p∗ = 0.89083 and β∗ = 1.04962. The corresponding line is reported (dashed line) in
Fig. 4.
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