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Abstract We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide (RGO/MWCNTs/NiO)

nanocomposite as the counter electrode (CE) in dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide substrates

by blade doctor method. Power conversion efficiency (PCE) of 8.13 % was achieved for this DSSCs device, which is

higher than that of DSSCs devices using NiO, RGO, and RGO/NiO-CE (PCE = 2.71 %, PCE = 6.77 % and

PCE = 7.63 %). Also, the fill factor of the DSSCs devices using the RGO/MWCNTs/NiO-CE was better than that of other

CEs. The electron transfer measurement of cyclic voltammetry and electrochemical impedance spectroscopy showed that

RGO/MWCNTs/NiO film could provide fast electron transfer between the CE and the electrolyte, and high electrocatalytic

activity for the reduction of triiodide in a CE based on RGO/MWCNTs/NiO in a DSSC.
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1 Introduction

In recent, the demand for alternative clean and sustainable

energy technologies increases worldwide because of the

pollution caused by fossil fuels and their advanced exhaus-

tion. Dye-sensitized solar cells (DSSCs) which can convert

the sun energy into electricity are believed to be a promising

energy conversion technology. It becomes essential and very

important to improve the DSSCs performance such as low

production cost, low environmental impact during fabrica-

tion, and high energy conversion efficiency [1]. In the case of

the original Grätzel design, the DSSC has three primary

parts: photoanode, liquid electrolytes, and platinum (Pt)

deposited on another transparent conducting oxide (TCO)

substrate [1, 2]. The photoanode which determines the de-

vice efficiency is usually fabricated using TiO2 due to its

large ratio of surface area to volume for dye materials [3–6],

and the issues related to the counter electrode (CE)must also

be addressed. As known, the CE in DSSCs can quickly

transport electrons from the electrode substrate to the elec-

trolyte and effectively catalyze the iodide–triiodide (I-/I3
-)

redox reaction in the electrolyte. However, for long-term

stability and cost-effective construction of theDSSCs, Pt-CE

suffers from its high price, rarity, and susceptibility to cor-

rosion by iodide electrolyte. Using alternative materials of Pt

in CE is expected to reduce fabrication cost of DSSCs.

Nanocarbon, carbon black, hard carbon spherules, polymer,

polymer/Pt, and polymer/carbon have been introduced as

catalysts for DSSCs [7–17]. Carbonaceous materials are

highly important materials in either their pristine or their
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composite forms due to their low cost and abundance [18–

23]. Single-walled carbon nanotubes (SWCNTs), multi-

walled carbon nanotubes (MWCNTs), multi-walled carbon

nanotubes/graphene (MWCNTs/G), MWCNTs/polymers,

and MWCNTs/Pt-CE in DSSCs have been considered as

ideal alternative sources to Pt owing to their good properties

such as high conductivity, large specific surface area, and

chemical stability [24–29]. Recently, Wang et al. prepared a

nickel oxide (NiO)-coated fluorine-doped tin oxide (FTO)

glass CE in DSSCs, in which NiO was taken as a catalytic

role towards I-/I3
- redox couple [30]. The conductive be-

haviors of metal oxide with CNTs (or graphene) as the CE

have been investigated and an increase of the power con-

version efficiencies was observed [31, 32]. Yeh et al.

demonstrated that reduced graphene oxide (RGO) with good

electrocatalytic ability for reducing I3
- is a promising cata-

lyst for the CE of DSSCs [33]. However, hybrid materials

such as graphene/cobalt sulfide [34] and RGO/Cu2S [35]

have been reported to show improved catalytic activity and

conductivity relative to single-component materials which

enhanced efficiency in DSSCs. A RGO/MWCNTs/NiO

nanocomposite would be an excellent candidate as counter

electrode material for DSSCs.

In this work, we used the RGO/MWCNTs/NiO

nanocomposite as a cathode material in DSSCs for cat-

alyzing the I-/I3
- redox reaction and transporting electrons

from the FTO to the electrolyte. The combination of high

electrocatalytic of NiO and outstanding conductivity of

graphene and MWCNTs showed superior performance.

Cyclic voltammetry (CV) and electrochemical impedance

spectroscopy (EIS) confirmed that the RGO/MWCNTs/

NiO-CE has electrocatalytic ability to reduce I3
-, and the

charge-transfer resistance (Rct) was lower. Due to the high

catalytic activity and the superior electrical conductivity,

the RGO/MWCNTs/NiO-CE also showed excellent pho-

tovoltaic performance.

2 Experimental

2.1 Chemicals and Materials

In this work, the materials and solvents were purchased

from Sinopharm Chemical Reagent Co. MWCNTs and

graphene oxide (GO) were bought from Beijing Boyu-

Gaoke New Material Technology Co. TiO2 paste and

ruthenium 535-bis-TBA (N719) were purchased from So-

laronix. The electrolyte was produced by a solution of

0.05 M I2, 0.1 M LiI (Adamas-beta), 0.6 M 1-methyl-3-

butylimidazolium iodide (TCl), 0.1 m guanidinium thio-

cyanate (TCl), and 0.5 M 4-tert-butylpyridine (TCl) mixed

in 3-methoxypropionitrile solution (Alfa Aesar). Millipore

water (18.25 MX cm) was used in the whole process. FTO

glass with a sheet resistance of 8 X/square and a thickness

of 2.2 mm, supplied by Nippon Sheet Glass, was used for

both electrodes.

2.2 Preparation of Counter Electrode

CE for the DSSCs was prepared on coated FTO glass

substrate. Firstly, glass substrates coated with FTO were

washed with detergent solution and rinsed with deionized

(DI) water, and then cleaned in an ultrasonic bath for

15 min in the end rinsed with ethanol and dried in air.

Before that, the RGO/MWCNTs/NiO composite was pre-

pared in the following steps as illustrated in Fig. 1.

MWCNTs (0.02 g) were refluxed with HNO3 at 80 �C for

6 h and GO (80 mL) suspension with a concentration of

1 mg mL-1 under strong stirring. At room temperature,

50 mL aqueous solution containing 0.4362 g nickel (II)

nitrate hexahydrate (Ni(NO3)2�6H2O) and 1.5 g urea was

slowly dropped into the GO and CNTs suspension with

stirring for 30 min. Then, the mixture was refluxed at

100 �C for 12 h in an oil bath. The reaction product was

filtered and washed with DI water and ethanol successively

several times. Finally, it was dried at 60 �C for 24 h and

then heat treated at 250 �C for 2 h in air. To prepare the

RGO/MWCNTs/NiO paste, 1 g RGO/MWCNTs/NiO

powder was mixed with 0.5 g ethyl cellulose in 8 mL

ethanol. Then 0.2 mL acetic acid and 3 g terpineol were

slowly added with continuous mixing for 36 h. To prepare

the RGO/MWCNTs/NiO-CE, the RGO/MWCNTs/NiO

paste was coated on the FTO glass substrate by the doctor-

blade method. Then the formed films were annealed at

400 �C for 30 min using a muffle furnace. For comparison,

RGO and RGO/NiO were also prepared under the same

synthesis conditions.

2.3 DSSC Device Fabrication

For synthesis of the photoanode, TiO2 layer-by-layer

hierarchical nanosheets (TiO2 LHNs) and their paste were

fabricated according to the previously reported method [36,

37]. Briefly, the TiO2 LHNs powder (0.9 g) was added to

the solution containing ethanol/DI water (4:1, volume) and

acetylacetone (0.16 mL) for a 3 h stir. After that, TiO2

paste was applied on pre-treated FTO glass by the doctor-

blade method and sintered at 500 �C for 30 min to achieve

crystallization in a muffle furnace. The TiO2 electrode was

kept in a dye sensitization (0.5 mM in a mixture of 1:1

acetonitrile/tert-butanol) for at least 12 h at 60 �C in a

sealed beaker, then rinsed with ethanol, and dried under

nitrogen flow. The TiO2 photoanode was assembled with

the CE manufactured as in Fig. 2a. The electrolyte solution

was inserted through holes drilled in the CE, and the holes

were sealed with hot-melt film and a cover glass finally.
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2.4 Measurements of DSSCs

The morphologies and structures of the samples were

characterized using high-resolution field emission scanning

electron microscopy (SEM, FEI Nova Nano-SEM 450),

transmission electron microscopy (TEM, Tecnai G2 20

U-Twin), and X-ray diffractometer (XRD, PANalytical

B.V. X’Pert PRO). The redox properties of dye were ex-

amined by cyclic voltammetry at a scan rate of 50 mV s-1.

The electrolyte solution was an acetonitrile solution con-

taining 10 mM LiI, 5 mM I2, and 0.1 M LiClO4. Tests

were conducted in a three-electrode one-compartment cell,

e e e

e e

e e e

e e

e e e

e e e

e e e e

e e

e

MWCNTs + GO

Stirring

refluxed

Ni(NO3)2 · 6H2O + urea

Filter and wash

dry

heat

Fig. 1 Schematic flowchart showing the fabrication process for RGO/MWCNTs/NiO composite

Fig. 2 a Schematic illustration of a DSSCs device using RGO/MWCNTs/NiO-CE b The current–voltage characteristic curves of DSSC

fabricated with different CEs

300 Nano-Micro Lett. (2015) 7(3):298–306

123



where CE, Pt, and Ag/AgCl were taken as the working elec-

trode, auxiliary electrode, and reference electrode, respec-

tively. The photovoltaic current density–voltage (J–V)

characteristics of the prepared DSSCs were measured

under illumination conditions (100 mW cm-2, AM 1.5),

which was verified using Si photodiode, solar-simulator

illumination (Newport, USA) on the active cell area of

0.15 cm2. The light-to-electric power conversion efficiency

(PCE) and fill factor (FF) were calculated according to the

equations [38]:

FF ¼ Vmax � Jmax

Voc � Jsc
ð1Þ

PCE ¼ Vmax � Jmax

Pin

� 100 % ¼ Voc � Jsc � FF

Pin

� 100 %

ð2Þ

where Vmax and Jmax are, respectively, the voltage and the

current density under the maximum power output in the

J–V curves, JSC is the short-circuit current density

(mA cm-2), VOC is the open-circuit voltage (V), and Pin is

the incident light power. EIS was examined at the open-

circuit potential under the same illumination condition as

the measurement of the J–V curves. The data were obtained

by using Z-view software NOVA 1.7 to analyze the results

from Auto-lab electrochemical work station (model

AUT84315, the Netherlands) [39].

3 Results and Discussion

Figure 3 shows SEM and TEM images of RGO/MWCNTs/

NiO nanocomposites. NiO nanoparticles were anchored on

the surface of RGO sheets, which were separated by

MWCNTs with less aggregation. From TEM images, NiO

nanoparticles with uniform size were distributed on the

surface of the RGO and connected by MWCNTs to form

continuous network (Fig. 3c, d). More active sites were

available in this structure, and electron transport properties

as well as the cell performance are expected to be improved.

Thermo gravimetric analysis (TGA) measurements were

carried out to determine the mass ratio of RGO/MWCNTs/

NiO composites (Fig. 3f). The first step occurred around

*200 �C, which was due to the removal of the physisorbed

water. The large weight loss below*400 �C was attributed

to the removal of RGO from the composites. Between 400

and 710 �C, the graphitic carbon burnt off accounting for the
second burn stage. Above 710 �C, the TGA trace was stable

with no further weight loss and only NiO remained.

XRD results of samples are shown in Fig. 4. For

MWCNTs, it shows a characteristic diffraction peak at 2h of
26� (0 0 2), whereas RGO/MWCNTs/NiO nanocomposite

shows new diffraction peaks at 37.2� (1 1 1), 42.8� (2 0 0),

and 62.4� (2 2 0) which ascribe to the crystal structure of NiO
nanoparticles. However, no characteristic diffraction peak of

GO observed in the RGO/MWCNTs/NiO nanocomposite

indicated the successful reduction of GO to RGO.

To study the electrochemical behavior of composites,

EIS was conducted under illumination of AM 1.5 G

(100 mW cm-2) and a potential amplitude of 10 mV with

frequencies of 10 mHz–100 kHz to understand the effect

of the electrocatalytic activities of different CE on the I3
-

reduction. The impedance spectra were illustrated as

Nyquist plots and the equivalent circuit (Fig. 5). These

works focus on the semicircle in the highest frequency

region describing the electron transport at the CE/elec-

trolyte interface. The charge-transfer resistance (Rct) occurs

at the contact interface between the electrode and the

electrolyte [40]. Rs is the series resistance including the

TCO’s sheet resistance and the cell’s contact resistances as

itemized in Table 1. It can be seen that RGO/MWCNTs/

NiO-CE has the smallest diameter of semicircle which was

related to the less Rct (0.9 X), whereas RGO and NiO-CE

have the largest Rct (2.3 and 4.7 X). When NiO nanopar-

ticles were adopted with RGO, the Rct decreased to 1.3 X
and the DSSC device with the RGO/MWCNTs/NiO-CE

exhibits the smallest Rct, indicating the optimal composi-

tions of RGO/NiO and MWCNTs. Since Rct of the CE

affects the FF and PCE of DSSCs in a negative way [41–

43], indicating the improved electrocatalytic activity for

redox electrolyte and high electron transfer kinetics, it will

lead to a greater diffusion of the iodide/triiodide (I-/I3
-)

from the bulk solution to the electrode surface.

In order to understand further the improved DSSC de-

vices with RGO/MWCNTs/NiO-CE, we measured CV

curves of the I-/I3
- redox couple on the RGO/MWCNTs/

NiO, RGO/NiO and RGO CE, respectively. From the re-

sults shown in Fig. 6, two sets of peaks were observed,

which is due to the redox reaction of the I-/I3
- redox

shuttle and another redox reaction of the I3
-/I2

- redox

couple [44]. It is well known that two key parameters for

estimating the catalytic activities of the CE are the peak-to-

peak separation (EPP) and peak current density (IP) [45].

Therefore, the magnitude of IP is proportional to the ability

of the CE to reduce the I3
- species, while the magnitude of

EPP is inversely proportional to the ability of the CE to

reduce the I3
- species. The CE in the DSSC is responsible

for catalyzing the regeneration of I- from I3
-

(I3
- ? 2e-?3I-) [46]. The RGO/MWCNTs/NiO elec-

trode shows larger IP (2.88 mA) from the redox reaction of

the I-/I3
- redox shuttle than the other two electrodes with

the RGO and RGO/NiO electrodes showing IP of 1.18 and

2.4 mA, respectively (Table 2). In addition, Epp of RGO/

MWCNTs/NiO-CE was lower than those of the RGO and

RGO/NiO-CE. The RGO/MWCNTs/NiO-CE offers a high
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enough active area for faster and stronger redox reactions

and a higher electrocatalytic effect for the reduction of I3
-

at the RGO/MWCNTs/NiO electrode.

The J–V curves of photovoltaic performance for DSSCs

devices with NiO, RGO, RGO/NiO, and RGO/MWCNTs/

NiO different CEs are shown in Fig. 2b. The devices’
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Fig. 5 EIS analysis of RGO-, RGO/NiO-, and RGO/MWCNTs/NiO-CE and equivalent circuit models. (Rs, Rct, Cdl, and Zw are serial resistance,

charge-transfer resistance of electrode, double layer capacitance, and diffusion impedance, respectively)

Table 1 Photovoltaic performance of RGO-, RGO/NiO-, and RGO/MWCNTs/NiO-CE based DSSCs prepared by doctor-blade method

Counter electrode Jsc (mA cm-2) Voc (V) FF PCE (%) Rs (X) Rct (X)

NiO 7.31 0.70 0.53 2.71 20.02 4.7

RGO 14.36 0.70 0.67 6.77 20.67 2.3

RGO/NiO 15.86 0.71 0.67 7.63 20.71 1.3

RGO/MWCNTs/NiO 16.80 0.71 0.68 8.13 20.62 0.9

RGO

RGO/NiO

RGO/MWCNTs/NiO

Ipa=2.88
Ipa=2.4

Ipa=1.18

Ipc=3.88
Ipc=3.05

Ipc=1.92
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Fig. 6 Cyclic voltammograms for RGO, RGO/NiO, and RGO/MWCNTs/NiO electrodes. The electrolyte was acetonitrile solution containing

10 mM LiI, 5 mM I2, and 0.1 M LiClO4. Pt electrode was used as auxiliary electrode and Ag/AgCl works as reference electrode. The scan rate is

50 mV s-1
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performance parameters including Jsc, Voc, FF, and PCE

are summarized in Table 1. The PCE and FF were calcu-

lated according to the Eqs. (1) and (2). The DSSC devices

with RGO/MWCNTs/NiO-CE reach the highest power

conversion efficiency. The PCE significantly enhanced

from 6.77 % for RGO CE cell to 8.13 % for RGO/

MWCNTs/NiO-CE one. This may be due to the increase of

electrocatalytic activity toward I-/I3
- redox species and

decrease of Rct. From CV curves in Fig. 6 and values of Jsc
and PCE in Table 1, the DSSC devices with RGO/

MWCNTs/NiO-CE exhibit the best photovoltaic perfor-

mances, as well as better FF compared with other CEs. The

enhanced Jsc maybe results from the enhanced diffusivity

of I-/I3
- redox species within CE [47]. However, the im-

proved performance should attribute to the incorporation of

MWCNTs into RGO/NiO which provides larger space al-

lowing easy diffusion between the redox species.

RGO/MWCNTs/NiO films with different thicknesses of

3.6–12.7 lm were prepared to investigate the film thick-

ness effect on performances of DSSCs (Table 3). As shown

in Fig. 7, Voc and FF increase with the film thickness,

whereas Jsc is almost unchangeable. The highest photo-

voltaic efficiency of 8.13 % was observed in 12.7-lm
DSSC (SEM image of the cross section shown in Fig. 3e).

The RCT between electrolyte and RGO/MWCNTs/NiO

increases with decreasing the film thickness, leading to the

decrease of the FF and the PCE of DSSCs [48]. This is due

to the insufficient catalytic activity for the reduction of

triiodide of the thinner RGO/MWCNTs/NiO layers.

In addition, it should be mentioned that decrease of NiO

particle size will enhance the conductivity of RGO/

MWCNTs/NiO composites because of the synergistic ef-

fect between RGO and MWCNTs. CNTs not only prevent

aggregation of RGO/NiO but also improve the electron

transport properties of RGO/MWCNTs/NiO composite

owing to their special conductivity. Moreover, the re-

stricting effect of RGO makes NiO nanoparticles provide

more active sites. It is because of the unique structure and

properties, RGO/MWCNTs/NiO composite has enhanced

electrochemical performance compared with that of RGO/

NiO and MWCNTs/NiO ones.

4 Conclusion

In this paper, we fabricated RGO/MWCNTs/NiO com-

posite and applied it in DSSC as a CE by blade doctor

method. High PCE of 8.13 % was achieved in such DSSC,

which is much higher than that of NiO (2.71 %), RGO

(6.77 %) and RGO/NiO (7.63 %). Also, it was found that

the RGO/MWCNTs/NiO-CE has less charge-transfer re-

sistance at the electrolyte/CE interface and higher catalytic

activity for reduction of I3
- to I-. The improved

Table 2 Epp, Ipa, and Ipc of RGO, RGO/NiO and RGO/MWCNTs/

NiO electrodes

Counter electrode Epp Ipa (mA cm-2) Ipc (mA cm-2)

RGO 0.53 1.18 1.92

RGO/NiO 0.52 2.4 3.05

RGO/MWCNTs/NiO 0.37 2.88 3.88

Table 3 Photoelectric performances of the DSSCs using various

thickness of RGO/MWCNTs/NiO film as CE

Thickness (lm) Jsc (mA cm-2) Voc (V) FF PCE (%)

12.32 16.80 0.71 0.68 8.13

9.16 16.69 0.69 0.64 7.37

4.54 16.18 0.67 0.63 6.82

3.60 16.05 0.70 0.58 6.51
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Fig. 7 The current–voltage curves of DSSCs using different thickness of RGO/MWCNTs/NiO film as counter electrodes
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performances maybe attribute to the enhanced electrode

conductivity, the increased effective interfacial area be-

tween RGO/MWCNTs/NiO and electrolyte, as well as the

contact area between RGO/NiO and other materials by

MWCNTs.
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