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Abstract

Background: Human central memory CD4 T cells are characterized by their capacity of proliferation and
differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key
factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while
progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic
failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression
profile impeding proliferation and survival, despite their activated state.

Methods: Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory,
and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients
with HIV-1 infection. Differentially expressed genes, defined by Log2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0,
were used in pathway enrichment analyses.

Results: Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related
genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were
differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75
of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this
gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and
S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11,
etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.).
Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T
cells signature, consistent with the demonstrated milieu in HIV infection.

Conclusions: Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1
infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway
without actual proliferation, possibly contributing to increased turnover.
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Background
Acute HIV infection depletes mucosal CD4 T cells,
mainly effector memory (TEM) cells, rapidly and pro-
foundly [1–3]. The ensuing chronic phase is largely
asymptomatic, even though mucosal tissues are not
replenished with TEM cells [4]. Simian immunodefi-
ciency virus (SIV) infection of rhesus macaques (an
animal model of human HIV disease) shows that op-
portunistic control infection in the chronic phase is
mediated by remnant mucosal TEM cells supplied by
the differentiation of central memory (TCM) cells in
lymph nodes [5, 6]. Additionally, human TCM cells
are also characterized by their capacity of prolifera-
tion and differentiation into TEM cells [7, 8]. Thus,
homeostasis of TCM cells is considered a key factor
sustaining the asymptomatic stage of HIV infection,
while progression to acquired immunodeficiency syn-
drome is attributed to homeostatic failure of TCM

cells [5, 6, 9–12].
It is unclear how this homeostatic equilibrium is

lost during chronic infection. CD4 T cell maturation
subpopulations (TN, TCM, and TEM) [7] are differen-
tially affected by HIV infection [13, 14]; with TEM

cells being HIV’s main target [15]. TCM cells can be
infected in a lower proportion by HIV, which has led
to propose that direct virion-mediated cytopathicity
could gradually eliminate them, leading to poor
homeostatic activity [6]. Nevertheless, direct cyto-
pathicity by HIV [16] cannot completely explain CD4
T cell depletion during chronic infection [17–20],
which suggests the participation of indirect
pathogenic mechanisms, particularly chronic activa-
tion [12, 21]. Additionally, CD4 T cells from patients
with HIV could be intrinsically altered, as suggested
by the limited proportion of HIV-infected patients re-
covering their pre-infection CD4 T cells counts under
virus-controlling antiretroviral therapy [22]. In this re-
gard, we have found intrinsic dysfunctions in acti-
vated TCM cells from HIV-infected patients, as a
lowered IL-2 response and CD40L induction after T
cell receptor (TCR)-mediated stimulation [23, 24],
which could decrease their proliferative, differenti-
ation, and survival capacities.
In order to determine if circulating TCM cells from HIV-

infected patients have a transcriptome consistent with acti-
vation, but simultaneously with altered capacities to divide
and survive, we compared the ex-vivo messenger Ribo-
nucleic acid (mRNA) whole-genome expression patterns of
CD4 T naive (TN) and TCM cells from HIV+ patients with
TN, TCM, and TEM cells from healthy controls. We found a
TCM cell signature in HIV-1 infection suggesting that the
loss of this subpopulation may be driven by increased cell
cycle entry followed by mitotic arrest possibly leading to
cell death in a non-senescent or effector-like state.

Methods
Participants
This study was approved by the boards of Instituto
Nacional de Enfermedades Respiratorias Ismael Cosío
Villegas (reference number B29-11), and Instituto Nacio-
nal de Ciencias Médicas y Nutrición Salvador Zubirán
(reference number 1403). All patients signed written in-
formed consent according with the Helsinki Protocol.
Blood samples were obtained from 9 HIV¯ controls, and
6 HIV+ patients. Patients had median 480 CD4 T cells/
μL blood (range 330–757), and median 121 563 HIV-
ribonucleic acid (RNA) copies/mL-blood (23 883–41
2584). Among them, patients providing TCM cells had
viral loads of 23 883, 81 834 and 107 732 HIV RNA cop-
ies/mL-blood, and CD4 T cell counts of 439, 473 and
491 CD4 T cells/μL blood, respectively. Relative
telomere length was determined in samples from ten
additional HIV¯ controls, and ten additional HIV+-
patients with median 628 CD4 T cells/ μL-blood
(194–1 128) and median 485 882 HIV-RNA copies/
mL-blood (3 870–3 500 000). Patients were antiretro-
viral therapy-naive, free of opportunistic infections
and malignancies, and were not taking any immuno-
modulatory drugs.

Isolation of CD4 T cell subpopulations
Peripheral blood mononuclear cells (PBMCs) were puri-
fied from 50 to 60 mL of peripheral blood by sedimenta-
tion on Lymphoprep (Fresenius Kabi Norge, Oslo,
Norway). CD4 TN (CD45RA+ CCR7+), TCM (CD45RA¯
CCR7+) and TEM (CD45RA¯ CCR7¯) cells were purified
from PBMCs using immunomagnetic beads (Miltenyi
Biotec, Bergisch Gladbach, Germany).
Subpopulation purity was determined according to the

expression of CD4, CD45RA and CCR7, using anti-
CD4-APC-Cy7, anti-CD45RA-APC (BD Biosciences, San
José, CA, USA), and anti-CCR7-PE (Miltenyi Biotec)
fluorochrome-conjugated antibodies (See Additional file
1). Cells were analyzed in a FACSCanto II flow cyt-
ometer (BD Biosciences). Cells with purity >90% were
used. Membrane CD38 was detected with an anti-CD38-
biotin (Miltenyi Biotec) plus streptavidin PerCp-Cy5.5
(Biolegend, San Diego, CA, USA).

RNA extraction and microarray analysis
Total RNA was obtained from three TN, three TCM, and
three TEM CD4 T cell samples from healthy controls,
and three TN and three TCM CD4 T cell samples from
HIV+ patients, using RNeasy Mini Kit (Qiagen, Venlo,
Netherlands). Each RNA sample proceeded from a dif-
ferent subject. Scarcity of patients’ TEM cells precluded
obtaining sufficient RNA.
Microarray gene expression analysis used equimolar

concentrations of total RNA from T cell subpopulations.
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Complementary deoxyribonucleic acid (cDNA) synthesis,
amplification, and gene expression profiling were per-
formed according to the manufacturer’s instructions (Affy-
metrix WT Sense Target labeling assay manual, California,
USA). Labeled DNA was added to hybridization cocktail
and injected into the array (GeneChip Human Gene 1.0
ST Array, Affymetrix). Washing and staining steps were
performed in the GeneChip Fluidics Station 450 (Affyme-
trix). Probe arrays were scanned using a GeneChip Scan-
ner 3000 7G (Affymetrix). Data were deposited in GEO,
series record GSE73968.
Background correction and normalization were per-

formed with Robust Multiarray Average Method (RMA)
[25] using Bioconductor package [26] of R [27]. A Prin-
cipal component analysis (PCA) of normalized signals
from all genes in each microarray was performed using
R [27].
Modeling gene expression was performed using linear

models of Limma package [28]. The B-statistic was used
as significant measure to define differentially expressed
genes. This statistic is computed as the posterior odds of
differential expression. It is reformulated in terms of a
moderated t-statistic in which posterior residual stand-
ard deviations are used in place of ordinary standard de-
viations. Essentially, the B-statistic compromises
between individual gene variance estimates and a single
variance estimate for all genes. The probabilities are
transformed to a scale that goes from –Inf to Inf using
log odds. The B-statistic is analogous to the adjusted p-
value, which addresses statistical significance for mul-
tiple comparisons. Here, genes with Log 2 Fold Change
(FC) ≥ |0.5| and Log odds > 0 were considered as differ-
entially expressed. Limma statistics such as adjusted p-
value and the B statistic can be seen in Additional file 2.
FDR Benjamini Hochberg multiple testing correction
[29] was applied to control the number of false positives.
Both B statistic and adjusted p-value showed consistency
across differentially expressed genes. Unsupervised 2-
way hierarchical clustering analysis of gene expression
data was performed using Euclidian distance and average
linkage with gplots [30] of R [27]. Venn diagrams were
made with Venny 2.0.2 [31].
Functional enrichment analyses were performed with

Data Base for Annotation, Visualization and Integrated
Discovery (DAVID) [32, 33], Gen Set Enrichment Ana-
lysis (GSEA) [34] and Ingenuity Pathway Analysis (IPA,
QIAGEN Redwood City, CA, USA). DAVID uses a
Fisher Exact test in order to determine gene-enrichment
in annotation terms. A gene set is enriched when the
proportion of genes in a list that falls into an annotation
term differs from the background model. The EASE
score is a modified Fisher exact p-value. Basically, if n is
the number of genes in the list that falls into a given an-
notation term, n-1 is used to compute the p-value [32,

33]. Gene set enrichment methods also implement strat-
egies for addressing the issue of multiple testing hypoth-
eses. GSEA uses a ranking procedure to produce a gene
list from the full expression matrix. This is done by
computing an Enrichment Score (ES(S)). It controls the
ratio of false positives to the total number of gene sets
attaining a fixed level of significance using FDR [34].
IPA assesses enrichment (i. e. biological functions that
could be increased or decreased given the observed gene
expression patterns) using a Fisher exact p-value. Add-
itionally, it computes a Z score that allows inferring up-
stream transcriptional regulators and expectable
enriched functions, based on statistical significance by
comparing the match between observed and predicted
up/down regulation patterns. The null model is referred
as activation Z-score [35]. Predicted regulation patterns
are based on previously reported causal relationships be-
tween relevant genes and functions [35].

Semi-quantitative real-time PCR
We used B2M, GAPDH, POLR2A, and TBP as reference
genes to normalize expression. RNA proceeded from the
samples used for microarray analysis. cDNA was synthe-
sized from ~100 ng total RNA with Transcriptor First
Strand cDNA Synthesis Kit (Roche Applied Science,
Mannheim, Germany), using random hexamers and per-
forming one cycle of 10 min 25 °C; 30 min 55 °C, and
5 min 85 °C. cDNA was stored at −20 °C until use. PCR
amplifications were performed by high-throughput gene
expression analysis using DNA binding dye Evagreen
(SsoFast MasterMix, Biorad, California, USA) for
product detection, and specific primers for each gene
(DELTAgene Assays, Fluidigm Corporation, California,
USA). Specific target pre-amplification of each cDNA
and a cleanup step were performed as described else-
where [36].
We performed semiquantitative RT-PCR using Fast

Gene Expression Analysis with EvaGreen (Biorad), fol-
lowing the Biomark System Protocol (Fluidigm Corpor-
ation, California, USA). Assay mixes (100 μM of each
pair of primers, 2X Assay Loading Reagent, and 1X TE
buffer), sample mixes (pre-amplified cDNA, 2X SsoFast
MasterMix (BioRad), and 20X DNA Binding Dye Sample
Loading Reagent (Fluidigm), were loaded into a 96.96
Dynamic Array (Fluidigm), using the IFC Controller HX
(Fluidigm), and were then transferred to a BioMark HD
device (Fluidigm) for the PCR cycles (40 min 70 °C, 30s
60 °C; 60s 95 °C, then 30 cycles of 5 s 96 °C, 60s 60 °C).
Melting curves were determined at the 60 to 95 °C rise,
with a temperature change rate of 1 °C/3 s. Ct values
were obtained with Fluidigm Real-Time PCR Analysis
Version 4.1.3 software (Fluidigm).
Only Ct values <30 and amplicons with only 1 melting

curve were used. Geometric means of four reference
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genes were used to normalize expression data [37]. Rela-
tive expression was calculated as ΔΔCt. Expression of
each gene was determined with six technical replicates
per sample. Normality was verified using Kolmogorov-
Smirnov test, which quantifies the distance between the
empirical distribution of the sample and the cumulative
distribution of the reference distribution, which in this
case is assumed to be normal. Group differences were
analyzed with Student’s t test. Data management and
statistics were done with Reshape [38] and fBasics [39]
packages of R [27].

Relative telomere length
Telomere PNA kit/FITC (Dako, São Paulo, Brazil) was
used following the manufacturer’s instructions, including
thymocytes from 6-week old mice as reference for
normalization. Briefly, samples were prepared by mixing
106 mouse thymocytes and 106 TCM cells. The mixture
was distributed into four tubes. 150 μl of FITC-labeled
peptide nucleic acid (PNA) probe solution was added
into two tubes while 150 μl of unlabeled PNA probe so-
lution was added into the other two. Samples were hy-
bridized in a pre-warmed heating block (TB2
Thermoblock, Biometra, Göttingen, Germany) set at 82 °
C, 10 min, and left overnight at room temperature. Sam-
ples were washed twice. Between washing steps, samples
were heated to 40 °C in a pre-warmed TB2 Thermoblock
(Biometra) for 10 min. Samples were resuspended in
250 μL of DNA staining solution (1X), and stored over-
night at 4 °C, away of light. Then, samples were analyzed
by flow cytometry in a FACSCanto II (BD Biosciences).

Results
TCM cells from HIV+ patients are not more differentiated
and are not more senescent
Unsupervised principal component analysis of normal-
ized whole genome expression data segregated sam-
ples of each maturation subpopulation, and further
separated samples originating from persons with HIV
and samples from controls (Fig. 1a). Thus, phenotype-
based classification of differentiation subpopulations
[7, 8] reliably reflected distinct gene expression pro-
grams, as previously reported [40–42], which were al-
tered by HIV infection.
We asked if differential gene expression by patients’

and controls’ TCM cells reflected greater differentiation
of patients’ cells (towards effector stages) [23, 24]. Using
the criteria defined in methods (Log2FC ≥ |0.5| and Log
(odds) > 0) we looked in the whole transcriptome for all
differentially expressed genes in the following pair-wise
comparisons of CD4 T cell subpopulations from con-
trols: TCM vs. TN, TEM vs. TCM, and TEM vs. TN (arrows
a, b and c in Fig. 2a). The resulting 1858 differentially
expressed genes are subsequently referred to as

differentiation-related genes (corresponding to subpopu-
lations in distinct stages of differentiation). We per-
formed an unsupervised 2-way hierarchical clustering
analysis of these 1858 differentiation-related genes
(Fig. 1b, and Additional file 3). TN and TCM cells from
patients grouped with their counterparts from controls
(Fig. 1b). Samples of a same subpopulation were
assigned to a same node (green circles 1, 2, and 3 on
Fig. 1b), regardless of their HIV status. The expression
of the differentiation-related genes progressively de-
creased or increased in the order of linear differentiation
(TN→ TCM→ TEM ), agreeing with previous reports
[40–43] (Fig. 1c). For instance, LEF1, ACTN1, FOXP1,
IL6ST and CERS6 reportedly undergoing down-
regulation in naive T cells after antigen recognition and
differentiation [44–48], along with TAF4B, appeared pro-
gressively down regulated when samples were ordered
according to the linear model of peripheral differenti-
ation (Fig. 1c, left panel). These changes agree with pre-
vious reports [42]. Conversely, differentiation and
effector function-associated transcripts, like EOMES,
TBX21 (t-bet), PRDM1 (Blimp-1) [49, 50], GZMA and
PRF1 [51, 52], were gradually increased in the same
order (Fig. 1c right panel). A same pattern was followed
by the expression of KLRG1,an indicator of replicative
senescence [53, 54] (Fig. 1c). TBX21 (t-bet) was the only
gene with increased expression in TCM cells from pa-
tients, compared with controls (p = 0.003), which, along
with the increased expression of IL12R e IL18R, suggests
a Th1-skewed response driven by HIV infection. A Th1-
skewed response was also predicted by Ingenuity Canon-
ical Pathway analysis (See Additional file 4). Thus, TCM

cells from patients did not seem to be more differenti-
ated than their counterparts from controls, but appeared
polarized to Th1 functions.
We then asked if patients’ TCM cells had a longer rep-

licative history, which would entail a shortening of telo-
meres. We did not find any difference in relative
telomere length between TCM cells from patients and
controls (p = 0.737, Fig. 1d), agreeing with KLRG1 ex-
pression [53, 54], and suggesting that they are not in a
more senescent state.

TCM gene expression signature in HIV infection
Having ruled out a greater differentiation of patients’
TCM cells, we investigated if the gene expression signa-
ture of these cells revealed a functional state that could
explain loss of homeostatic capacity. Using the criteria
defined in methods (Log2FC ≥ |0.5| and Log (odds) > 0),
we looked for genes that were differentially expressed by
TCM cells from HIV+ patient and TCM from controls.
We found a total of 210 differentially expressed genes.
We refer to this 210- gene list as the gene expression
signature of TCM cells in HIV infection (See Fig. 2a
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arrow d, b red oval and Additional file 2). This gene ex-
pression signature was obtained from the transcrip-
tome independently of the list of 1858 differentiation-
related genes. Among these 210 differentially
expressed genes, 137 were absent in all other pairwise
comparison (Fig. 2a, b). Hierarchical clustering ana-
lysis showed clear and consistent differences in the

relative expression of these 210 genes between pa-
tients and controls (Fig. 2c). Of note, biological repli-
cates were very homogeneous.
We analyzed the HIV TCM signature with the enrich-

ment analysis tools IPA, GSEA, and DAVID. These dif-
ferent analyses consistently yielded four general
functional categories that were modified in TCM cells

Fig. 1 Gene expression does not support greater differentiation or senescence of TCM cells from HIV+ patients. a Principal component analysis of
the entire microarray data set of each subpopulations from HIV+ patients (red triangles and red circles) and controls (blue triangles, blue circles and
blue squares). The first three principal components are shown, accounting for 55% of variance in a three dimensional plot. b Heat map resulting
from hierarchical clustering of genes related with normal differentiation (pairwise comparisons between not infected subpopulations). Each row
represents a differentially expressed gene. Each column represents each independent sample. The unsupervised two-way hierarchical clustering is
shown as a dendrogram for genes (left), and a dendrogram for samples (top). In the upper dendrogram (samples) the independent resulting
nodes, each one corresponding to a maturation subpopulation, is encircled in green. c Sequential downregulation of selected naïve-associated
genes, and sequential upregulation of selected effector-associated genes when samples are arranged according to the linear differentiation
model. Data are represented as means ± 1 SEM of three donors (blue) and three patients (red). TBX21 expression difference between TCM and TCM
HIV was analyzed with Student’s t test. d Relative telomere length of central memory CD4 T cells (TCM) from HIV+ patients (red triangles) and
controls (blue circles), Student’s t-test was used to compare groups. We were unable to obtain sufficient RNA from TEM cells from patients due to
their small number
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from patients: cell cycle, DNA damage and repair, apop-
tosis, and immune responses (Table 1). Notably, the 137
genes uniquely distinguishing TCM cells from patients
and controls (Fig. 2b red oval) sufficed to yield the same
four functional categories when analyzed with DAVID
and IPA. This suggests that the enriched functions
largely depend on the TCM cell signature. GSEA ren-
dered a larger set of altered immune functions, likely be-
cause it uses data from the entire microarray, and
because it detects more modest changes when the mem-
bers of a function or pathway show a strong correlation
[34] (Table 1). GSEA identified Toll-like receptors
(TLR), type I interferons, IL1, and NLRs signaling, plus
NFκB activation, all of them related to an inflammatory
milieu. Independently, Ingenuity Upstream Regulator
Analysis [35] assigned the greatest z-scores and the most
significant p-values to the activity of IL-1B, TNF, NFκB
complex, and CCL5, as possible upstream molecules eli-
citing the expression changes constituting the TCM sig-
nature (See Additional file 5, upstream analysis). Cell
cycle, DNA damage and repair, and apoptosis (greatly

related functions [55, 56]) appeared consistently in the
output of all enrichment analysis tools (Table 1). There
were several functional categories closely related with
G0/G1/S transition and G2/M checkpoints in the output
of GSEA analysis. IPA, which weighs its predictions, dis-
played increased proliferation and cell survival, de-
creased apoptosis and decreased cell death. In contrast,
IPA’s output simultaneously indicated an increase in
cytostasis, movement to interphase, and a decrease in
mitosis (Table 1).
We re-analyzed mRNA expression by RT-PCR of 91

genes of the HIV TCM signature that were associated
with enriched functions, and B2M, GAPDH, POLR2A,
and TBP as reference genes. This analysis validated 75
genes (82%) of the signature (See Additional file 6). Five
genes failed amplification, and 11 were not differentially
expressed when assessed by RT-PCR. The expression of
reference genes did not differ between samples (See
Additional file 7). An analysis with IPA using only the
75 validated genes yielded the same enriched func-
tions and pathways as microarray data (Fig. 3a, b, c,

Fig. 2 Unique TCM cell signature in HIV infection. Differential expression was defined as Log2 of fold change (Log FC)≥ |0.5|, and Log (odds) > 0. a
Pairwise comparisons of samples of CD4 T cells subpopulations from HIV+ and HIV¯ groups indicated by arrows a and d. Number of genes
differentially expressed in each comparison are shown. Blue circles, controls’ samples; red squares, HIV+ patients’ samples. b Venn diagram of sets
of differentially expressed genes. Each pairwise comparison is depicted by a colored oval. The number of differentially expressed genes found in
more than one comparison appear in the intersections. c Heat map displaying a two-way unsupervised hierarchical clustering of 210 differentially
expressed gens distinguishing HIV+ patients’ TCM cells (red bar) and controls’ TCM cells (blue bar), grouped in dendrograms. Each column represents an
independent sample (biological replica) of each subpopulation, numbered 1 to 3. Each row corresponds to a differentially expressed gene
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d, e, and Additional file 8). While some genes were
related with more than one function, many were re-
lated exclusively with one function (Fig. 3f ), support-
ing an unambiguous prediction. Finally, analyzing the
TCM cells used for microarray and RT-PCR analyses,
we found that surface expression of the CD38 protein
was more frequent among TCM cells from patients
than among those from controls, consistent with
mRNA results (Fig. 3g).

A model of TCM cell death in HIV infection
Since the predictions of increased proliferation and in-
creased cytostasis were incompatible, and the prediction
of reduced apoptosis did not agree with previous evi-
dence [13, 57–60], we took into account that enrichment
tools base their predictions on a broad set of previous
findings, ranging from very particular to very general
ones. Accordingly, we investigated if the predictions
were based on more demarcated processes, and if these

Table 1 Enriched categories of functions according to TCM gene expression signature in HIV infection

General category DAVID GSEA IPA

EASE < 0.05 Number of
genes

FDR < 0.05, p < 0.001 p < 0.01 Number of
genes

Prediction
sense

Cell cycle Cell cycle 15 DNA replication Proliferation of tumor cell
lines

31 Positive

Cell division 10 Cell cycle Proliferation of cells 53 Positive

mitosis 9 Mitotic M/G1 Cytostasis 6 Positive

G1/S transition Cytostasis od tumor cell
lines

5 Positive

Cell cycle check points Interphase of tumor cell
lines

11 Positive

Cyclin E associated event during
G1/S transition

Cell survival 28 Positive

Assembly of pre-replicative complex Interphase 13 Positive

G0 and early G1 Mitosis 10 Negative

G2/M check points

DNA damage or
repair

p53 signaling
pathway

5 p53 dependent G1 DNA damage
response

ATM signal
pathway

3

Cell cycle
checkpoints

5

Apoptosis Apoptosis 13 Apoptosis of tumor cell
lines

32 Negative

Cell death of cancer cells 6 Negative

Apoptosis of cervical cancer
cell lines

10 Negative

Immune
responses

Toll endogenous pathway Synthesis of reactive oxygen
species

7 Positive

IL1 signaling

IFN-alpha/beta signaling

Chemokine receptors bind
chemokines

NOD like receptors signaling

NFKB activation by IKKS complex

Myd88 cascade

TLR4 signaling

IL12 pathway

FOXO Pathway

Enriched categories of functions according to differential expression of 210 genes in TCM cells from HIV+ patients and controls. DAVID and IPA tools show in a
column the number of genes supporting each prediction. EASE Score is the P-Value of a modified Fisher Exact test of the significance of gene enrichment in a
gen-set. FDR: False discovery rate. In IPA, the sign indicates if the function would be up-regulated (positive) or down-regulated (negative)
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Fig. 3 Cell cycle impairments are predicted using RT-PCR-validated genes from the signature. Each graph (a to e) represents the group of validated genes
by RT-PCR associated with an increased enriched function (red title and positive z-score) or decreased enriched function (blue title and negative z-core).
f Venn diagram depicting the differentially expressed genes within sets corresponding to three IPA predictions. Intersections correspond to genes
appearing in more than one prediction. g Frequency of surface expression of CD38 on TCM cells from two groups, corresponding to gene
expression results
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processes were compatible. With this purpose, we
reviewed the references supporting IPA predictions, allo-
cating the indicated genes to the cell cycle phase that
they regulated. We found that genes in all the predic-
tions could be assigned to particular phases in the cell
cycle, and implied no conflicts (Fig. 4), with the excep-
tion of some proliferation-predicting genes, which did
not relate with cell cycle in the supporting evidence.
The HIV TCM signature is compatible with an en-

hanced progression from G0 to S phase (CCNE1 [61,
62], MKI67 [63, 64], IL12RB2 [65, 66], ADAM9 [67],
E2F8 [68], MXD1 [69], MCM10 [70], BCL6 [71–73]),
but not with progression to later stages. Simultaneously,
the expression patterns of other genes suggest arrest in
G2/M (CHK1 [74], GADD45B [75], PER1 [76], NFKBIA
[77], RBBP8 [78], KIF11 [79]). For instance, accumulation
of CCNE1 is necessary for G1→ S transition, but its over-
expression is associated with chromosome destabilization
and DNA damage [61, 62]. In turn, CHK1 expression is
required for cycle arrest in G2 following DNA damage
[74]. These observations suggest that the cell processes ex-
pectable from the HIV TCM signature can be integrated
within the cell cycle, and they indicate increased cycling
up to S phase, followed by arrest in G2/M. Remarkably,
since cycle arrest leads to cell death [55, 56], it was unex-
pected to find that the expression patterns of CSTA [80],
RNASEL [81] NR4A2 [82] and NFKBIA [77] predicted an
inhibition of caspase-3 mediated apoptosis (Fig. 4).

Discussion
We identified and validated a gene expression signa-
ture of TCM cells in the context of chronic HIV infec-
tion that led us to a model of TCM cell death in HIV

infection, also supported by additional observations
and previous reports.
It could be argued that a model based on mRNA pres-

ence, but not demonstrating the presence of encoded
proteins [83], is unfounded. In this regard, recent studies
and reassessments found that mRNA changes explained
87 to 92% of corresponding protein changes [84, 85], as
found in mouse dendritic cells responding to lipopoly-
saccharide [86]. Further, 81% of protein levels were ex-
plained by mRNA levels using a large scale proteome
and mRNA analysis in NIH3T3 cells [87]. Therefore, we
consider that we have evidence to propose a model of
TCM cell death in HIV infection.
Our interest in intrinsic TCM cell alterations in pa-

tients with HIV originated from studies showing their
importance in CD4 T cell homeostasis under HIV infec-
tion [10, 12, 57, 88–90]. Our previous studies on acti-
vated (CD38+) TCM cells, particularly those from HIV-
infected patients, showed IFN-γ-skewed cytokine re-
sponses that were un-connected to CD40L induction,
along with a lowered IL-2 production [23, 24]. Given
this functionality, TCM cells seemed differentiated to-
wards an effector fate [40, 42, 43, 91, 92]. However, in
the present study we found that TCM cells’ gene expres-
sion profile was incompatible with the TEM maturation
category. Additionally, we found no decrease in relative
telomere length (RTL) of patients’ TCM cells, which is
expectable of cells with a longer replicative history [7, 8],
such as TEM- cells. Moreover, KLRG1 expression, which
is proportional to replicative history [53], was similar in
TCM cells from patients and controls, but greatly in-
creased in more differentiated TEM cells. These findings
support that HIV infection was not associated with an

Fig. 4 Allocation of HIV-related TCM signature genes in the cell cycle phases they regulate. These genes suggest a promoted progress from G0 to
S, followed by arrest in G2/M cell cycle phases, and decreased apoptosis
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enhanced TCM cell differentiation. Nevertheless, TCM pa-
tients’ cells showed an increased expression of the Th1-
associated transcription factor T-bet [49, 93], suggesting
that our previous findings were attributable to Th1
polarization rather than differentiation.
The homogeneity and consistency of the TCM signa-

ture in HIV infection (Fig. 2c) contrasts with the great
differences between patients’ viral loads (23883, 81834
and 107732 HIV RNA copies/mL-blood). This may seem
more important considering that even transient changes
in viral load can greatly influence gene expression in
total CD4 T cells [94]. However, patients’ CD4 T cell
counts, the strongest predictor of subsequent disease
progression [95] are close (439, 473 and 491 CD4 T
cells/mm3 blood, respectively), and lie above the thresh-
old for the occurrence of most opportunistic infections
(200 cells/mm3 blood [95]). This could suggest that the
TCM gene expression signature is not dependent of the
magnitude of viral replication during the chronic phase
of infection, but it could rather be related with irrevers-
ible events from the initial phase of infection and/or
with the magnitude of circulating CD4 T cell loss in the
chronic phase.
A thorough pathway enrichment analysis of the HIV

TCM signature suggested enhanced cell cycle entry and
proliferation. Under closer inspection, however, we ob-
served that proliferation-predicting genes corresponded
to functions upstream of S phase. Conversely, this ana-
lysis also predicted cell cycle arrest due to functions oc-
curring in G2 or M. If cell cycle promotion and arrest
occur in a same TCM cell, cycling would not imply cell
division [58], since G2/M arrest would lead to death
[96]. Additionally, overexpression of DNA damage and
repair-related genes by patients’ TCM cells are consistent
with a failed division after S phase.
Our model could integrate partial observations from

previous studies on cell cycle in HIV infection, pro-
viding a wider view of the fate of TCM cells. In a pre-
vious study, CD4 T cells from patients with HIV that
were ex vivo in S phase (mostly TCM) would die after
in vitro stimulation more frequently than CD8 T cells
[58]. However, patients’ cells were not compared with
CD4 T cells from HIV¯ controls. Contrastingly, our
comparison with cells from controls, and our
characterization of CD4 T cell subpopulations, sug-
gested that cycle-related death was due to HIV infec-
tion, and involved predominantly TCM cells.
Another group reported arrest in G1 based on the ac-

cumulation of cycling cells in G1 among total circulating
CD4 T cells [97]. However, since TCM cells comprise
only about 25% of circulating CD4 T cells [42], they were
possibly not well represented in that study. Nevertheless,
an increased proportion of Ki67+ cells in the G1 phase
provided evidence that CD4 T cells more frequently

entered cell cycle in HIV infection, as previously demon-
strated [98, 99]. Since dead cells are readily removed
from blood [100], it is possible that the reported ex vivo
increase of CD4 T cells in G1 was the result of rapid re-
moval from blood of cells that died in a further phase.
Our findings were consistent with a promoted entry into
cell cycle (Fig. 4), and notably, they suggested that arrest
occurred in the later phases G2 and/or M.
Our results could imply that incorporation of nucleo-

tide analogues by TCM cells from patients with HIV
could reflect entrance to a fatal cycle, rather than prolif-
eration [101, 102]. Evidence of division and viability will
be required to dismiss this possibility. In our model,
TCM cell turnover reflects to some extent, death, and
not actual proliferation. Accordingly, we found no differ-
ence in telomere length between TCM cells from controls
and patients.
An analogous implication pertains to apoptosis.

Previous studies have reported increased apoptosis in
total [58, 103, 104] and in TCM [58, 105] CD4 T
cells from patients with HIV, which is an explanation
of CD4 T cell loss in chronic infection [106]. These
and other studies [13, 57–60] inferred apoptosis by
demonstrating Annexin V binding to viable cells;
however, it has been demonstrated that Annexin V
binding can be increased in other cell death path-
ways [107–110]. In this regard, we found that HIV
infection altered the expression of a considerable
number of genes that indicated that apoptosis would
not be favored. A possible explanation of this dis-
cordance with previous studies could be that differ-
ent cell death pathways may coexist with caspase 3-
mediated TCM cell death in HIV infection, as sug-
gested by other studies [107, 111]. Also, TCM sub-
population is heterogeneous [10, 112], and cells
under apoptosis might not be reflected in microarray
data. Therefore, we propose that an additional pro-
grammed cell death pathway may be in involved in
TCM cell death after cell cycle arrest. A likely path-
way is pyroptosis, an inflammatory programmed cell
death pathway driven by pro-inflammatory signals,
such as bacterial lipopolysaccharide and IL-1β [113].
This pathway has been suggested by previous reports
[111, 114], and agrees with the presence in blood of
triggers of pyroptosis as bacterial lipopolysaccharide
(LPS) [115] and IL-1β [116] in HIV infection. Add-
itionally, increased concentrations of IL-18, a cyto-
kine liberated during pyroptosis, has been found in
the blood of patients with HIV [117].

Conclusions
In summary, we propose a model of CD4 TCM cell death
in chronic HIV infection based on a gene expression sig-
nature unique to this subpopulation. According to it,
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CD4 TCM cell loss in HIV infection may be driven in
vivo by increased cell cycle entry followed by G2/M ar-
rest, possibly leading to a non-apoptotic cell death, argu-
ably pyroptosis. Further experimental work is required
to validate the processes involved in this model.
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