
J
H
E
P
0
2
(
2
0
1
4
)
0
0
9

Published for SISSA by Springer

Received: September 2, 2013

Revised: December 20, 2013

Accepted: December 31, 2013

Published: February 4, 2014

Characters of the W3 algebra

Nicholas J. Iles and Gérard M.T. Watts

Dept. of Mathematics, King’s College London,

Strand, London WC2R 2LS, U.K.

E-mail: nicholas.iles@kcl.ac.uk, gerard.watts@kcl.ac.uk

Abstract: Traces of powers of the zero mode in the W3 Algebra have recently been found

to be of interest, for example in relation to Black Hole thermodynamics, and arise as the

terms in an expansion of the full characters of the algebra. We calculate the first few such

powers in two cases. Firstly, we find the traces in the 3-state Potts model by using null vec-

tors to derive modular differential equations for the traces. Secondly, we calculate the exact

results for Verma module representations. We compare our two methods with each other

and the result of brute-force diagonalisation for low levels and find complete agreement.

Keywords: Black Holes in String Theory, AdS-CFT Correspondence, Conformal and

W Symmetry

ArXiv ePrint: 1307.3771

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2014)009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81276463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nicholas.iles@kcl.ac.uk
mailto:gerard.watts@kcl.ac.uk
http://arxiv.org/abs/1307.3771
http://dx.doi.org/10.1007/JHEP02(2014)009


J
H
E
P
0
2
(
2
0
1
4
)
0
0
9

Contents

1 Introduction 1

1.1 Content of the paper 2

2 The W3 algebra and its representations 3

2.1 The W3 algebra 3

2.2 Representations of the W3 algebra 3

3 Series-expansion solutions by direct calculation 5

4 Exact results for irreducible modules in the 3-state Potts model 6

4.1 The trace TrL
(

W0q
L0
)

8

4.2 The trace TrL
(

W 2
0 q

L0
)

10

5 Exact results for Verma modules 10

5.1 The trace TrV (q
L0) 11

5.2 The trace TrV (W0 q
L0) 11

5.3 The trace TrV (W
2
0 qL0) 12

5.3.1 Contributions from term (1) 13

5.3.2 Contributions from term (2) 14

5.3.3 Contributions from term (3) 16

5.3.4 Contributions from term (4) 16

5.3.5 Contributions from term (5) 17

5.3.6 Contributions from terms (6) 17

5.3.7 Contributions from terms (7) 17

5.3.8 Contributions from terms (8) 18

5.3.9 Contributions from terms (9) 18

5.3.10 Combining all contributions 18

6 Comparison of results 19

7 Future research directions 20

7.1 Holography 21

1 Introduction

W-algebras are generalisations of the Virasoro algebra which appear in a number of different

situations. They all include the Virasoro algebra as a sub-algebra and so for any highest-

weight representation V one can define a reduced character as

χ
red.
V (q) = TrV

(

qL0−c/24
)

. (1.1)
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However, a W-algebra will typically have a larger set of commuting zero-modes for which

one can try to extend the reduced character to a full character (or simply, character). Here

we will only consider the W3 algebra which has one extra commuting mode1 W0 and for

which one can consider the character

χV (q, y) = TrV
(

qL0−c/24 yW0
)

. (1.2)

These full characters are of particular interest in holography — see [1] for a review of the

duality between WN CFTs and AdS3 gravity theories. In [2] for example, we see that the

AdS3/CFT2 correspondence gives us a relation between the character of a Virasoro algebra

module on the CFT side, and the partition function on the AdS side. Generalising the

character to the W3 algebra may allow the correspondence to be investigated for a wider

range of gravity models, those with spin greater than 2 (see [3] for a review).

Traces over W-algebra zero modes were calculated in [4] for the specific cases of free

bosons and free fermions. Similarly, in [5] the authors calculate Tr
(

Wn
0 q̂

L0−c/24
)

for

n = 2, 4, 6 in the limits q → 0 and large central charge. An exact calculation of the

generalised character can both verify and extend their results.

1.1 Content of the paper

The ultimate aim is to calculate the full character of both the Verma module and irreducible

representations,

TrV (q
L0−c/24yW0) = TrV (q

L0−c/24e2πizW0) . (1.3)

In this paper we calculate the first few terms in the expansion of this second form for

several classes of expressions. To make the results simpler, we shall drop the extra term

(−c/24) from the character which is usually included to improve modular transformation

properties. It is a simple matter to reinstate it if necessary.

To summarise the content of the rest of the paper:

In section 3, we obtain explicit results up to level 6 for any highest weight Verma

module for the traces TrV
(

W0q
L0
)

through TrV
(

W 5
0 q

L0
)

by direct calculation.

In section 4, we obtain exact expressions for TrL
(

W 2
0 q

L0
)

, and a differential equa-

tion whose solutions are exact expressions for TrL
(

W0q
L0
)

for the irreducible minimal

representations L at c = 4/5, i.e. those relevant to the 3-state Potts model.

In section 5 we find an exact (i.e. to all levels) expression for the traces over any highest

weight Verma module, TrV
(

W0q
L0
)

and TrV
(

W 2
0 q

L0
)

.

We compare our results from these three methods of computation in section 6 and

show that they agree. Finally, we conclude with some open questions and directions for

future research.

1As the Virasoro algebra has an infinite set of mutually commuting modes {L0, Λ0, . . . }, so the W3

algebra has {L0, W0, (LW )
0
+ corrections, . . . }. Here we are looking at zero modes of fundamental fields

L and W only.
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2 The W3 algebra and its representations

2.1 The W3 algebra

The W3 algebra is an extension of the Virasoro algebra introduced by A. Zamolodchikov

in [6] in which the usual spin-2 operators Ln are augmented by spin-3 operators Wn. We

will use Zamolodchikov’s normalisation so that the commutation relations are

[Lm , Ln] = (m− n)Lm+n +
c

12
m(m2−1)δm+n,0 , (2.1a)

[Lm ,Wn] = (2m− n)Wm+n , (2.1b)

[Wm ,Wn] = (m− n)

[

1

15
(m+n+3) (m+n+2)− 1

6
(m+2)(n+2)

]

Lm+n

+ β(m−n)Λm+n +
c

360
m(m2−1)(m2−4)δm+n,0 , (2.1c)

where

β =
16

22 + 5c
. (2.2)

The operators Λn are given by

Λn =
∑

p≤−2

LpLn−p +
∑

p≥−1

Ln−pLp −
3

10
(n+ 2) (n+ 3)Ln

=

⌊(n−1)/2⌋
∑

p=−∞

LpLn−p +
∞
∑

p=⌈n/2⌉

Ln−pLp + γ(n)Ln , (2.3)

with

γ(n) =

{

− 1
20(n

2 − 4) n even

− 1
20(n

2 − 9) n odd
(2.4)

Their commutation relations with Lm and Wm are

[Lm ,Λn] = (3m− n) Λm+n +
22 + 5c

30
m
(

m2 − 1
)

Lm+n , (2.5)

[Wm ,Λn] =
n+3

5
[3 (m+n+3) (m+n+4)− 8 (m+1) (m+2)]Wm+n

+
∑

p≤−2

(2m−4n+4p)LpWm+n−p +
∑

p≥−1

(2m−4n+4p)Wm+n−pLp . (2.6)

2.2 Representations of the W3 algebra

As for the Virasoro algebra, the W3 algebra can have highest weight representations. Since

we have two commuting zero modes, highest weight representations have two labels: the L0

eigenvalue h and the W0 eigenvalue w. As such, highest-weight states are labelled |h,w〉.
One can consider a wide range of different highest weight representations, but we will only

consider Verma modules and irreducible modules.

The Verma module Vh,w;c is generated by the action of the negative modes W−m, L−m

on the highest weight state |h,w〉. One can show that a basis is taken by deciding on a fixed

ordering of these negative modes — any ordering will do — but we will choose a particularly

useful ordering in section 5 when we calculate the full character of the Verma module.

– 3 –
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The irreducible module with highest weight |h,w〉, Lh,w;c, is given as the quotient of

the Verma module with the same highest weight state by its maximal submodule. Detailed

(and apparently correct) conjectures for the structure of the Verma modules of the W3

algebra and their relation to the irreducible modules are given in [7].

The reduced characters of the Verma module representations are trivial to find,

χred.
Vh,w;c

(q) = TrVh,w;c
(qL0−c/24) = qh−c/24

∞
∏

n=1

1

(1− qn)2
; (2.7)

the reduced characters of any irreducible representation can then be calculated using the

results in [7]. In many cases the reduced characters have alternative or closed-form expres-

sions, for example for the minimal models for which the characters are given in [8]. We

now summarise the results of [7] that will be useful to us.

For any module M , one can form a local composition series, a sequence of submodules

wherein each is itself a submodule of the preceding one. The number of times a given

moduleM ′ appears in the sequence is called the multiplicity ofM ′ inM . The multiplicity is

denoted [M : M ′] and is independent of the particular sequence chosen. For the particular

case of M = V a Verma module and M ′ = L an irreducible module, the multiplicities

[V : L] are invertible and we denote these inverse multiplicities (L : V ). The Kazhdan-

Lusztig conjecture says that [V : L] (resp. (L : V )) are given by the Kazhdan-Lusztig

polynomials (resp. inverse KL polynomials).

In order to capture all contributions to χM without over-counting, we can sum over

characters of irreducible modules, weighted by their multiplicities in M : χM =
∑

L[M :

L]χL, which for our purposes becomes χL =
∑

V (L : V )χV . The inverse KL polynomials

and the sum over Verma modules for WN minimal models (such as the 3-state Potts model

considered in section 4) are very simple: noting that W3 is associated to the Lie algebra

a2, the Verma modules that contribute are those in representations related by the action of

the affine Weyl group of a2 to the particular L representation of interest, and the inverse

KL polynomials are ±1, where the sign depends on the affine Weyl group element (as

explained below).

To make this concrete, let us introduce a new notation. Instead of h,w, we can label

representations by two pairs of integers mn;m′n′, where each pair of integers is a weight of

a2, and a parameter t that labels the minimal model Mpp′ by t = p/p′. This notation can

label both Verma modules Vmn;m′n′ and irreducible modules Lmn;m′n′ — for the latter, we

have m + n < p, m′ + n′ < p′, and m,n,m′, n′ > 0. These new parameters are related to

h, w and c by [9]

h
(

mn;m′n′; t
)

=
1

3t

[

(

m−m′t
)2

+
(

m−m′t
) (

n− n′t
)

+
(

n− n′t
)2 − 3 (1− t)2

]

(2.8)

w
(

mn;m′n′; t
)

=

√
2

9t
√

3(5t−3)(5−3t)

[

m−n−(m′−n′)t
]

×
[

2m+n−(2m′+n′)t
][

m+2n−(m′+2n′)t
]

(2.9)

c (t) = 50− 24t− 24

t
= 2

(

1− 12 (p− p′)2

pp′

)

(2.10)
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The affine Weyl group is the semi-direct product of the finite Weyl group with translations

in the root lattice (the simple roots of a2 are α1 = (2,−1) and α2 = (−1, 2)), and for

l(ω) the length of a finite Weyl group element ω, the inverse KL polynomials are simply

(−1)l(ω). Writing χL
mn;m′n′ = TrLmn;m′n′

(

ZqL0
)

for compactness, and similarly for χV
mn;m′n′ ,

we therefore find

χL
mn;m′n′ =

∞
∑

r,s=−∞

∑

ω

(−1)l(ω)χV
ω(m,n)+rpα1+spα2;m′n′ (2.11)

=
∞
∑

r,s=−∞

(

χV
m+2rp−sp,n+2sp−rp;m′n′ − χV

−m+2rp−sp,m+n+2sp−rp;m′n′

− χV
m+n+2rp−sp,−n+2sp−rp;m′n′ + χV

n+2rp−sp,−m−n+2sp−rp;m′n′

+ χV
−m−n+2rp−sp,m+2sp−rp;m′n′ − χV

−n+2rp−sp,−m+2sp−rp;m′n′

)

. (2.12)

For representations with c > 2 there are only a finite number of null states and so these

sums are even simpler. For example, the vacuum representation [1, 1; 1, 1] has character

χL
h=0,w=0,c = χV

1,1;1,1 − χV
−1,2;1,1 − χV

2,−1;1,1 + χV
1,−2;1,1 + χV

−2,1;1,1 − χV
−1,−1;1,1 (2.13)

= χV
h=0,w=0,c − χV

h=1,w=w−,c − χV
h=1,w=−w−,c

+ χV
h=3,w=w+,c + χV

h=3,w=−w+,c − χV
h=4,w=0,c (2.14)

where (2.9) gives

w± =
3
√
2 (1± t)

√

3 (5t− 3) (5− 3t)
. (2.15)

3 Series-expansion solutions by direct calculation

Of course, once the commutation relations (2.1) are known, it is a simple (in principle)

matter to “brute force” calculate TrV
(

ZqL0
)

or TrL
(

ZqL0
)

for any operator Z.

For each state |Sl〉 in V or L, where l denotes the level, commute Z to the right (through

the creation operators for that state), and then commute the annihilation operators within

Z to the right until they annihilate the highest-weight state |h,w〉. All that remains will

be qh+l times some linear combination of all the states at level l. So, the contribution of

|Sl〉 to the trace is just αSq
h+l, where αS is the coefficient of |Sl〉 in the linear combination.

Clearly though, this procedure will not give the complete answer as there are infinitely

many states in V or L. However, we can use it level-by-level to obtain a series expansion in

q. This is more easily done for a Verma module V since for an irreducible module L, there

is the additional complication of first deducing which states are present (i.e. by finding the

null states and removing them).

Using this method, we found the results given in table 1, i.e.

TrV
(

W0q
L0
)

= wqh + 2wqh+1 + 5wqh+2 + 10wqh+3

+ 20wqh+4 + 36wqh+5 + 65wqh+6 + . . . (3.1)

TrV
(

W 2
0 q

L0
)

= w2qh +

(

2w2 +
4

22 + 5c
(32h− c+ 2)

)

qh+1 + . . . (3.2)

– 5 –
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TrV
(

W 3
0 q

L0
)

= w3qh +

(

2w3 +
12w

22 + 5c
(32h− c+ 2)

)

qh+1 + . . . (3.3)

etc.

4 Exact results for irreducible modules in the 3-state Potts model

In section 3, we found series-expansion expressions for TrV
(

Wn
0 q

L0
)

up to O(q6). In

this section, we use a different method to find an exact solution for TrL
(

W0q
L0
)

and

TrL
(

W 2
0 q

L0
)

. This method has the benefits of a) being exact, and b) giving a result for

the irreducible module L, but the drawback of requiring one to choose a value of c. Despite

this caveat, the method itself is applicable to any minimal model (i.e. any choice of c)

for which one can find null vectors, and can be used to calculate TrL
(

Wn
0 q

L0
)

for any

value of n.

For this method, we use the fact that2

TrL
(

N0q
L0
)

= 0 for any null field N . (4.1)

This is immediately apparent from the definition of L, a module which has had all null

states removed. The method is demonstrated below; here we simply give an explanation.

For every term in TrL
(

N0q
L0
)

, we can use the commutation relations (2.1) and the

cyclicity of the trace to move one of the operators (Lp or Wp, say) in that term all the

way through the other operators and back to its starting position. In doing so, we pick

up an overall factor of qp from moving the operator through qL0 , and introduce new terms

from the commutation relations. If these newly-introduced terms are comprised entirely of

L0 or W0 operators, we are finished — if not, we repeat this procedure on the remaining

non-L0/W0 parts until only L0 or W0 remain. We then rearrange the result to get an

expression for our original term solely in terms of traces of L0 and W0 operators, with

some coefficients that can depend on q, p and c.

Since L0 can be considered to be a differential operator via

L0q
L0 |h,w〉 = L0q

h |h,w〉 = hqh |h,w〉 = q
∂

∂q
qh |h,w〉 = q

∂

∂q
qL0 |h,w〉 , (4.2)

this can have one of two effects:

• if we have no mixed TrL
(

Lm
0 Wn

0 q
L0
)

terms, it will turn every term in TrL
(

N0q
L0
)

into some differential operator acting on the reduced character TrL
(

qL0
)

— except

for terms like TrL
(

Wn
0 q

L0
)

. Since TrL
(

N0q
L0
)

= 0, we can thus write TrL
(

Wn
0 q

L0
)

in terms of known quantities: differential operators acting on the reduced character.

• if we do have mixed TrL
(

Lm
0 Wn

0 q
L0
)

terms, we instead get differential operators

acting on TrL
(

Wn
0 q

L0
)

, and then TrL
(

N0q
L0
)

= 0 gives a differential equation for

TrL
(

Wn
0 q

L0
)

which we can solve to find TrL
(

Wn
0 q

L0
)

.

2We use the field-state correspondence |F 〉 = limz→0 F (z) |0〉 and the Laurent expansion of the field

F (z) =
∑

m
Fmz−m−hF , where hF is the weight of F , to relate states, fields and operators/modes.

– 6 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
9

n 0 1 2 3

W0 w 2w 5w 10w

W 2
0 w2 2w2

+1
4β(32h−c+2)

5w2

+β(64h−c+18)

10w2

+1
4β(928h+3c+634)

W 3
0 w3 2w3

+3
4wβ(32h−c+2)

5w3

+3wβ(64h−c+18)

10w3

+3
4wβ(928h+3c+634)

W 4
0 w4 2w4

+3
2w

2β(32h−c+2)

+ 1
32β

2(32h−c+2)2

5w4

+6w2β(64h−c+18)

+1
2β

2
(

(64h−c+18)2

−64h(32h−c+2)

−128(4h+1)
)

10w4

+3
2w

2β(928h+3c+634)

+ 1
32β

2(250880h2+1728ch+512640h

+309c2−5076c+127700)

W 5
0 w5 2w5

+5
2w

3β(32h−c+2)

+ 5
32wβ

2(32h−c+2)2

5w5

+10w3β(64h−c+18)

+5
2wβ

2
(

(64h−c+18)2

−64h(32h−c+2)

−128(4h−5)
)

10w5

+5
2w

3β(928h+3c+634)

+ 5
32wβ

2(250880h2+1728ch+512640h

+309c2−5076c+447188)

n 4 5

W0 20w 36w

W 2
0 20w2 + 16β(46h+c+49) 36w2 + 1

2β(3616h+155c+5770)

W 3
0 20w3 + 48wβ(46h+c+49) 36w3 + 3

2wβ(3616h+155c+5770)

W 4
0 20w4 + 96w2β(46h+c+49)

+ 2β2(21248h2+928ch+66112h

+73c2+420c+28340)

36w4 + 3w2β(3616h+155c+5770)

+ 1
16β

2(2450432h2+212672ch

+11408000h+19681c2+269820c+7354500)

W 5
0 20w5 + 160w3β(46h+c+49)

+ 10wβ2(21248h2+928ch+66112h

+73c2+420c+79988)

36w5 + 5w3β(3616h+155c+5770)

+ 5
16wβ

2(2450432h2+212672ch

+11408000h+19681c2+269820c+17492100)

n 6

W0 65w

W 2
0 65w2 + β(4384h+273c+8894)

W 3
0 65w3 + 3wβ(4384h+273c+8894)

W 4
0 65w4 + 6w2β(4384h+273c+8894)

+ 1
2β

2(1037312h2+129600ch+5983104h+14351c2+254660c+5266492)

W 5
0 65w5 + 10w3β(4384h+273c+8894)

+ 5
2wβ

2(1037312h2+129600ch+5983104h+14351c2+254660c+11256892)

Table 1. The results of the brute-force calculation of TrVn
(Z) described in section 3 for the

subspaces Vn of the Verma module at level n and for the insertions Z = W0, . . . ,W
5

0
, up to O

(

q6
)

.
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h,w 0, 0 1
15 ,−1

9

√

2
195

1
15 ,+

1
9

√

2
195

2
3 ,−2

9

√

26
15

2
3 ,+

2
9

√

26
15

2
5 , 0

mn;m′n′ 11; 11 12; 11 21; 11 13; 11 31; 11 22; 11

Table 2. W3 representations of the 3-state Potts model

The first effect appears when we find TrL
(

W 2
0 q

L0
)

, the second when we find TrL
(

W0q
L0
)

.

In this section, we choose to work in the 3-state Potts model, as this has null fields at

low levels, making calculations especially tractable. This is the W3 minimal model M5,4,

i.e. t = 5/4 and c = 4/5, and it has the representations given in table 2.

4.1 The trace TrL
(

W0q
L0

)

For our calculation of TrL
(

W0q
L0
)

, we will need a null field that includes a term that is

just W (z) or its derivatives — such a field can be found at level seven in the Potts model:

N7 = − 1

12
W ′′′′ +

52

121

(

W ′′L
)

+
47

121

(

W ′L′
)

− 27

121
(WΛ) +

141

605

(

WL′′
)

(4.3)

where the brackets (. . . ) denote normal ordering of the enclosed fields by [10]

(AB)m =
∑

n≤−hA

AnBm−n +
∑

n>−hA

Bm−nAn. (4.4)

This field has zero mode

N7
0 =

∑

p≥1

(

636

605
p2 +

54

121
p+

126

605

)

L−pWp +
∑

p≥1

(

636

605
p2 − 54

121
p+

126

605

)

W−pLp

− 27

121

∑

p≥1

W−pΛp −
27

121

∑

p≥1

Λ−pWp −
27

121
Λ0W0 +

126

605
L0W0 −

6

605
W0 (4.5)

which we can then substitute into the null field relation (4.1).

Let us demonstrate the method outlined above in detail for the first term in (4.5):

TrL
(

L−pWpq
L0
)

= qpTrL
(

WpL−pq
L0
)

(4.6)

= qpTrL
(

L−pWpq
L0
)

+ qpTrL
(

[Wp, L−p] q
L0
)

(4.7)

=
qp

1− qp
TrL

(

3pW0q
L0
)

(4.8)

giving a final expression for the trace over this first term of

TrL





∑

p≥1

(

636

605
p2 +

54

121
p+

126

605

)

L−pWpq
L0





=
∑

p≥1

3pqp

1− qp

(

636

605
p2 +

54

121
p+

126

605

)

TrL
(

W0q
L0
)

=





1908

605

∑

p≥1

p3qp

1− qp
+

162

121

∑

p≥1

p2qp

1− qp
+

378

605

∑

p≥1

pqp

1− qp



TrL
(

W0q
L0
)

. (4.9)
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Repeating this process for the remaining terms in (4.5), we end up with

f2TrL
(

L2
0W0q

L0
)

+ f1TrL
(

L0W0q
L0
)

+ f0TrL
(

W0q
L0
)

= 0, (4.10)

which gives (using (4.2) and writing W ≡ TrL
(

W0q
L0
)

)

q2f2W ′′ + q (f2 + f1)W ′ + f0W = 0. (4.11)

In these expressions, the coefficient functions fi are given by

f0 = −1944

121





∑

p≥1

pqp

1−qp





2

− 324

121

∑

p≥1

p2qp

(1− qp)2
+
306

55

∑

p≥1

p3qp

1− qp
+
882

605

∑

p≥1

pqp

1− qp
− 6

605

(4.12)

f1 = −432

121

∑

p≥1

pqp

1− qp
+

9

55
, (4.13)

f2 = − 27

121
. (4.14)

These functions can also be expressed in terms of Eisenstein series E2k(q) as

f0 = − 3

12100
(1 + 20E2 + 75(E2)

2 − 56E4) , f1 =
9

605
(1 + 10E2) , (4.15)

where here, and later, we use

E2 = 1− 24
∞
∑

n=1

nqn

1− qn
, E4 = 1 + 240

∞
∑

n=1

n3qn

1− qn
, E6 = 1− 504

∞
∑

n=1

n5qn

1− qn
. (4.16)

In principle, we now solve (4.11) to find TrL
(

W0q
L0
)

. However, it is clear that this is

not a simple ODE to solve exactly, but it does allow us to solve for a series expansion to

any desired order. The leading power of q is determined by the indicial equation and can

only take the values 1/15 or 2/3. The series expansions can then be found order-by-order.

The first few terms are

TrL
(

W0q
L0
)

=±1

9

√

2

195
q

1
15

(

1+46q+74q2+192q3−121q4+286q5−314q6−166q7+O
(

q8
))

(4.17a)

and

TrL
(

W0q
L0
)

== ±2

9

1√
15 · 26

q
2
3

(

26 + 143q + 142q2 + 214q3

−22q4 − 23q5 − 386q6 + 26q7 +O
(

q8
))

. (4.17b)

We would like to point out that these are the unique non-trivial series expansion solutions

to the differential equation (4.11). Particularly, the leading powers of q, 1/15 or 2/3,

are exactly the values of h in the Potts model representations that have non-zero w (see

table 2).

– 9 –



J
H
E
P
0
2
(
2
0
1
4
)
0
0
9

4.2 The trace TrL
(

W 2

0
qL0

)

To calculate TrL
(

W 2
0 q

L0
)

, we will need a null field that includes a term like (WW )(z),

which we find at level six in the Potts model:

N6 = (WW )− 85

78

(

L′L′
)

− 95

117
(LΛ)− 25

234
L′′′′ +

29

39

(

LL′′
)

, (4.18)

which has zero mode

N6
0 = 2

∑

p≥1

W−pWp −
95

117

∑

p≥1

L−pΛp −
95

117

∑

p≥1

Λ−pLp +
∑

p≥1

(

11

3
p2 +

8

39

)

L−pLp

+W 2
0 − 95

117
Λ0L0 +

4

39
L2
0 −

22

195
L0 +

4

9
Λ0. (4.19)

Again, we substitute this into the null field relation (4.1) and perform the manipulations

above to find

TrL
(

W 2
0 q

L0
)

= g3TrL
(

L3
0q

L0
)

+g2TrL
(

L2
0q

L0
)

+g1TrL
(

L0q
L0
)

+g0TrL
(

qL0
)

(4.20)

=

[

q3g3
∂3

∂q3
+q2 (3g3+g2)

∂2

∂q2
+q (g3+g2+g1)

∂

∂q
+g0

]

TrL
(

qL0
)

(4.21)

with

g0 =
1

1263600
(−38− 426E2 − 705(E2)

2 + 663E4 + 72E2E4 + 434E6) (4.22)

g1 =
1

14040
(38 + 284E2 + 235(E2)

2 − 221E4) (4.23)

g2 = − 1

234
(19 + 71E2) , g3 =

95

117
(4.24)

As can be seen, this does not give a differential equation for TrL
(

W 2
0 q

L0
)

, but in-

stead gives TrL
(

W 2
0 q

L0
)

in terms of a differential operator acting on the reduced charac-

ter TrL
(

qL0
)

.

The reduced characters for the irreducible modules, TrL
(

qL0
)

, are found by apply-

ing (2.11) to the reduced Verma module characters (2.7). So, since the coefficient functions

gi and the characters TrL
(

qL0
)

are known, we can evaluate the right-hand side of (4.21)

to find an expression for TrL
(

W 2
0 q

L0
)

. The solutions, which are composed of products of

infinite sums, are not particularly enlightening and so we do not state them here. Instead,

we give their series expansions up to O(q6) in table 3.

5 Exact results for Verma modules

The Verma module has a particularly simple and explicit basis which means we can, at

some effort, calculate the trace over a Verma module of any particular power Wn
0 q

L0 by

explicitly calculating the action of Wn
0 at each level. We shall take as our canonical basis

states of the form

∞
∏

n=1

(Lan
−nW

bn
−n ) |h,w〉 = · · ·W bp+1

−p−1 L
ap
−pW

bp
−p L

ap−1

−p+1 · · · |h,w〉 , an, bn ≥ 0 . (5.1)
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h,w q−hTrL
(

W 2
0 q

L0
)

to O
(

q6
)

0, 0 12q3 + 4352
65 q4 + 3064

13 q5 + 50864
65 q6

1
15 ,±1

9

√

2
195

2
15795 + 4232

15795q +
22868
3159 q

2 + 227216
5265 q3 + 2965402

15795 q4 + 9096296
15795 q5 + 23727188

15795 q6

2
3 ,±2

9

√

26
15

104
1215 + 3146

1215q +
365224
15795 q

2 + 279764
3159 q3 + 944152

3159 q4 + 11270746
15795 q5 + 5613800

3159 q6

2
5 , 0

28
13q +

256
13 q

2 + 6872
65 q3 + 20992

65 q4 + 61872
65 q5 + 140592

65 q6

Table 3. Series expansions for TrL
(

W 2

0
qL0

)

in the three-state Potts model obtained from the exact

expressions (not shown). Note that for the h = 1/15 and h = 2/3 representations, the expansions

are the same for either choice of w sign.

commutator [L,L] [L,W ] [W,W ]

mode central L W central L LL

change in grade ( 0,−2) ( 0,−1) ( 0,−1) (−2,−2) (−2,−1) (−2, 0)

Table 4. Possible changes in grade after a commutator.

There are two simple results we need which will prove very useful. The first is that we

can grade the monomials in the W3-algebra by the number of W -modes and by the total

number of modes. If a monomial has w W -modes and n modes in total, we say it has grade

(w, n), and we can assign it a “total grade” (w + n) .

The second is that the effect of commuting two modes changes the grade by one of

four possibilities, which are given in table 4. Since each of the commutators decreases the

total grade, we are see that the result of repeated commutators is guaranteed to terminate.

Secondly, we only need consider a finite (and small) number of possible commutation

relations between modes in a monomial to calculate the contribution to the trace.

5.1 The trace TrV (qL0)

We first restate the result for the reduced character of the Verma module,

TrVh,w;c
(qL0) = qh

∞
∏

n=1

1

(1− qn)2
=

qh

φ(q)2
. (5.2)

The two factors (1− qn) in the denominator correspond to the (equal) contributions from

the modes W−n and L−n.

5.2 The trace TrV (W0 q
L0)

The next simplest result is for the trace with the insertion of a single W0 mode. Let us

denote a state in the basis (5.1) as P |h,w〉 where P is a monomial in the lowering modes

of the algebra. We have

W0P |h,w〉 = [W0,P] |h,w〉+ wP |h,w〉 . (5.3)
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Suppose P has W-number w. After the action of a single commutator and no further

re-arranging, [W0,P] has terms with W-number (w + 1) arising from the commutator

[W0, L−p] = 2pW−p (for some p) and terms with W-number (w − 1) arising from the

commutator [W0,W−p] for some p. Since W-number is non-increasing, the terms with W-

number (w − 1) cannot contribute to the trace, so we can restrict attention to the terms

where [W0, L−p] = 2pW−p. These terms have W-number w + 1, and so we need to reduce

this by 1 if we are to get a contribution to the trace. The only way to do that is to create a

mode W0 during the rearrangement of the terms which can act on the highest weight state,

but such a mode can only be created by the action [Lp,W−p] and the mode Lp can itself

only come from the expansion of a term Λ−q, which would itself come from a W-number

reducing commutator [Wr,Ws]. The result is that such a term cannot arise and the only

contribution to the trace of W0 comes from the action of the mode W0 on the highest

weight state itself. This gives the immediate result

TrVh,w;c
(W0 q

L
0 ) = w qh

∞
∏

n=1

1

(1− qn)2
=

w qh

φ(q)2
. (5.4)

This agrees with the result given in section 3, see table 1 and (3.1), that

TrVh,w;c
(W0 q

L0) = wqh+2wqh+1+5wqh+2+10wqh+3+20wqh+4+36wqh+5+65wqh+6+. . .

(5.5)

5.3 The trace TrV (W 2

0
qL0)

We can calculate the trace of W 2
0 on one of the basis states (5.1) by keeping track of the

possible ways in which the action of W 2
0 can reproduce the original state. We have

W 2
0P |h,w〉 = w2P |h,w〉+ 2w[W0 ,P] |h,w〉+ [W0 , [W0 ,P]] |h,w〉 (5.6)

The first term is simply the action of W 2
0 on the highest weight state, giving a term in the

character

w2 qh

φ(q)2
. (5.7)

The second term does not contribute to the trace, as we have already considered exactly

this term in the previous section.

The third term is more involved. We calculate this term by splitting the action of the

W0-mode into several pieces, and by considering the possible action on the modes in the

monomial on a case-by-case basis.

It is helpful to split each [W0 ,Wn] commutator into various separate terms and analyse

the contributions from each of these terms to the trace. We split the commutator up into
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(1) (2) (3) (4) (5)

�
L−r

�
W−r

↓
L−r · · ·

↓
L−r

↓
L−r · · ·

↓
W−r

↓
W−r · · ·

↓
W−r

(6) (7) (8) (9)

↓
L−r · · ·

↓
L−s

↓
L−r · · ·

↓
W−s

↓
W−r · · ·

↓
L−s

↓
W−r · · ·

↓
W−s

Table 5. possible choices for the action of W0; note that r > s.

five terms (a)–(e) as

[W0 ,W−m] = αr L−m (a)

+ mβ ǫm L−m/2 L−m/2 (b)

+ 2mβ

m−1
∑

s=⌈(m+1)/2⌉

L−sL−m+s (c)

+ 2mβ L−mL0 (d)

+ 2mβ
∞
∑

s=m+1

L−sL−m+s (e) ,

(5.8)

where

αr =

(

r(r2 − 4)

15
+ rβγ(r)

)

, ǫr = 1 if r is even and 0 otherwise. (5.9)

Next, we list the modes in a monomial which are acted upon by the commutators

[W0, · ]. There are nine possibilities listed in table 5 labelled (1)–(9). The arrows indicate

which modes are acted upon by each [W0, · ]; a double arrow indicates the same mode is

acted upon twice. We consider these nine possibilities in turn.

5.3.1 Contributions from term (1)

We consider all contributions from terms where W0 acts twice on the same mode L−r. The

first action gives

[W0, L−r] = 2rW−r (5.10)

The second gives five terms, from the five contributions in equation (5.8). We list these

in turn.

(1)(a): [W0, [W0, L−r]] → 2rαr L−r .

This directly contributes to the trace. For the mode L−r we get a term 2rαrq
r/(1−

qr)2, and for all the other modesX−s we get 1/(1−qs), so that the total contribution is

T1a =
qh

φ(q)2

∞
∑

r=1

2r αr q
r

1− qr
. (5.11)
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(1)(b): [W0, [W0, L−r]] → 2r2 β ǫr L−r/2 L−r/2.

The action of theW0 modes has removed a mode L−r from the monomial and replaced

it by two modes L−r/2, so that the grade has increased by (0, 1). To recover this lost

mode, we can consider at most one commutator of the form [L,L] or [L,W ], which

change the grade by (0,−1), but no such commutator will produce the desired mode,

so this term does not contribute to the trace,

(1)(c): [W0, [W0, L−r]] → 4r2 β
∑

s L−sL−r+s .

We need to reorder the monomial into canonical order, which we do by first moving

the mode L−r+s to the right, and then the mode L−s. In the process of the first move,

we have to commute L−r+s past possible modes L−p and modes W−p. Only one such

commutator can reinstate the missing mode L−r, which is [L−r+s, L−s] = (2s−r)L−r.

The total contribution from all such terms is thus

T1c = 4β
qh

φ(q)2

∞
∑

r=1

r2
qr

1− qr

r−1
∑

s>r/2

(2s− r)
qs

1− qs
(5.12)

(1)(d): [W0, [W0, L−r]] → 4r2 β L−rL0 .

This again contributes directly to the trace, since L0 acts on all the remaining terms

in the monomial and the highest weight state as well. The action on the highest

weight state gives the simple contribution

T1di = 4hβ
qh

φ(q)2

∞
∑

r=1

r2qr

1− qr
(5.13)

The action of L0 on the remaining modes gives the more complicated contribution

T1dii = qh
∞
∑

r=1

4r2β

[

∞
∏

k=r+1

1

(1− qk)2

]

qr

1− qr
q
d

dq

[

r
∏

k=1

1

(1− qk)2

]

(5.14)

= 4β
qh

φ(q)2

∞
∑

r=1

r2 qr

1− qr

r
∑

k=1

2k qk

1− qk
(5.15)

(1)(e): [W0, [W0, L−r] → 2r β
∑

s L−sL−r+s .

This has removed a mode L−r from the monomial and (by considering the grade) we

are only allowed to use a single commutator to return this to the monomial. This

could only arise by moving L−r+s or L−s to their canonical positions, but neither

of these could create L−r in this manner and so this term does not contribution to

the trace.

5.3.2 Contributions from term (2)

We next consider all contributions from terms where W0 acts twice on the same mode W−r.

The first action gives five terms, one for each of the possible terms in (5.8). We consider

the action of W0 on each of these five terms in turn
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(2)(a): [W0, [W0,W−r]] → [W0, αrL−r] = 2rαr W−r .

This directly contributes to the trace, giving the same result as term (1)(b):

T2a =
qh

φ(q)2

∞
∑

r=1

2r αr
qr

1− qr
. (5.16)

(2)(b): [W0, [W0,W−r]] → [W0, r β ǫr L−r/2 L−r/2] = r2 β ǫr (W−r/2L−r/2 + L−r/2W−r/2).

The action of the W0 modes has removed a mode W−r, and inserted modes W−r/2

and L−r/2 which need to be commuted to the right. In the process, one of the modes

W−r/2 can commute with a mode L−r/2 giving [W−r/2, L−r/2] = (r/2)W−r. The two

terms W−r/2L−r/2 and L−r/2W−r/2 differ in their contribution because the first term

allows for this extra commutator giving W−r, and together they give

T2b =
β

2

qh

φ(q)2

∞
∑

r=2, even

r3
1 + qr/2

1− qr/2
qr

(1− qr)
. (5.17)

(2)(c): [W0, [W0,W−r]] →
∑

s 2rβ[W0, L−sL−r+s] = 2rβ
∑

s(2sW−sL−r+s + 2(r − s)

L−sW−r+s) .

We consider the two terms separately. In the first term, we first move L−r+s to the

right; doing so, it can commute with a mode W−s to give [L−r+s,W−s] = (3s −
2r)W−r, restoring the mode W−r. Moving the mode W−s to the right cannot give a

mode W−r since (−r+ s) > −s and so W−s will not pass through any modes L−r+s.

Hence the first term gives

T2ci = 4β
qh

φ(q)2

∞
∑

r=1

rqr

1− qr

r−1
∑

s>r/2

s(3s− 2r)qs

1− qs
. (5.18)

The second term contributes when W−r+s commutes through a mode L−s giving

(3s− r)W−r, and a total contribution

T2cii = 4β
qh

φ(q)2

∞
∑

r=1

rqr

1− qr

r−1
∑

s>r/2

(r − s)(3s− r)qs

1− qs
. (5.19)

(2)(d): [W0, [W0,W−r] → 2r β [W0, L−rL0] = 4r2βW−rL0 .

This again contributes directly to the trace, since L0 acts on all the remaining terms

in the monomial and the highest weight state as well. The action on the highest

weight state gives the simple contribution

T2di = 4hβ
qh

φ(q)2

∞
∑

r=1

r2qr

1− qr
(5.20)
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The action of L0 on the remaining modes gives the more complicated contribution

T2dii =
∞
∑

r=1

4r2βqh

[

∞
∏

k=r

1

(1− qk)2

]

qrq
d

dq

[

1

1− qr

r−1
∏

k=1

1

(1− qk)2

]

(5.21)

= 4β
qh

φ(q)2

∞
∑

r=1

r2qr

1− qr

(

rqr

1− qr
+

r−1
∑

k=1

2kqk

1− qk

)

(5.22)

= 4β
qh

φ(q)2

∞
∑

r=1

r2qr

1− qr

(

r
∑

k=1

2kqk

1− qk
− rqr

1− qr

)

(5.23)

(2)(e): [W0, [W0,W−r] → 2r β
∑

s[W0, L−sL−r+s] = 2rβ
∑

s(2sW−sL−r+s + 2(s −
r)L−sW−r+s) .

As with term (1)(e), this has extra modes, either W−s or L−s, which cannot be

removed by any commutator, and so case (2)(e) does not contribute to the trace.

5.3.3 Contributions from term (3)

In term (3), each W0 commutes with a mode L−r giving 4r2W−rW−r. This differs by

grade (0, 2) so we would need to reduce the number of W -modes by 2 to get a contribution

to the trace. This can only happen if one or both of the surplus W−r modes commutes

with another W -mode while moving into its canonical ordering. However, it does not pass

through any such modes and so no commutators arise and this gives no contribution to

the trace.

5.3.4 Contributions from term (4)

In term (4), there are again five contributions from [W0,W−r] which we again deal with in

turn. There is also an overall factor 2 since the W0 modes can act on the two modes in

either order.

(4)(a): [W0, L−r] · · · [W0,W−r] → 4rαr W−r · · ·L−r .

This has grade (0, 0) and directly contributes to the trace a term

T4a = 4
qh

φ(q)2

∞
∑

r=1

rαr
q2r

(1− qr)2
. (5.24)

(4)(b): [W0, L−r] · · · [W0,W−r] → 4r2βW−r · · ·L−r/2L−r/2 .

We need to recover the mode L−r but that is not possible from any of the reorderings

and so it gives no contribution to the trace.

(4)(c): [W0, L−r] · · · [W0,W−r] → 8r2β
∑

s W−r · · ·L−sL−r+s .

The only way this contributes to the trace is from the commutator [L−r+s, L−s] =

(2s− r)L−r when moving the mode L−r+s to the right. This leads to the total term

T4c = 8β
qh

φ(q)2

∞
∑

r=1

r2
q2r

(1− qr)2

r−1
∑

s>r/2

(2s− r)
qs

1− qs
(5.25)
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(4)(d): [W0, L−r] · · · [W0,W−r] → 8r2βW−r · · ·L−rL0 .

This contributes directly to the trace when the mode L0 commutes through the modes

to the right of it, and from the highest weight state. The action on the highest weight

state gives the simple contribution

T4di = 8hβ
qh

φ(q)2

∞
∑

r=1

r2q2r

(1− qr)2
(5.26)

The action of L0 on the remaining modes gives the more complicated contribution

T4dii =
∞
∑

r=1

8r2βqh

[

∞
∏

k=r

1

(1− qk)2

]

q2r

1− qr
q
d

dq

[

1

1− qr

r−1
∏

k=1

1

(1− qk)2

]

(5.27)

= 8β
qh

φ(q)2

∞
∑

r=1

r2q2r

(1− qr)2

(

rqr

1− qr
+

r−1
∑

k=1

2kqk

1− qk

)

(5.28)

= 8β
qh

φ(q)2

∞
∑

r=1

r2q2r

(1− qr)2

(

r
∑

k=1

2kqk

1− qk
− rqr

1− qr

)

(5.29)

(4)(e): [W0, L−r] · · · [W0,W−r] → 8r2β
∑

s W−r · · ·L−sL−r+s .

There is again no way to eliminate the mode L−s with s > r so this does not contribute

to the trace.

5.3.5 Contributions from term (5)

The commutator [W0,W−r] · · · [W0,W−r] reduces the w-number of the monomial by two.

Since the w-number is non-increasing under commutators, this does not contribute to

the trace.

5.3.6 Contributions from terms (6)

In term (3), each W0 commutes with a mode of the Virasoro algebra giving a change in

mode of (2, 0): [W0, L−r] · · · [W0, L−s] = 4rsW−r · · ·W−s. We need to reduce the w-number

which needs a [W,W ] commutator, but these do not arise when moving W−r and W−s into

canonical ordering, so there is no contribution to the trace.

5.3.7 Contributions from terms (7)

We have the commutators [W0, L−r] · · · [W0,W−s] with r 6= s. This changes the grade of

the monomial by (0, 0) or (0, 1) allowing at most one commutator. We have removed the

mode W−s from the monomial and added the mode W−r. We cannot remove the extra

mode W−r when it is moved into canonical position and so there is no contribution to

the trace.
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5.3.8 Contributions from terms (8)

We have the commutators [W0,W−r] · · · [W0, L−s] with r 6= s. We have again changed the

grade of the monomial by (0, 0) or (0, 1) allowing again at most one commutator. This

time we have added a mode W−s and we can remove it if a mode Lp included in the

[W0,W−r] → LL terms commutes with it when moving to canonical position. We have

at the same time removed a W−r mode, which needs to be replaced. This is possible if

p− s = −r. This can come from either the terms (b) or (c) in the [W0,W−r] commutator.

(8)(b): [W0,W−r] · · · [W0, L−r/2] → (rβL−r/2L−r/2) · · · (rW−r/2) → r3β L−r/2 · · ·W−r .

This gives a contribution

T8b = β
qh

φ(q)2

∞
∑

r=2, even

r3
q2r

(1− qr)(1− qr/2)2
(5.30)

(8)(c): [W0,W−r] · · · [W0, L−s] → ∑

s(2rβL−sL−r+s) · · · (2sW−s) → 4r
∑

s s(3s −
2r)β L−s · · ·W−r .

Remembering to include all the possible L−r/2 modes in the monomial as well as

those created in [W0,W−r], this gives a contribution

T8c = 8β
qh

φ(q)2

∞
∑

r=1

r
qr

1− qr

r−1
∑

s>r/2

s(3s− 2r)
qs

(1− qs)2
. (5.31)

5.3.9 Contributions from terms (9)

The change in mode from [W0,W−r] · · · [W0,W−s] is (−2, 0), (−2, 1) or (−2, 2). Since no

re-orderings can possibly increase the number of W -modes, there are no contributions to

the trace from these terms.

5.3.10 Combining all contributions

This gives the final expression for the trace over the Verma module as

TrV (W
2
0 qL0 ) = T1a + T1c + T1di + T1dii + T2a + T2b + T2ci + T2cii + T2di + T2dii

+ T4a + T4c + T4di + T4dii + T8b + T8c (5.32)

The final result can be simplified by combining some of the terms. The terms with a

factor h simplify as

T1di + T2di + T4di = 8hβ
qh

φ(q)2

∞
∑

r=1

r2qr

(1− qr)2
. (5.33)

The terms with αr combine as

T1a + T2a + T4a = 4
qh

φ(q)2

∞
∑

r=1

rαr
qr

(1− qr)2
. (5.34)
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The terms coming from the derivative with respect to q combine as

T1dii + T2dii + T4dii = 4β
qh

φ(q)2

∞
∑

r=1

r2qr

(1− qr)2

(

−rqr
1 + qr

1− qr
+

r
∑

k=1

4kqk

1− qk

)

. (5.35)

The sums over r even can be combined as

T2b + T8b =
β

2

qh

φ(q)2

∞
∑

r=2, even

r3
1 + qr

1− qr
qr

(1− qr/2)2
(5.36)

= 4β
qh

φ(q)2

∞
∑

r=1

r3
1 + q2r

1− q2r
q2r

(1− qr)2
. (5.37)

These in turn can then be combined with the terms from the derivatives to give

T1dii+T2dii+T4dii+T2b+T8b = 4β
qh

φ(q)2

∞
∑

r=1

r2qr

(1− qr)2

(

− 2rqr

1− q2r
+

r
∑

k=1

4kqk

1− qk

)

. (5.38)

Finally, four of the terms with sums over r/s < s < r can be combined as

T1c + T2ci + T2cii + T4c = 8β
qh

φ(q)2

∞
∑

r=1

r2
qr

(1− qr)2

r−1
∑

s>r/2

(2s− r)
qs

1− qs
. (5.39)

Putting this all together, we arrive at an expression for the trace over the Verma module as

TrV (W
2
0 qL0 ) =

qh

φ(q)2























w2+
4

15

∞
∑

r=1

r2(r2−4)qr

(1−qr)2

+4β
∞
∑

r=1

r2qr

(1−qr)2

[

2h+γ(r)−2
rq2r

1−q2r
+4

r
∑

k=1

kqk

1−qk

]

+8β
∞
∑

r=1

rqr

1−qr

r−1
∑

s>r/2

qs

1− qs

[

r(2s−r)

1−qr
+

s(3s−2r)

1−qs

]























. (5.40)

Despite our best efforts, we have not as yet been able to write this result in a neater

form. Applying (2.11) to this directly does not yield a tractable result.

6 Comparison of results

To compare the results from section 5 to those in section 4, we need to convert from a

trace over the Verma module Vh,w;c to a trace over the irreducible module Lh,w;c using the

methods described in section 2.2: by applying (2.11) to our expressions for TrV
(

W0q
L0
)

,

given in (5.4), and TrV
(

W 2
0 q

L0
)

from (5.40), we can find expressions for TrL
(

W0q
L0
)

and

TrL
(

W 2
0 q

L0
)

as desired. We must then series-expand these expressions for the case of the

3-state Potts model, as this is how our irreducible module results are presented in section 4.

For TrL
(

W0q
L0
)

with h = 1/15 and h = 2/33 we find (4.17a) and (4.17b) respectively,

and for TrL
(

W 2
0 q

L0
)

, the results we obtain coincide exactly with those given in table 3.

The agreements persist as far as we have calculated, O(q30).

3Note that as w = 0 for h = 0 or h = 2/5, we have TrV
(

W0q
L0

)

= 0 and hence TrL
(

W0q
L0

)

= 0, which

of course trivially satisfies (4.11), for these representations.
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In summary then, in section 5 we found exact Verma module expressions at any value

of c for TrV
(

W0q
L0
)

and TrV
(

W 2
0 q

L0
)

, and verified that they agreed with the “brute

force” expansions from section 3. We then used the techniques described in section 2.2 to

convert these into irreducible module expressions and, for the specific example of the Potts

model, compared them at the level of series expansions to the results obtained in section 4.

Again, they agreed as far as we calculated. Due to the unwieldy form of (5.40), and the

complicated form of (4.21), we have not yet been able to show that applying (2.11) to (5.40)

is identically equivalent to applying the differential operator (4.21) to the exact expressions

for the reduced characters, although it should in principle be possible. Likewise, we have

not yet been able to show that the expressions for TrL
(

W0q
L0
)

obtained from (4.11) and

from applying (2.11) to (5.4) are equivalent.

7 Future research directions

We conclude our discussion with a mention of possible directions that future related re-

search may take.

We think the results here are interesting in their own right, and can be used in other

areas but we would obviously like to extend the results we have here, both to general

minimal models and to traces of higher powers of W0. Expressions are known for singular

vectors in W3-minimal models [9] and it may be possible to use these to find traces of

powers of W0 in those representations.

Equations for Virasoro characters have been found from particle-like descriptions for

a variety of particle content. In the 3-state Potts model for example, results have been

found that can be interpreted as one-particle bosonic, two-particle bosonic, fermionic with

two quasi-particles, and fermionic with one quasi-particle and two ghost particles [11]. It

would be interesting to know if results could similarly be found for W3 characters in this

way, and if so how they relate to the expressions given in this work.

Calculations of the partition function for Tr
(

qL0
)

and Tr
(

yQqL0
)

, where Q is a U(1)

charge, can be performed using the modular transformations of these traces, for example

in [3]. Determining the modular transformation properties of the generalised W3 characters

Tr
(

yW0qL0
)

may offer an alternative route to results for the character, or indeed vice versa:

our results may help to shed light on the transformation properties.

Many of the interesting applications of the results presented in this paper rely on their

modular transformation properties: for example, q̂ = exp(−2πi/τ) in [5] below is given by

the action of the SL(2,Z) generator S : τ → −1/τ on q = exp(2πiτ). Unfortunately, these

properties are not currently known in general, and näıve application of S to our results

does not yield useful expressions. The modular transformation properties may need to be

deduced before the research directions below and in the following section become feasible,

nevertheless we state them here as we believe them to be interesting.

In [5], the authors calculate the quantities Tr
(

Wn
0 q̂

L0−c/24
)

for n = 2, 4, 6 in the limits

q → 0, i.e. q̂ → 1, and large central charge, in the W∞[λ] algebra. Using the relation

W∞[λ]|λ=N
∼= WN (7.1)
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from [13] (see below), we could take the appropriate limits of our results and test them

against the results in [5] with λ = 3.

We can use (5.40) to calculate the leading term in Tr
(

W 2
0 q̂

L0−c/24
)

over a single rep-

resentation, e.g. a Verma module or the vacuum representation (using (2.13)), as q → 0,

and we do not reproduce the results of [5]. It is not clear at the moment whether this

is due to the differences between considering the full spectrum of the theory and a single

representation, the continuum representation content in the modular transform of a single

representation for c > 2, or yet other effects. This is currently the subject of study.

We can find differential equations for the q-dependence of TrL
(

W0q̂
L0−c/24

)

and

TrL
(

W 2
0 q̂

L0−c/24
)

in the 3-state Potts model by applying a modular transformation to

equations (4.11) and (4.21). Again, the analysis of the resulting equations is currently

under study.

7.1 Holography

As mentioned above, the quantities we have investigated in this work are of relevance to

holography, see [3] for a review. Interest in AdS3/CFT2 holography was sparked by [12], in

which the authors proposed, and gave evidence to support, a duality between higher-spin

Vasiliev theories on AdS3, which are based on the higher-spin algebras hs [λ], and WN

minimal models in the large N limit. The symmetry algebra of these large-N models is

thought to be W∞ [λ], where the ’t Hooft coupling λ = N/ (N + k) is kept fixed as N

and the level k are taken to infinity.4 Black holes in these bulk theories were found in [4]

and checked against the dual CFT results for free fermions and free bosons (λ = 0 and 1

respectively), and the agreement was extended to general λ in [5], as described above. We

may relate W∞ [λ] results to WN quantities using the algebra isomorphisms [13]

WN,k
∼= W∞

[

N

N + k

]

∼= W∞ [N ] . (7.2)

As the works cited above, and others, extended the study of the CFT side of this

duality from λ = 0, 1 to generic λ at large c, so our work further extends the understanding

of these theories to include information about the generalised character for all values of

c. We hope this will be of interest in a range of holographic applications. For example,

in [2] the authors discuss the relation between the generalised character and the partition

function Zbh to which a BTZ black hole, generalised to carry spin-3 charge, contributes:

Zbh (τ, α) = Tr
(

yW0qL0
)

. (7.3)

As the contribution of the spin-3 black hole to Zbh is only known at large c (i.e. the classical

limit), a calculation of the character appearing on the right-hand side of (7.3) to further

orders in c would give quantum corrections to the black hole partition function. This

calculation was performed to leading order in c in [2] (cf. the large central charge limit

employed in [5]), but our results should hold for all c.

4For the unitary minimal models, i.e. those with p′ = p + 1, we have p = k + 3. The Potts model, for

example, corresponds to k = 1.
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Finally, we note that as (7.3) gives a black hole partition function in terms of a CFT

quantity, the thermodynamic properties of black holes can be investigated using CFT

results — see e.g. [14]. The results we have obtained in this work may also find application

in this context, leading to new discoveries regarding the thermodynamic properties of 2+1-

dimensional black holes with spin-3 charge.
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