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Abstract Seedlessness is one of the most appreciated traits
in the table grape (Vitis vinifera L.). The development of new
seedless varieties is expensive and time consuming, involving
the generation and selection of thousands of hybrids each year.
In seeded × seedless crosses, seedlessness commonly segre-
gates 1:1, so molecular markers allowing for the early identi-
fication of plants that will produce seedless berries are very
useful. This early selection can lead to savings in maintenance
and evaluation costs, and allows additional space for larger
effective progenies. The variety Sultanina has been the main
source of stenospermocarpic seedlessness in table grape
breeding. In a previous work, we showed a 198-bp allele at
the VMC7F2 microsatellite locus as a potential marker for
selection of seedless genotypes due to its close linkage to the

major effect seedless QTL, SDI. In this study, we show that
stenospermocarpic bred cultivars share a main haplotype
around this locus not found in seeded cultivars, which
facilitating the development and use of marker assisted
selection (MAS) strategies for the selection of seedless
plants. In this way, VMC7F2 on its own can be a very
useful marker for selecting seedless individuals from
segregating crosses. A MAS program based on the
presence of the 198-bp allele at VMC7F2 allows the
reduction of the progeny size to 54%, selecting most of
the seedless individuals. In addition, our results show
the existence of other possible sources of stenospermo-
carpic seedlessness that could provide alternative sour-
ces of genetic variation for breeding of this trait.
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Introduction

Development and marketing of new table grape (Vitis vinif-
era L.) varieties is an expensive and time-consuming pro-
cess. Table grape breeding involves the generation of
thousands of F1 hybrids each year and testing them for
multiple traits. These plants can take 2–4 years to yield fruit
due to the length of their juvenile phase. Once they are
productive, they must be evaluated during several seasons
for the relevant fruit traits. The most promising individuals
are selected for further trials or used as parents for additional
crosses, until a plant combining all the desired features can
be obtained. The availability of large populations increases
the chances of identifying genotypes with all the desired
traits. However, growing space in testing fields is one of the
most important constraints for table grape breeders. Early
identification of individuals carrying the desired allele com-
binations allows breeders to grow larger effective popula-
tions, which results in decreasing maintenance and
evaluation costs. During the last two decades, there has been
considerable progress in the development of molecular
markers in grape. They have been used in quantitative trait
loci (QTL) mapping for berry quality traits (Cabezas et al.
2006; Costantini et al. 2007, 2008; Doligez et al. 2002,
2006, 2010; Fanizza et al. 2005; Fischer et al. 2004;
Fournier-Level et al. 2009; Mejía et al. 2007) or disease
resistance (Akkurt et al. 2007; Lowe and Walker 2006;
Marguerit et al. 2009; Pauquet et al. 2001; Riaz et al.
2010; Welter et al. 2007; Xu et al. 2008; Zhang et al.
2009). As a result, molecular markers closely linked to
major loci responsible for important traits in table grape
breeding are currently available. They provide an opportu-
nity to increase the efficiency and effectiveness of conven-
tional breeding by marker assisted selection (MAS).

Seedlessness is one of the most appreciated traits in table
grapes. All seedless table grape cultivars with known pedi-
grees derive from the stenospermocarpic variety Sultanina
(Ibáñez et al. 2009; Vargas et al. 2009; the Vitis international
variety catalogue, VIVC, http://www.vivc.de/index.php), also
known as Sultanine or Thompson Seedless. In stenospermo-
carpic cultivars, the ovule is fecundated but seed development
is aborted 2–4 weeks after fertilization. As a result, stenosper-
mocarpic seedless cultivars contain seed traces in different
degrees of development. Although Sultanina has been the
only source of seedlessness in table grape breeding (Bouquet
and Danglot 1996; Loomis and Weinberger 1979; Stout
1936), a similar phenotype has spontaneously appeared in
natural variants as result of somatic mutations, such as in the
cultivar Chasselas apyrene. Several hypotheses have been

proposed to explain the different segregation patterns ob-
served in different crosses involving stenospermocarpic seed-
lessness (see Bouquet and Danglot 1996 for a review). One
hypothesis postulated the presence of a dominant allele at a
single locus, later named SDI for “seed development inhibitor”
(Lahogue et al. 1998), inhibiting the development of the seed
by regulating several recessive genes (Bouquet and Danglot
1996). The existence of this locus has been confirmed by QTL
mapping (Cabezas et al. 2006; Costantini et al. 2008; Doligez
et al. 2002; Mejía et al. 2007). These studies demonstrated that
Sultanina-derived seedlessness is mainly regulated by SDI,
which is responsible for between 50% and 90% of total phe-
notypic variance for this trait, depending on the mapping
population and trait evaluation. In addition, several minor
effect QTLs that could be modifying its action have also been
described. The seedless phenotype is determined by the pres-
ence of a dominant allele at SDI, which has been located on
chromosome 18 (Cabezas et al. 2006; Costantini et al. 2008;
Mejía et al. 2007). In this region, the MADS-box gene
VvAGL11 has been proposed as a candidate for SDI (Costantini
et al. 2008; Mejía et al. 2011) because of its homology with
genes of known function that are involved in ovule and seed
development and its female flower carpel-specific expression
(Díaz-Riquelme et al. 2009).

In the last decades, the development of new seedless
varieties has been accelerated by embryo rescue in seedless
× seedless crosses (SLxSL), which produce very high ratios
of seedless individuals (Cain et al. 1983). However, seeded
× seedless crosses (SDxSL) are still very important, since
many of the best table grape cultivars are seeded, and the
recurrent use of SLxSL crosses reduces the genetic pool and
can produce inbreeding depression. In addition, SDxSL
crosses are essential when the objective is the introgression
of new traits from related species, such as exotic flavors or
disease resistances. Introgressions may require many back-
crosses with V. vinifera and very large population sizes. In
these crosses, seedlessness usually segregates in a 1:1 ratio.
The availability of tools that allow for the early identification
of plants that will produce seedless berries can be very useful
since plants that will produce seeded berries can be discarded
in an early stage, saving 2 to 4 years in the breeding process.
The results represent important savings in maintenance and
evaluation costs, and create larger effective populations, pro-
viding additional space for new hybrids.

MAS is especially effective when applied to major effect
QTLs that have limited interaction with the environment and
no epistatic interactions. In order to be efficient, MAS
requires highly reproducible markers linked in coupling
phase to the target locus (Kelly 1995). Stenospermocarpic
seedlessness derived from Sultanina is a good candidate trait
for MAS because it is determined mainly by the presence of
a dominant allele at the SDI locus and its high heritability
(narrow sense heritability estimated between 0.52 and 0.61;
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Wei et al. 2002). To date, four molecular markers have been
proposed for MAS for stenospermocarpic seedlessness. The
first two were sequence-characterized amplified region
(SCAR) markers derived from bulked segregant analyses
(Michelmore et al. 1991): SCC8 (Lahogue et al. 1998) and
SCF27 (Mejía and Hinrichsen 2003). Although these
markers could help to predict seedlessness, the presence of
null alleles and the weak linkage with the SDI locus compro-
mises their use in many genetic backgrounds (Adam-Blondon
et al. 2001; Korpas et al. 2009). The third one is the micro-
satellite VMC7F2 (Cabezas et al. 2006), a gene specific
marker located 463 bp upstream of the predicted ORF for
VvAGL11, proposed as the candidate gene responsible for this
major effect QTL (Mejía et al. 2011). QTL analyses showed a
strong association between the seedlessness donor allele at
SDI and a 198-bp allele at this locus. However, the 198-bp
allele has been found in several seeded cultivars as well
(Cabezas et al. 2006). The fourth one, which has been recently
identified, is the microsatellite p3_VvAGL11: also a gene
specific marker in the promoter region of VvAGL11, but for
which usefulness has been shown in seedless backgrounds,
but not in seeded ones (Mejía et al. 2011).

The aim of this work was to assess the usefulness of the
198-bp allele at the microsatellite locus VMC7F2 for MAS
of seedless genotypes in table grape breeding programs
involving Sultanina-derived stenospermocarpy. We morpho-
logically and genetically characterized a large collection of
cultivars representing a large extent of the genetic diversity
existing in table grapes in order to identify any spurious
associations which could cause problems in the use of this
molecular marker. With this purpose, we performed the
following analyses: (1) study the previously reported pres-
ence of the 198-bp allele in seeded cultivars and (2) inves-
tigate the existence of possible null alleles for this locus. The
results demonstrate that all seedless cultivars derived from
Sultanina share a main haplotype for the region around SDI
and that no seeded cultivars share this main haplotype.
Based on those results, we propose MAS strategies for the
selection of seedless plants using microsatellite markers that
can be used in breeding programs involving Sultanina-
derived seedlessness. Implications for the use of these strat-
egies for stenospermocarpic seedlessness are discussed us-
ing a posteriori proof of concept of what their use would
represent in a table grape breeding program.

Materials and methods

Plant material

A total of 1,332 grapevine genotypes were analyzed in this
study. The set comprises two distinct groups. The first one
includes a collection of 311 table grape and mixed-use (table

and wine production) grapevine cultivars, including 22 sten-
ospermocarpic and four parthenocarpic seedless cultivars
(Online resource 1). Sultanina, which has been the source
of stenospermocarpic seedlessness in most table grape
breeding programs, takes part in the pedigrees of 16 out of
the 22 stenospermocarpic seedless accessions studied. The
remaining six are as follows: a Chasselas somatic variant for
seedlessness (Chasselas apyrene); the accessions of un-
known origin Apirena di Velletri, Black monucca, Bayad,
and Seleccion Bruni 1; and the bred cultivar Beauty seed-
less, in which seedlessness derives from Black seedless, also
of unknown origin. This collection, which represents a large
extent of the existing table grape genetic diversity, is made
up by 309 unique genotypes and two somatic variants for
seedlessness (Chasselas apyrene and the parthenocarpic
Corinthe blanc) based on the analysis of 20 microsatellite
loci (Ibáñez et al. 2009; Vargas et al. 2009) and is part of the
Vitis Germplasm bank of El Encín (IMIDRA, Madrid). The
second group consists of 1,012 hybrid plants from a breed-
ing program, derived from eight different crosses involving
nine cultivars as parents. Crimson seedless (Emperor × C33-
199; Vitis International Variety Catalogue—http://www.vivc.
de/index.php) was used as the male seedless parent for all of
them, whereas the different female parents are Dominga (52
progeny individuals), Napoleon (27), Ohanez (39), Red Globe
(224), and the bred hybrids 94-45-7 (Napoleon × Ruby seed-
less; 113 individuals), 96-55-19 (Dominga × Rutilia; 83), 96-
71-11 (Napoleon × Ruby seedless; 348), and 96-71-7 (Ruby
seedless × Flame seedless; 126). All female parents with the
exception of 96-71-7 are seeded. These hybrids were devel-
oped and maintained at IMIDA (Murcia).

DNA extraction, genotyping, and haplotype determination

Genomic DNAwas extracted from young leaf tissue, collected
and stored at −80°C, using the BioSprint 96 DNA Plant Kit
(QIAGEN). All samples were genotyped for three nuclear
microsatellite loci: VMC7F2 (Pellerone et al. 2001), VVIN16
(Merdinoglu et al. 2005), and UDV-108 (Di Gaspero et al.
2005). These markers were selected based on their positions
around the SDI locus (Fig. 1) located on chromosome 18
(Cabezas et al. 2006; Costantini et al. 2008; Mejía et al.
2007, http://www.genoscope.cns.fr/externe/GenomeBrowser/
Vitis/). Recently, Mejía et al. (2011) have identified additional
microsatellite markers closely linked to SDI, but this informa-
tion was not available when the study was carried out, 5 years
ago. Simultaneous genotyping for the three loci was performed
using a multiplex PCR protocol with forward primers labeled
with fluorochromes (6-FAM, VIC, and NED for VMC7F2,
VVIN16, and UDV-108, respectively) and ABI-Prism 3130
sequencer (Applied Biosystems). PCR amplifications were
carried out in a total volume of 20 μl with 0.2 mM dNTPs,
0.5 μM of each VVIN16 and UDV-108 primers and 0.25 μM
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of VMC7F2 primers, 1× BSA buffer, 1.5 mMMgCl2, 1× Taq
Gold buffer, 0.05 U of Taq Gold DNA polymerase (Applied
Biosystems), and 20 ng of DNA. PCR was performed with the
following parameters: 95°C for 10 min; 10 cycles of 94°C for
30 s, 58°C for 30 s, and 72°C for 30 s, in which the annealing
temperature was decreasing 0.5°C/cycle; 15 cycles of 94°C for
30 s, 53°C for 30 s, and 72°C for 30s; and then a final
extension step of 72°C for 30 min. Allele binning was carried
out using GeneMapper v3.1 software (Applied Biosystems).

The allelic and genetic frequencies at each locus and the
frequencies of null alleles were estimated from the genotypes
obtained for the 311 cultivars that were included in the diversity
analysis using the software Identity (Wagner and Sefc 1999).
The haplotypes of the 311 cultivars were estimated using the
software PHASE v2.1 (Stephens et al. 2001) complemented
with pedigree information when available (Ibáñez et al. 2009;
Vargas et al. 2009; Vitis International Variety Catalogue, VIVC,
http://www.vivc.de/index.php). Haplotype frequencies and
their goodness of fit to an approximate coalescent model were
compared across five different runs. Results showing the high-
est average value for the goodness of fit were selected. The
observed allelic and phenotypic segregations of each breeding
population were tested for goodness of fit to the expected ratios
with chi-square (χ2) tests. The haplotypes of progenitors and
hybrids were inferred from linkage analysis.

Genetic distances were estimated using as mapping pop-
ulation the largest progeny (96-71-11 × Crimson Seedless;
348 hybrids), the software Joinmap v3.0 (Van Ooijen and
Voorrips 2001) with the CP population type, the regression
mapping algorithm, and the Kosambi mapping function.

Association analyses

All plants were tested for seedlessness and scored as seeded
(completely developed or noticeable seeds) and seedless

(with no seeds or only seed traces). Association between
seedlessness and the presence of each allele, genotype, and
haplotype was evaluated with chi-square (χ2) tests using 2×
2 contingency tables, with a significance threshold of
P <0.01 and the correction of Yates when the frequency of
at least one of the classes was lower than 5%.

Results and discussion

Genetic diversity for stenospermocarpic seedlessness in
table grape

In order to further study the presence of the 198-bp allele at
VMC7F2 in seeded cultivars, we studied a large collection
consisting of 311 accessions, mainly table grape and mixed
use (table grape and wine production) cultivars and a few
wine grapes, in which a large extent of the existing table
grape diversity is represented (Online resource 1). This
sample was genotyped for VMC7F2 and two flanking
microsatellites (VVIN16 and UDV-108) and phenotyped
for the presence of seeds. Genotypic analysis of the collec-
tion allowed us to identify six alleles at the VVIN16 locus,
eight at VMC7F2 and 14 at UDV-108 (Table 1), including a
null allele at UDV-108 detected initially in cultivars for
which no amplification occurred at this locus (homozygotes
for the null allele) and confirmed later by segregation pat-
terns in the progenies. No significant association (P<0.01)
between seedlessness and alleles at locus UDV-108 was
found (Table 1). However, there was a close correlation
between seedlessness and the presence of the 157-bp and
the 198-bp allele at VVIN16 and VMC7F2 loci, respective-
ly. Nineteen out of the 22 stenospermocarpic cultivars stud-
ied, including Sultanina, showed the 198-bp allele at
VMC7F2 and a 157-bp allele at VVIN16. The only

6.1cM

9.2cM

Haplotype name S1 S2 S1r S2r MA1 MA2 MA1r MA2r

Allele size (bp) 157 153 157 153 149 151 149 149

Allele size (bp) 198 200 198 200 198 205 198 198

Allele size (bp) 212 200 200 212 242 236 236 236

Phenotype seedless seedless seedless seeded seeded seeded seeded seeded

Number of accessions 17 1 2 31 14 35 9 8

% seedless 100% 100% 100% 0% 14% 3% 11% 0%
Chrom.18

S
D

I

VVIN16

scc8

p3-VvAGL11
VMC7F2

23.389.686

25.914.516

26.896.520

26.896.790

UDV-10829.123.113

Fig. 1 Sultanina and Muscat of Alexandria haplotypes for three
markers around the SDI region, on the long arm of chromosome 18. The
left part of the figure shows marker positions in base pairs, according to the
12× genomic sequence of Vitis (http://www.genoscope.cns.fr/externe/
GenomeBrowser/Vitis/); the 1-LOD confidence interval for the seedless-
ness main effect QTL (SDI), according to Cabezas et al. 2006; and the
genetic distance between the studied loci in centimorgans (cM), estimated

using the 96-71-11 × Crimson Seedless progeny. The right part of the
figure shows Sultanina (S1 and S2) and Muscat of Alexandria (MA1 and
MA2) haplotypes, as well as putative recombinants (S1r, S2r, MA1r, and
MA2r). For each one is shown the effect of the linked SDI allele
(Phenotype), the Number of accessions in which the haplotype
was found studying the collection of cultivars, and the percentage
of them that are seedless (% seedlessness)
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stenospermocarpic cultivars not carrying these alleles are
the somatic mutant Chasselas apyrene and the cultivars of
natural origin Bayad and Seleccion Bruni 1 (Branas and
Truel 1965). In spite of being significantly associated with
seedlessness, the 198-bp allele at VMC7F2 was also present
in 61 seeded cultivars, 21 of them with Muscat flavor
(Online resource 1). In the same way, the 157-bp allele at
VVIN16 was present in 52 seeded cultivars, nine of them
having Muscat flavor. The significant associations observed
for the 151-bp and 153-bp alleles at VVIN16 (Table 1) were
not due to linkage between these alleles and stenospermo-
carpic seedlessness, but likely the result of a spurious geno-
typic effect: All four seedless accessions carrying the 153-
bp allele also carry the 157-bp allele and ten out of the 11
with the 151-bp allele also carry the 157-bp allele.

When considering genotypes, the existence of a null allele
at UDV-108 prevented the distinction between homozygous
and heterozygous genotypes carrying the null allele at this
locus. Under this consideration, alleles were distributed in 16,
19, and 37 genotypic combinations for VVIN16, VMC7F2,
and UDV-108, respectively (Table 2, Online resource 1).
Significant associations with seedlessness were found only
for genotypes containing the 157-bp and the 198-bp allele at
VVIN16 and VMC7F2, respectively (Table 2). With the ex-
ception of the three accessions of natural origin mentioned
above, all stenospermocarpic cultivars analyzed carried the
157-bp and 198-bp alleles at these loci. However, many
seeded cultivars also carried these alleles.

To identify the putative haplotype of origin of the muta-
tion responsible for Sultanina seedlessness, we investigated
the existing haplotypes around the SDI locus on chromo-
some 18 (Fig. 1) (Cabezas et al. 2006; Costantini et al. 2008;
Mejía et al. 2007, 2011). Linkage analyses developed in
different crosses (Cabezas et al. 2006 and the eight breeding
progenies analyzed in this study) and pedigree information
(Ibáñez et al. 2009; Vargas et al. 2009; Vitis International
Variety Catalogue, http://www.vivc.de/index.php) allowed
us to infer both Sultanina haplotypes for this region
(Fig. 1). The Sultanina haplotype linked in coupling phase
with seedlessness (coded as S1) carries the 157-bp, 198-bp,
and 212-bp alleles at VVIN16, VMC7F2, and UDV-108,
respectively, whereas the haplotype in repulsion phase with
seedlessness (S2) carries the 153-bp, 200-bp, and 200-bp
alleles at these loci. On the other hand, the reconstruction of
the haplotypes of the 311 cultivars included in the table
grape collection using the software PHASE v2.1 (Stephens
et al. 2001) allowed the identification of 84 haplotypes in
this region (Table 3, Online resource 1), with the 198-bp
allele of locus VMC7F2 being present in 12 of them (121
and 21 considering null alleles). The high number of hap-
lotypes found is likely related to the difficulty to establish
the correct phase between UDV-108 alleles and VVIN16
and VMC7F2 alleles because of the presence of null alleles
at UDV-108. In fact, most of the corrections introduced
when using the pedigree information to complement the
haplotype assignation involved this locus. With that in

Table 1 Microsatellite allele distributions in relation to seedlessness within the cultivar collection

Allele Seed Association Allele Seed Association

bp Freq. − + χ2 P value bp Freq. − + χ2 P value

VVIN16 149 0.076 8 39 5.56 0.0184 UDV-108 186 0.002 0 1 2.39 0.1220Y

151 0.436 11 260 9.02 0.0027Y* 200 0.014 3 6 4.82 0.0281Y

153 0.244 4 148 6.90 0.0086Y 211 0.003 0 2 0.78 0.3761Y

155 0.002 1 2.39 0.1220Y 212 0.238 13 135 0.15 0.6988*

157 0.114 22 49 56.96 0.0000* 226 0.003 0 2 0.78 0.3761Y

159 0.129 7 73 0.07 0.7987 230 0.019 0 12 0.25 0.6195Y

VMC7F2 194 0.002 0 1 2.39 0.1220Y 232 0.048 3 27 0.00 0.9492Y

196 0.003 0 2 0.78 0.3761Y 234 0.005 0 3 0.30 0.5080Y

198 0.138 26 60 62.84 0.0000Y* 236 0.175 10 99 0.23 0.6281

200 0.550 20 322 4.65 0.0311 238 0.127 3 76 1.57 0.2095

202 0.047 1 28 0.33 0.5629Y 242 0.061 4 34 0.34 0.5585

204 0.133 1 82 4.99 0.0256Y 246 0.002 0 1 2.39 0.1220Y

206 0.124 4 73 0.95 0.3302 250 0.011 0 7 0.01 0.9312Y

210 0.003 0 2 0.78 0.3761Y Null 0.124

For every allele (bp) the table shows the frequency, the number of seedless (−) and seeded (+) cultivars in which it was detected, and the chi-square
(χ2 ) and significance (P) values obtained for association between the presence of the allele and the absence of seeds (Y means data adjusted with
the correction of Yates). Microsatellite alleles linked to the seedless SDI allele in cultivar Sultanina are indicated in bold

*Significant association (P<0.01)
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mind, haplotype frequencies follow a decreasing exponen-
tial distribution, ranging between 0.001 and 0.094 with an
average frequency of 0.008 and with 24% of the haplotypes
being present in only one cultivar. Only two haplotypes
show significant associations with seedlessness (P<0.01)

(Table 3). Seventeen stenospermocarpic accessions carry
the Sultanina haplotype linked in phase with seedlessness
(S1). Two other (Basile logothetis and Beauty seedless)
carry the haplotype S1r (Fig. 1), which is likely derived
from independent recombination events between both

Table 2 Microsatellite genotype distributions in relation to seedlessness in the cultivar collection

Genotype Seed Association Genotype Seed Association

Alleles Freq. − + χ2 P value Alleles Freq. − + χ2 P value

VVIN16 149:149 0.010 1 2 0.27 0.6014Y UDV-108 186:212 0.003 0 1 2.27 0.1319Y

149:151 0.058 2 16 0.19 0.6640 200:200 0.003 0 1 2.27 0.1319Y

149:153 0.042 1 12 0.18 0.6723Y 200:212 0.013 1 3 0.09 0.7634Y

149:157 0.023 3 4 6.99 0.0082Y* 200:232 0.003 1 0 2.27 0.1319Y

149:159 0.010 0 3 0.27 0.6014Y 200:238 0.006 0 2 0.73 0.3937Y

151:151 0.183 0 57 5.10 0.0239Y 200:242 0.003 1 0 2.27 0.1319Y

151:153 0.225 1 69 4.56 0.0328Y 211:232 0.003 0 1 2.27 0.1319Y

151:157 0.100 7 24 9.09 0.0075Y* 211:236 0.003 0 1 2.27 0.1319Y

151:159 0.125 1 38 1.19 0.2761Y 212:212 0.225 8 62 1.11 0.2921

153:153 0.074 0 23 1.24 0.2653Y 212:230 0.016 0 5 0.02 0.8938Y

153:157 0.039 2 10 0.28 0.5972Y 212:232 0.023 2 5 1.60 0.2064Y

153:159 0.035 0 11 0.22 0.6416Y 212:234 0.003 0 1 2.27 0.1319Y

155:159 0.003 0 1 2.27 0.1319Y 212:236 0.125 5 34 1.16 0.2819

157:157 0.016 3 2 11.50 0.0007Y* 212:238 0.096 2 28 0.12 0.7244

157:159 0.035 4 7 8.19 0.0042Y* 212:242 0.051 1 15 0.02 0.8803Y

159:159 0.023 1 6 0.01 0.9063Y 212:250 0.003 0 1 2.27 0.1319Y

226:236 0.003 0 1 2.27 0.1319Y

226:250 0.003 0 1 2.27 0.1319Y

VMC7F2 194:200 0.003 0 1 2.27 0.1319Y 230:230 0.003 0 1 2.27 0.1319Y

196:200 0.006 0 2 0.73 0.3937Y 230:234 0.003 0 1 2.27 0.1319Y

198:198 0.039 5 7 13.83 0.0002Y* 230:236 0.003 0 1 2.27 0.1319Y

198:200 0.135 13 29 29.03 0.0000Y* 230:238 0.006 0 2 0.73 0.3937Y

198:202 0.010 1 2 0.27 0.6014Y 230:242 0.006 0 2 0.73 0.3937Y

198:204 0.039 0 12 0.29 0.5925Y 232:232 0.023 0 7 0.01 0.9063Y

198:206 0.019 2 4 2.10 0.1370Y 232:236 0.032 0 10 0.15 0.6964Y

200:200 0.302 2 92 5.71 0.0168Y 232:238 0.013 0 4 0.09 0.7634Y

200:202 0.029 0 9 0.10 0.7577Y 232:242 0.003 0 1 2.27 0.1319Y

200:204 0.145 1 44 1.74 0.1877Y 236:236 0.106 2 31 0.25 0.6137

200:206 0.167 2 50 1.03 0.3105Y 236:238 0.042 1 12 0.02 0.6723Y

200:210 0.003 0 1 2.27 0.1319Y 236:242 0.029 2 7 0.83 0.3609Y

202:202 0.010 0 3 0.27 0.6014Y 238:238 0.068 0 21 1.05 0.3053Y

202:204 0.019 0 6 0.00 0.9981Y 238:242 0.013 0 4 0.09 0.7634Y

202:206 0.016 0 5 0.02 0.8938Y 238:246 0.003 0 1 2.27 0.1319Y

202:210 0.003 0 1 2.27 0.1319Y 238:250 0.010 0 3 0.27 0.6014Y

204:204 0.019 0 6 0.00 0.9981Y 242:242 0.016 0 5 0.02 0.8938Y

204:206 0.026 0 8 0.05 0.8271Y 250:250 0.006 0 2 0.73 0.3937Y

206:206 0.010 0 3 0.27 0.6014Y Null:null 0.026 0 8 0.05 0.8271Y

For every genotype the table shows the frequency, the number of seedless (−) and seeded (+) cultivars in which it was detected, and the chi-square
(χ2 ) and significance (P) values obtained for association between the presence of the allele and the absence of seeds (Y means data adjusted with
the correction of Yates). Microsatellite alleles linked to the seedless allele at SDI locus in cultivar Sultanina are shown in bold

*Significant association (P<0.01)
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Table 3 Association analysis between haplotypes and seedlessness in the cultivar collection

Haplotype Seed Association Haplotype Seed Association

Alleles Code Freq. − + χ2 P value Haplotype Code Freq. − + χ2 P value

149-198-236 MA1R 0.015 2 7 0.82 0.3645Y 153-200-212 S2r 0.051 0 31 1.94 0.1638Y

149-198-238 0.003 0 2 0.73 0.3945Y 153-200-212/null 0.034 0 21 1.01 0.3139Y

149-198-242 MA1 0.023 3 11 1.69 0.1941Y 153-200-230 0.002 0 1 2.27 0.1322Y

149-198-null 0.003 0 2 0.73 0.3945Y 153-200-232/null 0.005 0 3 0.27 0.6023Y

149-200-212 0.003 0 2 0.73 0.3945Y 153-200-236 0.005 0 3 0.27 0.6023Y

149-200-230 0.003 0 2 0.73 0.3945Y 153-200-236/null 0.015 1 8 0.09 0.7595Y

149-200-236 0.020 2 10 0.27 0.6008Y 153-200-238 0.011 0 7 0.01 0.9068Y

149-206-236 0.003 0 2 0.73 0.3945Y 153-200-238/null 0.010 1 5 0.00 0.9981Y

149-210-234 0.002 0 1 2.27 0.1322Y 153-200-242/null 0.003 0 2 0.73 0.3945Y

151-196-236 0.002 0 1 2.27 0.1322Y 153-200-250/null 0.002 0 1 2.27 0.1322Y

151-198-212 0.007 0 4 0.09 0.7641Y 153-200-null 0.008 0 5 0.02 0.0894Y

151-198-236 0.005 0 3 0.27 0.6023Y 153-202-212 0.003 0 2 0.73 0.3945Y

151-198-236/null 0.002 0 1 2.27 0.1322Y 153-202-212/null 0.002 1 0 2.27 0.1322Y

151-198-242 0.003 1 1 0.73 0.3945Y 153-202-230 0.003 0 2 0.73 0.3945Y

151-198-242/null 0.002 0 1 2.27 0.1322Y 153-202-232/null 0.003 0 2 0.73 0.3945Y

151-200-200 0.007 0 4 0.09 0.7641Y 153-202-236 0.002 0 1 2.27 0.1322Y

151-200-212 0.031 1 18 0.01 0.9407Y 153-202-236/null 0.002 0 1 2.27 0.1322Y

151-200-212/null 0.043 2 24 0.06 0.8133Y 153-204-210 0.002 0 1 2.27 0.1322Y

151-200-230 0.002 0 1 2.27 0.1322Y 153-204-212 0.008 0 5 0.02 0.0894Y

151-200-232 0.020 2 10 0.27 0.6008Y 153-204-212/null 0.005 0 3 0.27 0.6023Y

151-200-232/null 0.003 0 2 0.73 0.3945Y 153-204-232 0.005 0 3 0.27 0.6023Y

151-200-236 0.038 1 22 0.11 0.7455Y 153-204-234 0.002 0 1 2.27 0.1322Y

151-200-236/null 0.015 0 9 0.09 0.7595Y 153-204-236 0.013 0 8 0.05 0.8282Y

151-200-238 0.029 0 18 0.75 0.3852Y 153-204-236/null 0.002 0 1 2.27 0.1322Y

151-200-238/null 0.003 0 2 0.73 0.3945Y 153-204-238 0.008 0 5 0.02 0.0894Y

151-200-242 0.005 0 3 0.27 0.6023Y 153-204-238/null 0.002 0 1 2.27 0.1322Y

151-200-242/null 0.003 0 2 0.73 0.3945Y 153-204-null 0.003 0 2 0.73 0.3945Y

151-200-null 0.008 0 5 0.02 0.0894Y 153-206-212 0.003 0 2 0.73 0.3945Y

151-202-232 0.002 0 1 2.27 0.1322Y 155-200-238 0.002 0 1 2.27 0.1322Y

151-202-236 0.003 0 2 0.73 0.3945Y 157-198-200 S1r 0.003 2 0 11.63 0.0006Y*

151-202-236/null 0.002 0 1 2.27 0.1322Y 157-198-212 S1 0.018 17 0 179.48 0.0000Y*

151-202-238 0.007 0 4 0.09 0.7641Y 157-198-238 0.005 1 2 0.27 0.6023Y

151-202-238/null 0.003 0 2 0.73 0.3945Y 157-198-238/null 0.002 0 1 2.27 0.1322Y

151-202-null 0.002 0 1 2.27 0.1322Y 157-200-186 0.002 0 1 2.27 0.1322Y

151-204-212 0.005 0 3 0.27 0.6023Y 157-200-210 0.002 0 1 2.27 0.1322Y

151-204-212/null 0.007 0 4 0.09 0.7641Y 157-200-212 0.054 0 33 2.13 0.1443Y

151-204-232 0.021 0 13 0.35 0.5523Y 157-200-212/null 0.005 1 2 0.27 0.6023Y

151-204-236/null 0.002 0 1 2.27 0.1322Y 157-200-226 0.002 0 1 2.27 0.1322Y

151-204-238 0.046 2 26 0.01 0.9115Y 157-200-230 0.003 0 2 0.73 0.3945Y

151-204-238/null 0.002 0 1 2.27 0.1322Y 157-200-232 0.002 1 0 2.27 0.1322Y

151-204-250 0.003 0 2 0.73 0.3945Y 157-206-236 0.005 0 3 0.27 0.6023Y

151-204-250/null 0.002 0 1 2.27 0.1322Y 157-200-238/null 0.005 0 3 0.27 0.6023Y

151-204-null 0.002 0 1 2.27 0.1322Y 159-194-246 0.002 0 1 2.27 0.1322Y

151-206-212 0.003 0 2 0.73 0.3945Y 159-196-212/null 0.002 0 1 2.27 0.1322Y

151-206-212/null 0.013 0 8 0.05 0.8282Y 159-198-212/null 0.002 0 1 2.27 0.1322Y

151-206-226 0.002 0 1 2.27 0.1322Y 159-198-236/null 0.002 0 1 2.27 0.1322Y

151-206-236/null 0.003 0 2 0.73 0.3945Y 159-198-242 0.005 0 3 0.27 0.6023Y
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Sultanina haplotypes since the genetic profiles of these two
cultivars for 20 microsatellite loci rule out a parent–off-
spring relationship with Sultanina (Ibáñez et al. 2009). The
9.25% of recombination rate between VVIN16 and UDV-
108 that these two accessions represents is lower than the
15.23% of frequency of recombination estimated using the
mapping population Therefore, it should be expected to find
a higher number of cultivars carrying recombinant
Sultanina-related haplotypes. This discrepancy could be re-
lated with the different sample sizes (21 Sultanina-derived
accessions in the diversity analysis versus 348 hybrids in the
mapping population). Finally, the three seedless accessions
of natural origin with no relationship to Sultanina haplo-
types do not share any haplotypes among them. Unlike the
198-bp allele at VMC7F2, neither S1 nor S1r haplotypes
were found in any seeded or parthenocarpic cultivar. The
presence of the 198-bp allele in 61 seeded cultivars could be
related with the use of Muscat of Alexandria or related
cultivars to provide Muscat flavor in table grape breeding
since more than half of these accessions (32 cultivars) show
Muscat flavors and/or haplotypes that could be related with
those of Muscat of Alexandria (Online resource 1).

The studied material represents a large extent of table
grape existing diversity, but there are many table grape
cultivars not included in this study. That does not imply
major bias in the results. Similar results can be expected
increasing the number of bred cultivars since Sultanina has

been the only source of stenospermocarpic seedlessness in
table grape breeding. Within the studied sample, three out of
the six stenospermocarpic seedless accessions with un-
known relationship to Sultanina also carry S1 or S1r hap-
lotypes, which suggests a family relationship with this
cultivar. In fact, further analyses of 20 additional micro-
satellite loci agreed with this hypothesis (Ibáñez et al.
2009; Vargas et al. 2009). The only stenospermocarpic
accessions not carrying Sultanina-related haplotypes linked
with seedlessness (S1 or S1r) are very likely independent
natural variants: Chasselas apyrene, a somatic mutant;
Bayad, an accession native from Yemen (Branas and Truel
1965); and Seleccion Bruni 1, selected in an Italian vineyard
with a mixture of varieties (Branas and Truel 1965); and
probably many others could be found in other germplasm
banks among the maintained local or ancient material. In
these cultivars, the phenotype could result from independent
mutations on the SDI locus, or in different loci giving rise to
a similar seedless phenotype. Genetic and phenotypic char-
acterization of these additional sources of genetic variation
could be interesting for future table grape breeding.

Marker assisted selection for stenospermocarpic
seedlessness

To date, Sultanina has been the unique source of stenosper-
mocarpic seedlessness in table grape breeding. All seedless

Table 3 (continued)

Haplotype Seed Association Haplotype Seed Association

Alleles Code Freq. − + χ2 P value Haplotype Code Freq. − + χ2 P value

151-206-230 0.007 0 4 0.09 0.7641Y 159-200-212 0.046 1 27 0.35 0.5569Y

151-206-236 MA2 0.061 3 34 0.06 0.8033Y 159-200-212/null 0.029 4 14 2.97 0.0847Y

151-206-238 0.007 0 4 0.09 0.7641Y 159-200-236 0.005 1 2 0.27 0.6023Y

151-206-238/null 0.002 0 1 2.27 0.1322Y 159-200-236/null 0.003 0 2 0.73 0.3945Y

151-206-242 MA2r 0.013 0 8 0.05 0.8282Y 159-200-238 0.011 1 6 0.01 0.9068Y

151-206-null 0.002 0 1 2.27 0.1322Y 159-200-238/null 0.003 0 2 0.73 0.3945Y

151-210-234 0.002 0 1 2.27 0.1322Y 159-200-242 0.003 0 2 0.73 0.3945Y

153-198-212 0.010 0 6 0.00 0.9981Y 159-200-null 0.002 0 1 2.27 0.1322Y

153-198-212/null 0.007 0 4 0.09 0.7641Y 159-202-200 0.003 0 2 0.73 0.3945Y

153-198-236/null 0.002 0 1 2.27 0.1322Y 159-202-236/null 0.002 0 1 2.27 0.1322Y

153-198-238/null 0.005 0 3 0.27 0.6023Y 159-202-238 0.002 0 1 2.27 0.1322Y

153-198-242 0.010 0 6 0.00 0.9981Y 159-202-250 0.008 0 5 0.02 0.0894Y

153-200-200 S2 0.002 1 0 2.27 0.1322Y 159-206-236 0.002 0 1 2.27 0.1322Y

153-200-200/null 0.002 0 1 2.27 0.1322Y

For every haplotype the table shows the frequency, the number of seedless (−) and seeded (+) cultivars in which it was detected, and the chi-square
(χ2 ) and significance (P) values obtained for association between the presence of the allele and the absence of seeds (Y means data adjusted with
the correction of Yates). Sultanina and Muscat of Alexandria haplotypes, as well as putative recombinant haplotypes related with them, have a name
assigned (code). Sultanina haplotype in coupling with the seedless allele at SDI locus is shown in bold

*Significant association (P<0.01)

1010 Tree Genetics & Genomes (2012) 8:1003–1015



cultivars with known pedigrees derive from this cultivar
(Ibáñez et al. 2009; Vargas et al. 2009; the Vitis international
variety catalogue, VIVC, http://www.vivc.de/index.php),
which has been confirmed by means of haplotype analysis
in this study. QTL and diversity analyses indicate that
VMC7F2 is a potential candidate for marker assisted selec-
tion of Sultanina-derived seedlessness. However, the pres-
ence of the 198-bp allele in seeded cultivars precludes the
detection of the seedless accessions in a varietal collection
by using only this locus. For germplasm sets that include
unrelated materials or have unknown kinship relationships,
the estimation of allelic phases using haplotypes rather than
genotypes is required. This can be achieved by the addition-
al genotyping of one or a few linked microsatellite loci.
However, in a table grape breeding program, the progenitors
of each plant are known and the origin of each allele can be
deduced from the genotypes of the progenitors. In most
cases, the genotyping of the VMC7F2 locus is enough to
identify the seedless genotypes, assuming identity by de-
scent. Genotyping of additional loci could only be needed in
specific crosses, such as those involving progenitors with
the 198-bp allele in homozygosis at VMC7F2 or with null
alleles at this locus.

In order to assess the real usefulness of VMC7F2 for
MAS of the seedless genotypes in table grape breeding
programs, we evaluated 1,012 progeny individuals derived
from eight different crosses developed within the framework
of a breeding program (Table 4). Seedlessness was provided
by Crimson Seedless in all progenies, although in the cross
96-71-7×Crimson Seedless the female progenitor was also
seedless. Seedlessness segregations fit the expected 1:1 ratio
in all SDxSL crosses (P values ranging from 0.178 to 0.894)
and 3:1 in the only SLxSL cross (P00.918). The 198-bp
allele at VMC7F2 showed similar segregation ratios (P
values between 0.110 and 0.758 for the SDxSL crosses
and 0.758 for the SLxSL cross) and was associated with
seedlessness in all crosses (P<0.005), with 4.4% false pos-
itives (seeded individuals carrying the 198-bp allele) and
2.4% false negatives (seedless individuals not carrying the
allele, Table 4). With these data, the utilization of MAS for
the selection of seedless genotypes based on the presence of
the 198-bp allele at VMC7F2 would have led to classifying
as seeded and discarding 46% of individuals initially
obtained. Among these 465 hybrids, 5.2% (2.4% of the
total) would be seedless plants that would have been mis-
takenly discarded (false negatives). On the other hand, 8.2%
of the 547 plants that would have been maintained since
their genotypic classification as seedless would be seeded
(false positives). Similar results (5% of false positives) were
obtained by Mejía et al. (2011) when using this marker to
study 146 hybrids derived from 14 crosses between 11
seedless cultivars. To summarize, if MAS based on
VMC7F2 genotyping had been used in this breeding

program, 4.6% less seedless individuals would have been
obtained (from 526 to 502). However, instead of maintain-
ing and evaluating 1,012 plants over many years, of which
only the 52% would be seedless, they should have main-
tained 547 plants, of which 92% would be seedless.

The output of MAS for seedlessness based on VMC7F2,
a gene specific marker located in the promoter region of the
candidate gene proposed for SDI locus (Mejía et al. 2011)
could represent an important improvement over traditional
breeding, but also over most of MAS approaches for sten-
ospermocarpic seedlessness proposed to date. For example,
the use of the marker SCC8, located at 1 Mbp from
VMC7F2, led to 22% false negatives in the SLxSL cross
MtpDMV2 and 42% false positives in the SDxSL cross
Mto3039 (Adam-Blondon et al. 2001). In any case, the
presence of null alleles for this locus in many genetic back-
grounds hampered its utilization in crosses involving these
cultivars. Null alleles for VMC7F2 have not been observed
in the segregating progenies analyzed in this study or in five
additional QTL mapping populations (Cabezas et al. 2006;
Costantini et al. 2008; Mejía et al. 2007; L. Ruiz-García,
personal communication). Even if null alleles at VMC7F2
were found in larger germplasm collections, its estimated
frequency is expected to be very low: based on the data of
311 cultivars analyzed in this study, the frequency of null
alleles at VMC7F2 is 0.018, which is similar to the estimat-
ed for VVIN16 (0.013) and much lower than that of UDV-
108 (0.124). Recently, Mejía et al. (2011) identified 11
additional microsatellite markers in the region around SDI,
confirming VMC7F2 as one of the best markers for progeny
screening, together with p3_VvAGL11, which is located
only 270 bp further away. MAS of homozygous genotypes
yielded the best results when using the marker
p3_VvAGL11 since they did not find any false positives
among 146 hybrids derived from 14 crosses, whereas they
found 5% when using VMC7F2. Nevertheless, the useful-
ness of p3_VvAGL11 still needs to be tested in additional
genetic backgrounds and especially in SDxSL crosses, in
which the seedless individuals are heterozygous.

For other crosses in which VMC7F2 was not informative
enough, because of the presence of both 198-bp alleles, the
linked and the not linked with seedlessness (for example, in
the crosses of Sultanina × Muscat Saint Laurent and Maria
Pirovano × any other accession), or putative existing null
alleles, a suitable strategy is the use of a multiplex PCR
genotyping protocol such as the one used in this study. The
existence of null alleles at UDV-108 significantly decreases
the yield and discourages the use of this marker. However,
the 157-bp allele at VVIN16 and the haplotype information
based on the three microsatellite loci can be used. Their use
decreases the number of selected individuals from 54% with
VMC7F2 to 51% with VVIN16 and to 45% when using the
whole haplotype. Even when the percentage of seedless
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genotypes in the selected hybrids is not significantly differ-
ent for the three strategies, there is an important decrease in
the final number of seedless hybrids selected (502, 468, and
421, respectively) due to the different rates of false nega-
tives. The higher number of false negatives with VVIN16
seems to be caused by the larger distance between the
marker and SDI. For haplotypes, the increase in false neg-
atives is related with the exclusion of individuals that show
recombination events between flanking markers, which pre-
vents the determination of the linked allele at SDI. The
alternative strategy, maintaining the individuals that show
recombination events between flanking markers, might in-
crease the seedless individuals selected by 6% but also the
number of individuals to be maintained by 9%. In any case,
the results obtained with the multiplex PCR used in this
study could be improved with additional highly informative
microsatellite loci closely linked to SDI, as the markers
p3_VvAGL11 (Mejía et al. 2011).

There are three possible reasons for the false positives
and false negatives found in the MAS study using VMC7F2.
They could be recombinants between the marker and the
gene, the result of phenotypic misclassifications, or their
phenotype could be caused by a combination of minor effect
QTLs. Several minor effect QTLs modifying the action of
SDI have been identified in different genetic backgrounds
on chromosomes 1, 3, 6, 8, 9, 10, 13, 14, 15, and 18
(Cabezas et al. 2006; Costantini et al. 2008; Doligez et al.
2002; Mejía et al. 2007). In this study, we have obtained
similar results when using MAS in all Crimson Seedless
crosses, which suggests that there was not an important
effect from the minor effect QTLs. On the other side, sten-
ospermocarpic seedlessness is a complex trait that can be
scored using several descriptors (Ledbetter et al. 1994;
Striem et al. 1992). For QTL mapping, the best results have
been obtained using precise evaluations, such as the average
fresh weight of the seeds collected from between 20 and 150
berries, or classifications based on the degree of develop-
ment of the embryo and the hardiness of seed coat (Cabezas
et al. 2006; Costantini et al. 2008; Doligez et al. 2002; Mejía
et al. 2007, 2011). However, these time-consuming evalua-
tions are not suitable in breeding programs involving
thousands of hybrids in which seedlessness is evaluated by
tasting. When considering the organoleptic point of view,
stenospermocarpic seedlessness is influenced by many fac-
tors, such as seed hardiness, seed number, and even features
of the berry flesh (Ledbetter et al. 1994; Striem et al. 1992).
Given the close linkage between the marker and SDI, the
complexity of trait evaluation and the minor effect of other
QTLs on the phenotype, for stenospermocarpic seedlessness
the genotypic selection seems to be more precise than phe-
notypic selection. In fact, when individuals were scored as
seeded, seedless but with noticeable seed traces, or seedless,
false negatives were much more frequent among the

seedless plants with noticeable seed traces (9%) than among
the seedless ones (3%). These possible phenotyping mis-
takes would decrease the recombination fraction between
the marker VMC7F2 and SDI locus from 6.8% to the values
that led Mejía et al. (2011) to propose that Sultanina seed-
lessness could be caused by variations in VvAGL11 promot-
er region.

The different QTL analyses developed up until now have
shown that Sultanina-derived seedlessness is regulated
mainly by a dominant allele at SDI, both in SDxSL crosses
[Dominga × Autumn seedless (Cabezas et al. 2006), Italia ×
Big Perlon (Costantini et al. 2008), and Muscat of Hamburg ×
Superior seedless and Moscatuel × Ruby seedless (L. Ruiz-
García, personal communication)] and in SLxSL crosses
[(Dattier of Beyrouth × 75 Pirovano) × (Alphonse Lav-
allée × Sultanine) (Doligez et al. 2002) and Ruby seed-
less × Thompson seedless (Mejía et al. 2007, 2011)].
Variations on the partial dominance effect of the seedless allele
have been observed depending on the different seeded alleles
(Mejía et al. 2011). The similar results obtained when using
MAS based on VMC7F2 in all Crimson Seedless crosses
suggest that there was not an important effect of the other
alleles at SDI or from minor effect QTLs. Analogous results
were also found in the cross Dominga × Autumn Seedless
(data not shown), in which both parents carry alleles that
increase and decrease seed content at minor effect QTLs
(Cabezas et al. 2006), as well as in crosses between Muscat
of Hamburg and Superior Seedless and Moscatuel and Ruby
seedless (L. Ruiz-García, personal communication). Our
results demonstrate the utility of the proposed strategies for
MAS for seedlessness in crosses derived from Crimson Seed-
less, but also suggest that there should be a widespread use for
Sultanina-derived seedlessness in table grape breeding. From
the point of view of the breeder, MAS must be more
efficient than methods already available, considering
investments and returns (Hospital 2009). The utilization
of multiplex PCR protocols and high-throughput geno-
typing assays (such as SNP determination technologies)
will make MAS approaches cheaper and will allow the
simultaneous selection for many traits, such as berry
skin color, Muscat flavor, and disease resistances
through genomic selection. This will accelerate the de-
velopment of new table grape cultivars and will become
an important advantage in a very competitive market
that is continuously searching for new flavors, colors,
and other features, in the context of climate change, and
with limitations on the use of pesticides.

Conclusions

In the last years, there have been many reports associating a
trait of interest with molecular markers in grapes. However,
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only in a few cases have these markers been applied in
actual breeding programs (Dalbó et al. 2001; Eibach et al.
2007; Riaz et al. 2009; Molnár et al. 2007). In this study, we
have shown the usefulness of MAS strategies for indirect
selection of seedless plants by using microsatellite markers
and quantifying the returns in a real table grape breeding
program. We have shown that the 198-bp allele at the micro-
satellite locus VMC7F2 can be used as a marker for sten-
ospermocarpic seedlessness derived from Sultanina. When
used for the MAS of seedless genotypes in SDxSL or
SLxSL crosses, the outcome was nearly the same number
of seedless individuals by maintaining only 54% of the
progeny plants initially obtained. However, the 198-bp al-
lele at VMC7F2 is also present in several seeded cultivars,
so it cannot be used on its own to predict the seedlessness
trait in a collection of cultivars of unknown origin. In this
situation, we have shown the usefulness of using haplotype
information. By studying a large collection representing
most table grape diversity, we found that seedless accessions
derived from Sultanina, the source of stenospermocarpic
seedlessness in table grape breeding, share a main haplotype
for three microsatellite loci—VVIN16, VMC7F2, and
UDV-108—in the region of the locus that is regulating this
trait. Besides that, we have identified additional sources of
genetic variation for this trait.
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