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1 Introduction

Origin of the Baryon asymmetry in the universe is one of the unsolved issues in particle

physics. Although the standard model (SM) satisfies the Sakharov’s three conditions [1],

sufficient number of baryon asymmetry cannot be produced due to the smallness of the

CP -asymmetry in the CKM matrices and the modest electroweek phase transition. On

the other hand, the neutrino oscillation which implies tiny neutrino masses demands that

some extension of the SM is necessary. Introducing right-handed (RH) neutrinos Ni with

large Majorana masses Mi gives a natural solution to explain the smallness of the neutrino

masses via see-saw mechanism, but it also naturally explain the Baryon number asymmetry

in the universe through the leptogenesis [2]. (See e.g., a very nice recent review [3].) In

this scenario, RH neutrinos are produced thermally by the reheating after inflation. As

temperature decreases with the expansion of the universe down to the Majorana mass

scale, RH neutrinos become out of thermal equilibrium and their CP -asymmetric decay

into the SM leptons and the Higgs produce lepton number asymmetry in the universe. The

lepton number asymmetry produced is then converted into the baryon number asymmetry

through the nonperturbative B + L-violating process of sphalerons in the SM [4].

If the Majorana masses of the RH neutrinos have a hierarchical structure, the lightest

Majorana mass must satisfy the Davidson-Ibarra(DI) bound [5], M >∼ 109GeV in order to

produce sufficient lepton number asymmetry. When at least two of the RH neutrinos are

degenerate in their masses, the DI bound can be evaded. In this case, quantum oscillation

of almost degenerate RH neutrinos resonantly enhance the CP -violating decay and hence

lepton number asymmetry can be produced sufficiently even for RH neutrino masses as

light as TeV scale. This scenario is known as the resonant leptogenesis [8–10]. Such

light RH neutrinos might induce detectable non-unitarity of the mixing matrix of active

neutrinos [11, 12] and have attracted much attention.

TeV scale leptogenesis has attracted enormous attention in light of the LHC exper-

iment [13]–[40]. The scale can be made even smaller if the leptotenesis occurs through

CP -violating oscillations between RH neutrinos far away from the thermal equilibrium.

The mechanism plays an important role in the model of νMSM [41]–[45].

Furthermore, light RH neutrinos do not give large radiative corrections to the Higgs

boson mass and are safe in view of the naturalness [46]. Related to the naturalness of the

electroweak weak against higher physical scales, one of the authors proposed a classically

conformal U(1)B−L extension of the SM [47, 48]. In this model, B −L gauge symmetry is

spontaneously broken via the Coleman-Weinberg mechanism which triggers the electroweak

gauge symmetry. In [49], we further showed that if the Higgs potential is flat at the Planck

scale, the model naturally predicts the Higgs boson mass at around 126 GeV and TeV

scale B −L breaking (or the leptogenesis). This motivated us to investigate the TeV scale

leptogenesis in the U(1)B−L model [28].

In the resonant case, the CP -asymmetry in the decay of Ni mainly comes from an

interference of the tree and the self-energy one-loop diagrams (see figure 1). It is expressed
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Figure 1. Tree and one-loop diagrams of the RH neutrino decay. In the resonant case, an interfer-

ence of the tree and the self-energy diagram [6, 7] gives a dominant contribution to the CP -violating

parameter.

by the CP -violating parameter

εi ≡
ΓNi→`φ − ΓNi→`φ
ΓNi→`φ + ΓNi→`φ

=
∑
j(6=i)

=(h†h)2
ij

(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓj

(M2
i −M2

j )2 +R2
ij

(1.1)

where h is the neutrino Yukawa coupling and Γi ' (h†h)iiMi/8π is the decay width of Ni.

The resonant enhancement of the CP -violating parameter was discussed in [50]. Systematic

considerations were performed by Pilaftsis [9, 51, 52], and he found that the regulator in

the denominator is given by Rij = MiΓj . If the mass difference is larger than the decay

width, we have |M2
i − M2

j | � Rij , and εi is suppressed by Γi/M ∼ (h†h)ii. However,

in the degenerate case, |Mi −Mj | ∼ Γ and ε can be enhanced to O((h†h)0) ∼ 1. Hence

the determination of the regulator Rij is essential for a precise prediction of the lepton

number asymmetry in the resonant leptogenesis. The authors [53] calculated the resummed

propagator of the RH neutrinos and obtained a different regulator Rij = |MiΓi −MjΓj |.
By using their result, the enhancement factor becomes much larger. The origin of the

difference of the regulators is discussed in [54, 55]. Since the lower scale of the leptogenesis

is strongly sensitive to the form of the regulator, it is very important to systematically

evaluate the precise form of the regulator.

Conventionally, leptogenesis is often calculated based on the classical Boltzmann equa-

tion which describes the time evolution of the phase space distribution function of on-shell

particles [85]. In the Boltzmann equation, the interactions between particles are taken

into account through the collision terms that comprise the S-matrix elements calculated

separately in the framework of quantum field theory. The authors [57] applied the non-

equilibrium Green’s function method with the Kadanoff-Baym (KB) equations developed

in studies of the transport phenomena [87, 88] and derived the full-quantum evolution

equation for the lepton number in the hierarchical mass case. Using this method, one can

systematically take into account quantum interference, finite temperature and finite density

effects.1 The method was intensively used in the leptogenesis in various papers [58]–[69].

In the resonant leptogenesis, since the quantum interference effect is crucial to the eval-

uation of the CP -violating parameter, we can expect importance of such a full-quantum

mechanical formulation based on the KB equations. In [70], the authors used the method

1Quantum oscillations in the leptogenesis are also investigated in [80–82] based on the density matrix

formalism [83, 84].
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to obtain an oscillating CP -violating parameter in the flat space-time. Then applying it

to the Boltzmann equation in the expanding universe, they calculated the lepton number

asymmetry. In the strong washout regime, the oscillation is averaged out and the lepton

number asymmetry is expressed with an effective CP -violating parameter. Then the max-

imal value agrees with the case of Rij = MiΓj [71]. The authors of [72] also found an

oscillatory behavior by a different calculation, and discussed an implication to the leptoge-

nesis in the expanding universe. The quantum oscillations in the flavored leptogenesis was

also performed in [73–75].

Recently Garny et al. [56] systematically investigated generation of the lepton asymme-

try in the resonant leptogenesis using the formulas developed in [58, 59]. In the investiga-

tion, they considered a non-equilibrium initial condition in a time-independent background

and calculated generation of the lepton number asymmetry. Starting from the vacuum ini-

tial state for the RH neutrinos, they read off the CP -violating parameter from the generated

lepton number asymmetry. The effective regulator they derived is Rij = MiΓi + MjΓj ,

which differs from the previous results, Rij = MiΓj by [9] or Rij = |MiΓi −MjΓj | by [53].

The purpose of the present paper is to perform systematic investigations of the ther-

mal resonant leptogenesis based on the KB equations. We scrutinize various properties of

the Green functions of the RH neutrinos, and directly extract the CP -violating parameter

εi from the evolution equation for the lepton number in the expanding universe, with an

emphasis on the quantum flavor oscillations. The analysis is performed under an assump-

tion that the off-diagonal component of the Yukawa coupling (h†h)′ is smaller than the

diagonal one.

The paper is organized as follows. In section 2.1 and 2.2, we first summarize the basic

properties of various Green functions and the Kadanoff-Baym (KB) equations that these

Green functions must satisfy. Then we derive the evolution equation of the lepton number

in the expanding universe in section 2.3. The evolution equation is written in terms of

the propagators of the RH neutrinos, the SM leptons and the Higgs. In section 2.4 we

explain how the KB equation is reduced to the ordinary Boltzmann equation. The most

important ingredient necessary to solve the evolution equation for the lepton number is

the Wightman functions of the RH neutrinos. The flavor diagonal component is directly

related to the distribution function, but more important for the lepton asymmetry is its

off-diagonal component.

In section 3, we investigate how the flavor oscillation affects the off-diagonal component

of the propagators. In the section, we focus on the resonant oscillations in the thermal

equilibrium. In section 3.1, 3.2 and 3.3, we study the properties of the retarded and

advanced propagators in which information of the spectrum is encoded. Then we study

the Wightman functions with information of the distribution functions.

In section 4, we scrutinize the behavior of Green functions out of equilibrium. In the

expanding universe, Green functions are approximated in the leading order approximation

by the thermal values at the local temperature. But in order to calculate the lepton

asymmetry, deviations from the thermal values are important. We show in section 4.3

that the deviations of the flavor off-diagonal Wightman functions from the thermal values

behave quite differently from behaviors of other Green functions.
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In section 5, we apply the calculated deviations of the Wightman functions of the

RH neutrinos into the evolution equation derived in section 2, and obtain the quantum

Boltzmann equation for the lepton number asymmetry. The deviations are classified into 3

types. One of them generate the lepton number asymmetry while the other two wash out

the generated asymmetry. In section 5.4, we read off the CP -violating parameter ε and

show that the regulator is given by Rij = MiΓi +MjΓj .

In section 6, we give a physical interpretation why the regulator Rij = MiΓi + MjΓj
appears instead of Rij = MiΓi −MjΓj . In particular, we show that if we neglect what we

call the off-shell contributions the regulator is erroneously given by Rij = MiΓi −MjΓj .

In section 7, we summarize our results.

In appendix A and B, we give a brief introduction to the closed time path (CTP)

formalism and the KB equations. In appendix C, we introduce the 2PI formalism and

then in appendix D we derive the self-energies for the RH neutrinos and the SM leptons

based on the 2PI formalism. In appendix E and F, some useful identities in calculating

convolutions are given. From appendix G to J, we give details of the calculations of various

Green functions. In appendix K, we give anther derivation of the off-diagonal component

of the Wightman functions out of equilibrium. The calculation explains why the regulator

Rij = MiΓi + MjΓj naturally appears. Appendices L and M are calculations of some

equations in the paper.

2 Evolution equations of lepton numbers

A systematic method to investigate the evolution of lepton asymmetry is the Kadanoff-

Baym (KB) equations. The advantage of the KB equation to the Boltzmann equation is

that it gives a quantum evolution equation of various correlation functions which does not

distinguish on-shell and off-shell states. Accordingly it can take into account quantum

coherence of the system and memory effects. Also the doubling problem in the scattering

processes with on-shell internal lines can be systematically resolved (see [68] and references

therein). The KB equation can be reduced to the classical Boltzmann equation only in

special cases where the memory effects can be neglected.

Time-evolution of a quantum system is determined by the Hamiltonian of the system

and the initial wave function at the initial time t = ti. Such time-evolution is described by

the wave function at later times, or instead, a set of all n-point Green functions. Of course,

it is practically impossible to study the evolution equations containing all the n-point

functions and we need to select an important set of observables. In the classical approach

based on the Boltzmann equation, one-particle distribution function on the phase space is

selected. In the quantum Boltzmann approach, two-point Green functions are selected.

In this section, we summarize notations of various Green functions and their basic

properties in the thermal equilibrium. We also summarize the non-equilibrium evolution

equation (KB equation) for the Green functions. More details are given in appendices.

After brief reviews in section 2.2 and 2.3, we derive the evolution equation of the lepton

number in section 2.4 and 2.5.
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2.1 Our model

The model we consider is an extension of the SM with RH neutrinos νR,i. i is the flavor

index, i = 1, 2, 3. We set Ni = νR,i + νcR,i. The Lagrangian is given by

L = LSM +
1

2
N
i
(i /∇−Mi)N

i + Lint , (2.1)

Lint ≡ −hαi(`
α
a εabφ

∗
b)PRN

i + h†iαN
i
PL(φbεba`

α
a ) (2.2)

where α, β = 1, 2, 3 and a, b = 1, 2 are flavor indices of the SM leptons `αa and isospin SU(2)L
indices respectively. Mi is the Majorana mass ofNi and hiα is the Yukawa coupling ofN i, `αa
and the Higgs φa doublet. PR(L) are chiral projections on right(left)-handed fermions. In

the present paper, we consider the case of almost degenerate Majorana masses at TeV scale.

Then the Yukawa couplings become very small hiα � 1 so as to generate tiny neutrino

masses through the see-saw mechanism. Hence the decay width Γi ' (h†h)iiMi/8π is much

smaller than the mass Mi.

2.2 Green functions and KMS relations

Various Green functions are introduced in field theories. Consider a fermion field ψ. The

statistical propagator GF and the spectral density Gρ are defined as

GF (x, y) =
1

2
〈[ψ̂(x), ψ̂(y)]〉 , (2.3)

Gρ(x, y) = i〈{ψ̂(x), ψ̂(y)}〉 . (2.4)

The statistical propagator GF contains information of the particle density of the state on

which operators are evaluated. On the other hand, the spectral densityGρ gives information

of the particle’s mass and decay width. Because of the anti-commutator, γ0Gρ(x
0, y0)

becomes proportional to the spatial delta function δ3(x− y) at the equal time x0 = y0:

γ0Gρ(x, y) = iδ3(x− y)1 (2.5)

where 1 is an identity matrix in the flavor and the spinor indices.

Other useful Green functions are the Wightman functions

G>(x, y) =GF (x, y)− i

2
Gρ(x, y) = 〈ψ̂(x)ψ̂(y)〉 , (2.6)

G<(x, y) =GF (x, y) +
i

2
Gρ(x, y) = −〈ψ̂(y)ψ̂(x)〉 (2.7)

and the retarded and advanced Green functions are given by

GR/A(x, y) =±Θ(±(x0 − y0))Gρ(x, y) . (2.8)

The spectral function can be written as Gρ = GR −GA = i(G> −G<).

In the present paper, we assume homogeneity along the spatial directions so that we

can always use the Fourier transform in the 3-dimensional space. If the state is described

– 6 –
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by the thermal equilibrium state, we can further Fourier transform in the time direction.2

In the thermal equilibrium at temperature T , the Green functions G(x, y) are anti-periodic

in the time direction with an imaginary period iβ = i/T and their Fourier transforms

satisfy the KMS (Kubo Martin Schwinger) relation

G(eq)
><

(q) = −i

{
1− f(q0)

−f(q0)

}
G(eq)
ρ (q) , G

(eq)
F (q) = −i

(
1

2
− f(q0)

)
G(eq)
ρ (q) . (2.9)

Here f(q0) is the Fermi-Dirac distribution function f(q0) = 1/(eq0/T + 1). In presence of

the chemical potential µ, q0 is replaced by q0−µ. Since the relation relates the fluctuation

described by the Wightman function to the dissipation described by the retarded Green

function, it is also called the fluctuation-dissipation relation. By this relation, the spec-

trum of the system determines all the Green functions. When the system becomes out of

equilibrium, the KMS relation is violated. The violation plays an important role in the

leptogenesis.

As a final remark in this section, let us recall that the explicit forms of the Wightman

functions of free charged fermions (bosons) are given by

Gfree
><

(x, y) =

∫
d3q

(2π)3
e+iq·(x−y) 1

2ωq

×

[
e−iωq(x

0−y0)

{
1− ηfq
−ηfq

}
ĝ+ + e+iωq(x0−y0)

{
−ηf̄−q

1− ηf̄−q

}
ĝ−

]
(2.10)

where ωq is the energy of the on-shell particle, and ĝ± = (±ωqγ0 − q · γ +m), η = +1 for

Dirac fermions with their mass m and ĝ± = 1, η = −1 for bosons. fq and f̄q are distribution

functions of on-shell particles and anti-particles respectively. They are not necessarily the

equilibrium distribution functions.

2.3 Kadanoff-Baym equations

If the system is out of equilibrium and the state is time-dependent, we cannot use the

ordinary perturbative method based on the Feynmann propagators. A general formalism is

given by the closed-time-path (CTP) formalism in which perturbative vertices are inserted

on the closed-time-path C = C+ + C−. See appendix A for brief review and figure 4 there.

One of the self-consistent approximation of the Schwinger-Dyson equations in the CTP

formalism is called Kadanoff-Baym (KB) equation. Derivation of the KB equations is

given in appendix B and C.

The equations for the retarded and advanced Green functions are

iG−1
0(x)GR/A(x, y)−

∫ ∞
tint

d4zg ΠR/A(x, z)GR/A(z, y) = −δg(x− y) . (2.11)

2In the present paper, we often use the Fourier transform in the time direction when the system is

in the thermal equilibrium at the local temperature T (t) at time t. Then the Green functions in the

four-momentum representation depends on time t through the local temperature.

– 7 –
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Here d4zg is an abbreviation of d4z
√
−g(z) and δg(x−y) = δ4(x−y)/

√
−g. G−1

0(x) is the free

kinetic operator whose derivatives act on a field at x. ΠR/A is the self-energy and defined

in eq. (B.21). They have the same properties as GR/A, e.g., ΠR(x, y) = 0 for x0 < y0 is

satisfied. Note that the integration range in (2.11) is constrained between x0 and y0:∫ x0(y0)

y0(x0)
d4zg ΠR/A(x, z)GR/A(z, y) (2.12)

because of the step functions in ΠR/A and GR/A. Therefore GR/A(x, y) is determined by

the local information between x0 and y0. Namely GR/A does not depend on the information

of the system in the past: there is no memory effect for GR/A.

Other Green functions G∗ (∗ = F, ρ,≶) satisfy

iG−1
0(x)G∗(x, y) =

∫ ∞
tint

d4zg ΠR(x, z)G∗(z, y) +

∫ ∞
tint

d4zg Π∗(x, z)GA(z, y)

=

∫ x0

tint

d4zg ΠR(x, z)G∗(z, y) +

∫ y0

tint

d4zg Π∗(x, z)GA(z, y) . (2.13)

In the second equality, we have used the properties of R/A functions. By using eq. (2.11),

this equation can be solved formally in terms of the self-energy function and the R/A Green

functions as

G∗(x, y) = −
∫ ∞
tint

d4zgd
4wgGR(x, z)Π∗(z, w)GA(w, y)

≡ −(GR ∗Π∗ ∗GA)(x, y) . (2.14)

In the last line ∗-operation denotes the convolution operation.

Let us see the memory effect of G∗. Generally speaking, the integrals in (2.13) over z

are performed from the past at the initial time tint to x0 or y0. This makes Green functions

dependent on the state of the system in the past before x0 or y0. This is indeed the case

for GF and G≶, but for the spectral density Gρ, there is no memory effect. It can be seen

by using Πρ = ΠR −ΠA. Then the integral of (2.13) can be rewritten as

iG−1
0(x)Gρ(x, y) =

∫ x0

y0

d4zg Πρ(x, z)Gρ(z, y) . (2.15)

Or it can be directly seen from the relation Gρ = GR−GA. The relation Gρ = −GRΠρGA =

GR −GA is equivalent to Πρ = ΠR −ΠA = G−1
R −G

−1
A .

In the thermal equilibrium, since the system is translationally invariant, (2.14) can be

Fourier transformed and

G
(eq)
∗ (p) = −G(eq)

R (p)Π
(eq)
∗ (p)G

(eq)
A (p) . (2.16)

These equations (2.11), (2.13) are not closed within the two-point Green functions

because the self-energy Π contains n(> 2)-point functions. Hence, in order to solve them

explicitly, we need to make an approximation to express n(> 2)-point functions in terms

– 8 –
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of the two-point functions. 2PI effective action method is one of the simplest and self-

consistent methods. (See appendix C for brief explanation.) By using it, the self-energies

Π in the above equations (2.11)–(2.13) are represented as a sum of 1PI diagrams made

of full propagators, and consequently these equations can be interpreted as simultaneous

equations for various propagators in the system. These self-consistent equations among

the propagators are especially called the Kadanoff-Baym equations.

2.4 Evolution of lepton number in the expanding universe

Now we investigate the KB equations of lepton numbers in the expanding universe. We

first define Green functions, G, S and ∆ for the RH neutrinos, the SM lepton doublet and

the Higgs doublet respectively:

Gij>(x, y) = 〈N̂ i(x)N̂ j(y)〉 , Gij<(x, y) = −〈N̂ j(y)N̂ i(x)〉 , (2.17)

Sαβab>(x, y) = 〈ˆ̀αa (x)ˆ̀β
b (y)〉 , Sαβab<(x, y) = −〈ˆ̀βb (y)ˆ̀α

a (x)〉 , (2.18)

∆ab>(x, y) = 〈φ̂a(x)φ̂†b(y)〉 , ∆ab<(x, y) = +〈φ̂†b(y)φ̂a(x)〉 . (2.19)

The classical inverse propagators are given by

iG−1 ij
0 (x, y) = (i /∇x −Mi)δ

ijδg(x− y) , (2.20)

iS−1 αβ
0 ab (x, y) = i /∇xPLδαβδabδg(x− y) , (2.21)

i∆−1
0 ab(x, y) =−∇2

xδabδ
g(x− y) . (2.22)

In this paper, we consider the spatially flat space-time with the scale factor a(t):

ds2 = dt2 − a2(t)dx · dx . (2.23)

We use µ̃, ν̃, . . . as the space-time indices and µ, ν, . . . as the local Lorentz indices. γ

matrices are written as γµ̃(t) = γµe µ̃
µ where the vier-bein field e µ̃

µ satisfies e µ̃
µ e ν̃

ν gµ̃ν̃ = ηµν .

In the following we mainly use t-independent γµ = (γ0,γ) instead of t-dependent γµ̃(t).

The delta-function becomes δg(x− y) = δ4(x− y)/a3(x0).

In the background, the covariant derivative (2.22) becomes

∇xµ̃ = ∂µ̃ + 3H(x0)δ0
µ̃ . (2.24)

Since the spin connection is given by Ωµ̃ = aH[γµ, γ0]/4, the covariant derivative for spinors

in (2.20), (2.21) is given by

/∇x =γµ̃(x)(∂µ̃ + Ωµ̃) = γ0

(
∂x0 +

3

2
H(x0)

)
− γ · ∂x
a(x0)

. (2.25)

Here the Hubble parameter is defined by H(t) = ȧ/a. In the radiation dominant universe,

it is given by

H(t) = 1.66
√
g∗
T 2

Mpl
∼ T 2

1018GeV
. (2.26)
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Lepton number density nL is a matrix with flavor indices α, β and isospin indices a, b.

It is given by the µ̃ = 0 component of the lepton number current

jµ̃βαLba (x) ≡〈ˆ̀βb (x)γµ̃(x)ˆ̀α
a (x)〉

=− tr{γµ̃(x)Sαβab>(x, y)}
∣∣∣
y=x

=− tr{γµ̃(x)Sαβab<(x, y)}
∣∣∣
y=x

. (2.27)

Here tr{· · · } is the trace of the spinors. Because of the spatial homogeneity, divergence of

the current jL is equal to

∇µ̃ jµ̃L(x) =
dnL
dt

+ 3H(t)nL . (2.28)

On the other hand, it can be rewritten as3

∇µ̃ jµ̃L(x) =− tr{ /∇xS><(x, y)− S><(x, y)
←−
/∇y}

∣∣∣
y=x

= i

∫
d4zg tr{iS−1

0 (x, z)S><(z, x)− S><(x, z)iS−1
0 (z, x)} . (2.29)

In the second equality, we have used the definition of S−1
0 (x, z) in (2.21).

By using the KB equation of (2.13) for the SM lepton Green function S><, we have∫
d4zg iS

−1
0 (x, z)S><(z, x) =

∫ x0

tint

d4zg

(
ΣR(x, z)S><(z, x) + Σ><(x, z)SA(z, x)

)
= −i

∫ x0

tint

d4zg

(
Σ<(x, z)S>(z, x)− Σ>(x, z)S<(z, x)

)
(2.30)

where Σ is the self-energy of the SM lepton. The second equality is obtained by using the

relations (B.9) and (B.10).

Acting iS−1
0 from the right, a similar equation can be derived:∫

d4zg S><(x, z)iS−1
0 (z, x) = −i

∫ x0

tint

d4zg

(
S<(x, z)Σ>(z, x)− S>(x, z)Σ<(z, x)

)
. (2.31)

By using these equation, (2.28) becomes

dnL
dt

+ 3H(t)nL =

∫ x0

tint

d4zg tr
{

Σ<(x, z)S>(z, x)− Σ>(x, z)S<(z, x)

− S<(x, z)Σ>(z, x) + S>(x, z)Σ<(z, x)
}
. (2.32)

This is the evolution equation for the lepton numbers in the expanding universe.

3Here, we have defined the derivative operator
←−
/∇y as

S(x, y)
←−
/∇y ≡ −∇µ̃

[
S(x, y)γµ̃(y)

]
+ S(x, y)γµ̃(y)Ωµ̃ =

(
−∂yµ −

3

2
H(y0)

)
S(x, y)γµ.
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Figure 2. An example of 2PI diagrams for the Lagrangian (2.2) with Yukawa interactions.

Each line represents a full propagator of the SM lepton, Higgs and the RH neutrino. By taking

a functional derivative with respect to each propagator, we can obtain the self-energy for the

corresponding particle.

The right hand side (r.h.s.) is written as an integral of the full propagator S of the SM

lepton and its self-energy Σ. Since the self-energy Σ contains various diagrams, some sys-

tematic simplification of Σ is necessary for practical calculations. A well-known approach

is to use the 2-particles-irreducible (2PI) formalism briefly reviewed in appendix B. In the

2PI formalism, the self-energy diagrams are obtained by taking a variation of 2PI diagrams

made of full propagators with respect to the full propagator.

In the leading approximation, the self-energy Σ is obtained from the simplest 2PI

diagram of figure 2. Note that each propagator represents a full propagator, and the self-

energy of the SM lepton is obtained by cutting the propagator `. The next simplest 2PI

diagram is given by figure 5 in appendix D, but in most of the present analysis, we consider

only the contribution from figure 2. It gives a good approximation if the RH neutrinos

have almost degenerate masses.

The contribution to the lepton self-energy Σ from figure 2 is written in terms of the

full propagators:

Σαβ
ab ><

(x, y) =− δabhαih†jβPRG
ij
><

(x, y)PL∆<>(y, x) ≡ δabΣ
αβ
><

(x, y) . (2.33)

Recall that (i, j) are flavor indices of the RH neutrinos. Then, summing the lepton flavor

α, β and SU(2)L isospin a, b indices, we have

dnL
dt

+ 3HnL = −gwhαih†jβ
∫ x0

tint

d4zg

[
tr
{
PRG

ij
<(z, x)PLS

βα
> (x, z)

}
∆>(x, z)

−tr
{
PRG

ij
>(z, x)PLS

βα
< (x, z)

}
∆<(x, z)

−tr
{
PRG

ij
>(x, z)PLS

βα
< (z, x)

}
∆<(z, x)

+tr
{
PRG

ij
<(x, z)PLS

βα
> (z, x)

}
∆>(z, x)

]
. (2.34)

Here we used the fact that the electroweak symmetry is restored at the temperature T &
TeV we are in mind and hence the propagators are written in SU(2) symmetric forms:

Sαβab = Sαβδab, ∆ab = ∆δab. gw = 2 is the number of d.o.f. of SU(2)L doublets. Since the

third and the fourth terms are complex conjugate to the second and the first terms, we can
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simplify the above equation as

dnL
dt

+ 3HnL = 2 <
∫ x0

tint

dτd3zg hαih
†
jβ

[
tr
{
PRG

ij
<(x, z)PLπ̃

βα
> (z, x)

}
− tr

{
PRG

ij
>(x, z)PLπ̃

βα
< (z, x)

}]
(2.35)

where we have defined τ = z0 and

π̃βα≷ (z, x) = −gwSβα≷ (z, x)∆≷(z, x) . (2.36)

This is the equation we evaluate in the following investigations. As we mentioned above,

the r.h.s. contains only the contribution from the simplest 2PI diagram of figure 2. This

corresponds to taking the processes of decay and inverse-decay of the RH neutrinos. The

effects of scattering can be taken into account4 by considering the next simplest diagram of

figure 5. A systematical study of the KB equation including the scattering effects is given

in [68, 69].

2.5 Boltzmann equation for the lepton number

The evolution equation (2.35) of the lepton number is determined by the behavior of full

propagators of the RH neutrinos G, the SM leptons S and the Higgs ∆. In sections 3 and 4,

we investigate detailed properties of the propagator G of the RH neutrinos. In this section,

we will see how an ordinary Boltzmann-type equation can be derived from eq. (2.35) by

using the quasi-particle approximation for the SM particles described by S and ∆.

The quasi-particle approximation is an approximation to express the Green functions

in terms of distribution functions of quasi-particles with a mass m and a width Γ. Hence

the propagators in this approximation are obtained from the free Wightman function of

eq. (2.10) by introducing the decay width Γ. For a moment, we neglect the time-dependence

of the background. For the SM leptons, we have

Sβα>< (x, y) = δαβ
∫

d3p

(2π)3

1

2ωp
e+ip·(x−y) e−|x

0−y0|Γ`/2

×

[
e−iωp(x0−y0)

{
1− f`p
−f`p

}
PL/p+PR + e+iωp(x0−y0)

{
−f`p

1− f`p

}
PL/p−PR

]

= δαβ
∑
ε`=±

∫
d3p

(2π)3

1

2ωp
e+ip·(x−y)e−iε`ωp(x0−y0)−|x0−y0|Γ`/2

× (−1)ε`

{
1− f ε``p
−f ε``p

}
PL/pε`PR (2.37)

where ωp =
√
m2
` + |p|2/a2 and /p± ≡ ±ωpγ0 − p · γ/a. Here we assumed the flavor inde-

pendence of the lepton propagators, Sαβ ∝ δαβ, for simplicity.5 Similarly the Wightman

4A part of the scattering diagram in which the internal particles are close to on-shell is taken into

account by considering the diagram of figure 2. In the resonant case, it gives a dominant contribution to

the scattering process and hence it is sufficient to consider only the 2PI diagram of figure 2.
5Generally, flavor structure plays an important role in the flavored leptogenesis [76, 77].

– 12 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

functions of the Higgs boson becomes

∆><(x, y) =

∫
d3k

(2π)3

1

2ωk
e+ik·(x−y)e−|x

0−y0|Γφ/2

×

[
e−iωk(x0−y0)

{
1 + fφk
+fφk

}
+ e+iωk(x0−y0)

{
+fφk

1 + fφk

}]

=
∑
εφ=±

∫
d3k

(2π)3

1

2ωk
e+ik·(x−y)e−iεφωk(x0−y0)−|x0−y0|Γφ/2

× (−1)εφ

{
1 + f

εφ
φk

+f
εφ
φk

}
(2.38)

where ωk =
√
m2
φ + |k|2/a2 .

The thermal mass and width are given by m`,φ ∼ gT , Γ`,φ ∼ g2T where g is the

SM gauge coupling g. The effects of the thermal plasma play very important roles, and

are systematically investigated in [68, 69]. For example, the thermal mass of the Higgs

becomes larger than the RH neutrino masses at very high temperature. In the present

paper, we focus on the largeness of Γ`,φ as an important thermal effect and do not consider

other effects.

In these expressions we defined (−1)ε = ±1 for ε = ± respectively. The distribution

functions are assumed to be in the kinematical equilibrium and given by the Fermi-Dirac

or the Bose-Einstein distributions at temperature T with a chemical potential:

f`p =
1

e(ωp−µ`)/T + 1
, fφk =

1

e(ωk−µφ)/T − 1
. (2.39)

For anti-particles, the signs of the chemical potentials are reversed and their distributions

are given by

f`p =
1

e(ωp+µ`)/T + 1
, fφk =

1

e(ωk+µφ)/T − 1
. (2.40)

In the second equalities of eq. (2.37) and (2.38), we have defined

f ε`p ≡
1

e(εωp−µ`)/T + 1
, f εφk ≡

1

e(εωk−µφ)/T − 1
(2.41)

which satisfy

f`p = f+
`p , f`p = (1− f−`p) , fφk = f+

φk , fφk = −(1 + f−φk) . (2.42)

Now we come back to the time-dependence of the background. Since the scale factor

a(t) is time-dependent, temperature T , thermal mass and width are dependent on the time

t and we need to specify at which time these quantities in the quasi-particle approximation

of eq. (2.37) and (2.38) are defined. If the temperature of the universe is sufficiently low

(e.g., ∼ 10 TeV), the decay width is much larger than the Hubble expansion rate:

Γ`,φ ∼ g2T � H ∼ T 2

1018GeV
(2.43)
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and the propagators damp quickly at |x0 − y0| � 1/Γl,φ. For such short period, time-

dependence of the physical quantities such as the scale factor in the propagators (2.37)

and (2.38) are suppressed by H/Γ`,φ, and we can approximate these quantities as being

constant in the integration of τ in (2.35). Then the physical quantities can be evaluated

at time t = Xxy = (x0 + y0)/2 as we see in (4.4).

By Fourier transforming in the spatial direction and using the above approxima-

tion, (2.35) becomes

dnL
dt

+ 3HnL = 2<
∫

d3q

(2π)3

∫ t

−∞
dτ (h†h)ji

[
tr
{
PRG

ij
<(t, τ ; q)PLπ̃>(τ, t; q)

}
− tr

{
PRG

ij
>(t, τ ; q)PLπ̃<(τ, t; q)

}]
(2.44)

where t = x0 and d3q = d3q/a3(t). Using the quasi-particle approximations (2.37)

and (2.38), π̃><(τ, t; q) are given by

π̃><(τ, t; q) =PLπ><(τ, t; q)PR , (2.45)

π><(τ, t; q) ≡ (−gw)
∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
(2π)3δ3(q − p− k)

×Dε`εφ><(p,k) /pε` e
−i(ε`ωp+εφωk)(τ−t)−Γ`φ/2|τ−t| (2.46)

where Γ`φ ≡ Γ` + Γφ and Dε`εφ><(p,k) is defined as

Dε`εφ><(p,k) ≡ (−1)ε`(−1)εφ

{
(1− f ε``p)(1 + f

εφ
φk)

(−f ε``p)(+f
εφ
φk)

}
. (2.47)

From (2.46) and (2.47), we can see that the term with π̃> in (2.44) contains a factor (1−f`)
or (1− f−` ) = f¯̀ and corresponds to gain in the lepton number while the other term with

π̃< contains a factor f` or f−` = (1 − f¯̀) and corresponds to loss. Hence the evolution

equation (2.44) can be interpreted as the Boltzmann-like equation for the lepton number.

In order to solve the evolution equation (2.44), we need detailed information of the

Wightman function Gij≷(x, y) of the RH neutrinos. In the following sections, we obtain

behaviors of the Wightman Green functions, especially deviations from the thermal equi-

librium values in the expanding universe.

Here we briefly comment on the basic structures of the r.h.s. First, contributions from

the flavor diagonal part i = j are evaluated by the quasi-particle approximation. Gii≶ is

proportional to (f εNi) or (1 − f εNi) respectively where fNi is the distribution function of

the RH neutrino Ni. Therefore, combined with the distribution functions from π̃≷, flavor

diagonal term gives the tree-level decay or inverse-decay of figure 1, and wash out the

generated lepton number asymmetry.6

6Using the so-called extended quasi-particle approximation [89–91], we can take into account the finite

decay width of the RH neutrinos as the real intermediate state (RIS) subtracted scattering processes of

lepton and Higgs [68]. These processes are mediated by off-shell RH neutrinos and also contribute to the

washout of the lepton asymmetry.
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On the other hand, by using the formal solution of the Wightman function in (2.14),

contributions from the flavor off-diagonal part i 6= j are interpreted as an interference effect

between the tree and 1-loop diagrams as follows. The formal solution is written in terms

of the self-energy Π≷ as

Gij>< (x, y) =−
∑
k,l

∫ x0

−∞
du0d3ug

∫ y0

−∞
dv0d3vg G

ik
R (x, u)Πkl

><
(u, v)GljA(v, y) . (2.48)

In the leading order approximation with the 2PI diagram of figure 2, the self-energy Π≷

is written as a functional of the full propagators of the SM lepton and the Higgs as in

eq. (D.6). Hence it can be interpreted as an interaction vertex of `φ ↔ N at u ∼ v.

The RH neutrino propagates from u ∼ v to another interaction vertex at x ∼ y. By

inserting this expression into eq. (2.44) and taking the on-shell limit of the RH neutrinos,

CP -asymmetric interference between the tree and the one-loop self-energy diagram can

be obtained. If the RH neutrinos propagating between these vertices are off-shell, the

contribution is interpreted as s-channel scattering processes. Hence flavor off-diagonal

terms in the r.h.s. of (2.44) give both of the CP -asymmetric decay of the RH neutrinos

and the washout of the lepton numbers via s-channel scattering of leptons and Higgs.

In the resonant leptogenesis where the RH neutrinos have almost degenerate masses,

however, it is not legitimate to separate the on-shell and off-shell contributions as above

since the RH neutrinos are coherently mixed between different flavors, as has been men-

tioned in [61, 68]. Therefore we need to scrutinize the behavior of the Wightman functions

Gij≷(t, τ ; q) in the expanding universe.

2.6 Summary of this section

The evolution of the lepton number is given by (2.35) or its Fourier transform (2.44). They

are the basic equations we evaluate in the following sections. If we adopt the quasi-particle

approximations of (2.37) or (2.38), an ordinary classical Boltzmann equation is derived.

But in the resonant leptogenesis, quantum coherence between different flavors of Ni plays

an essential role and such an approximation is not valid for the RH neutrinos. An evaluation

of the r.h.s. of (2.35) by scrutinizing the behavior of the off-diagonal components of the

Wightman functions Gij≷ , which is formally solved as (2.48), in the expanding universe is

the main issue in the following sections.

3 Resonant oscillation of RH neutrinos

In this section, we study how the RH neutrinos with almost degenerate masses behave in

the thermal equilibrium. Deviation from the thermal equilibrium is investigated in the

next section 4.

We consider two flavors i = 1, 2 whose masses are almost degenerate. The third

flavor RH neutrino is assumed to have larger mass. In order to calculate the evolution

of the lepton asymmetry in (2.35), we need to know the Wightman functions G≷ of the

RH neutrinos. And, since the KB equation of Gij≷ is formally solved by the convolution

– 15 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

eq. (2.48), it is necessary to investigate the properties of the retarded (advanced) Green

functions GijR/A first.

We first study both of the flavor diagonal (i = j) and off-diagonal (i 6= j) components

of GijR in the equilibrium. Then we will see the behaviors of the Wightman functions Gij≷
in the thermal equilibrium. Throughout the paper, Gd (also Πd for the self-energy) and G′

(Π′) denote the flavor diagonal i = j and off-diagonal i 6= j components respectively:

Gd ←→ flavor diagonal ,

G′ ←→ flavor off-diagonal . (3.1)

3.1 Retarded/advanced propagators

From (2.11) and (2.20), GR/A satisfies

(i /∇x −M)GijR/A(x, y)−
∫ ∞
tint

dz0d3z a3(z0) Πik
R/A(x, z)GkjR/A(z, y) = −δijδg(x− y) . (3.2)

We first define the spatial Fourier transform of GR/A by

GijR/A(x0, y0; q) =

∫
d3(x− y)e−iq·(x−y)a3/2(x0)GijR/A(x0, y0,x− y)a3/2(y0) . (3.3)

Similarly, for the self-energy, we define

Πij
R/A(x0, y0; q) =

∫
d3(x− y)e−iq·(x−y)a3/2(x0)Πij

R/A(x0, y0,x− y)a3/2(y0) . (3.4)

Then using (2.25), the KB equation (3.2) becomes{
iγ0∂x0 −

γ · q
a(x0)

−M
}
GR/A(x0, y0; q)

−
∫ ∞
tint

dz0 ΠR/A(x0, z0; q)GR/A(z0, y0; q) = −δ(x0 − y0) . (3.5)

This is the basic equation for GR/A.

We then decompose the propagator and the self-energy into flavor diagonal and off-

diagonal parts:

GR/A(x0, y0; q) ≡ GdR/A(x0, y0; q) +G′R/A(x0, y0; q) ,

ΠR/A(x0, y0; q) ≡ Πd
R/A(x0, y0; q) + Π′R/A(x0, y0; q) . (3.6)

Using this decomposition, we solve the KB equation (3.5) iteratively.

First we define the differential-integral operator Dd
x0 by

Dd
x0f(x0) ≡

{
iγ0∂x0 −

γ · q
a(x0)

−M
}
f(x0)−

∫ ∞
tint

dz0 Πd
R/A(x0, z0; q) f(z0) . (3.7)

In terms of the operator, the flavor diagonal component of the KB equation (3.5) becomes

Dd
x0G

d
R/A(x0, y0; q)−

∫ ∞
tint

dz0 Π′R/A(x0, z0; q)G′R/A(z0, y0; q) = −δ(x0 − y0) . (3.8)
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Similarly the KB equation of the flavor off-diagonal component is written as

Dd
x0G

′
R/A(x0, y0; q) =

∫ ∞
tint

dz0 Π′R/A(x0, z0; q)GdR/A(z0, y0; q) . (3.9)

We then introduce the kernel G
d(0)
R/A of the operator Dd

x0 :

Dd
x0G

d(0)
R/A(x0, y0; q) ≡ −δ(x0 − y0) . (3.10)

with a retarded (advanced) boundary condition. Using G
d(0)
R/A, we can integrate the equa-

tions (3.8), (3.9) as

GdR/A(x0, y0; q) =G
d(0)
R/A(x0, y0; q)

−
∫ ∞
tint

dτdτ ′ G
d(0)
R/A(x0, τ ; q)Π

′

R/A(τ, τ ′; q)G′R/A(τ, y0; q) , (3.11)

G′R/A(x0, y0; q) =−
∫ ∞
tint

dτdτ ′ G
d(0)
R/A(x0, τ ; q)Π

′

R/A(τ, τ ′; q)GdR/A(τ, y0; q) . (3.12)

Then we can iteratively solve the above equations by expanding it with respect to the small

off-diagonal component of the Yukawa coupling (h†h)
′

involved in Π
′
:

GdR/A =G
d(0)
R/A +G

d(2)
R/A + · · · , (3.13)

G
d(2)
R/A ≡G

d(0)
R/A ∗Π

′

R/A ∗G
d(0)
R/A ∗Π

′

R/A ∗G
d(0)
R/A ,

G′R/A =−Gd(0)
R/A ∗Π

′

R/A ∗G
d(0)
R/A + · · · . (3.14)

Here ∗ denotes a convolution in the time-direction. The second term G
d(2)
R/A in the flavor

diagonal propagator (3.13) is the second order of (h†h)
′

and smaller than G
d(0)
R/A or G′R/A.

Hence we drop it and write Gd(0) as Gd for notational simplicity in the following.

We note that the above integrals do not have the memory effect. This is because the

convolution is written explicitly as, e.g.,

(GR ∗ΠR ∗GR)(x0, y0) =

∫ x0

y0

du

∫ u

y0

dv GR(x0, u)ΠR(u, v)GR(v, y0) (3.15)

and the integration region is limited between x0 and y0. Namely, the retarded (advanced)

propagators are “local” functions of time during x0 and y0 and insensitive to the past (t <

x0, y0). This is different from the convolution contained in the Wightman functions (2.48)

in which the integration range of time is extended to the past.

3.2 Diagonal GdR/A in thermal equilibrium

We will first look at the flavor diagonal component of the propagator GdR/A(x0, y0; q) in

the thermal equilibrium at temperature T . The scale factor a is also fixed at a0 = a(x0) =

a(y0). Because of the translational invariance in the time direction, GR/A(x0, y0; q) can be

further Fourier transformed:

G
d(eq)
R/A (q) =

∫
d(x0 − y0)e+iq0(x0−y0)G

d(eq)
R/A (x0, y0; q) . (3.16)
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Then the KB equation (3.11) becomes{
γ0q0 −

γ · q
a0
−M −Π

d(eq)
R/A (q0,q)

}
G
d(eq)
R/A (q) = −1 (3.17)

and can be solved

G
d(eq)
R/A (q) = −

(
/q −M −Π

d(eq)
R/A (q)

)−1
. (3.18)

The real part of the self-energy gives the mass and wave-function renormalization. In the

following we assume that they are already taken into account in the bare Lagrangian and

focus only on the imaginary part Πd
ρ = Πd

R − Πd
A = 2i=(Πd

R). The one-loop diagonal self-

energy in the thermal equilibrium is expressed as Πd
ρ = γµΠd

ρ,µ. From the imaginary part

of the pole of the propagator G
d(eq)
R (q), we see that the decay width Γq of the RH neutrino

is given by

q ·Πd(eq)
ρ (q)|q0=±ωq ≡ ∓iωqΓq . (3.19)

The i-th diagonal component G
d(eq)ii
R/A (q) becomes

G
d(eq)ii
R/A (q) ' −

/q −Π
d(eq)ii
R/A (q) +Mi

(q0 ± iΓiq/2)2 − ω2
iq

'


∑
ε=±

iZiε
q0 − Ωεi∑

ε=±

iZiε
q0 − Ω∗εi

(3.20)

where

Ωεi ≡ εωiq − iΓiq/2 (3.21)

and

Ziε =
iε

2ωiq
(/qεi +Mi), /qεi ≡ εωiqγ0 − q · γ/a0 . (3.22)

In the real time representation, it becomes7

G
d(eq)ii
R (x0, y0; q) = +Θ(x0 − y0)

∑
ε=±

Ziεe
−iΩεi(x0−y0) ,

G
d(eq)ii
A (x0, y0; q) = −Θ(y0 − x0)

∑
ε=±

Ziεe
−iΩ∗εi(x0−y0) . (3.23)

Γq is multiplied by the Lorentz boost factor as Γq ' (M/ωq) × Γ where Γ ≡ Γq=0 is

the decay width of the RH neutrino. In the present paper, we consider a situation that

two RH neutrinos are almost degenerate in their masses

∆M ≡ |Mi −Mj | ' Γ . (3.24)

7In the present analysis, we expand various quantities with respect to (h†h)′. Hence the propagator of

i-th flavor is almost identified with the propagator of the i-th mass eigenstate up to higher order terms of

(h†h)′. Propagations of a single Ni corresponds to propagations of a single mass eigenstate with mass Mi

and width Γi.
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In the following, we sometimes use the averages denoted by quantities without the flavor

index i, j

M =
Mi +Mj

2
, ωq =

ωiq + ωjq
2

, Ωε =
Ωεi + Ωεj

2
, etc. (3.25)

3.3 Off-diagonal G′R/A in thermal equilibrium

We then study the behavior of the flavor off-diagonal component G
′(eq)
R/A of the retarded

(advanced) propagators in the thermal equilibrium. From (3.14), it is given by

G
′(eq)ij
R/A (x0, y0; q) = −

∫
dq0

2π
e−iq0(x0−y0)G

d(eq)ii
R/A (q)Π

′(eq)ij
R/A (q)G

d(eq)jj
R/A (q) . (3.26)

The q0 integration can be performed by summing residues of the poles. Eq. (3.20) shows

that the retarded propagator G
d(eq)ii
R has poles at q0 = Ω±,i and the advanced propagator

G
d(eq)jj
A has poles at q0 = Ω∗±,j . The self-energy ΠR/A consists of the SM lepton and

the Higgs propagator, and hence it has poles at q0 = ε`ωp + εφωk ∓ iΓ`φ/2 with a large

imaginary part. Because of this, the residues of the poles of the self-energy are suppressed

by Γi/Γ`φ � 1. Noting the relation

1

q0 − Ωεi

1

q0 − Ωε′j
=

1

Ωεi − Ωε′j

(
1

q0 − Ωεi
− 1

q0 − Ωε′j

)
, (3.27)

we can see that the contribution ε = −ε′ is also suppressed by ∆M/M compared to the

ε = ε′ contribution. Hence, dropping these suppressed contributions, we have

G
′(eq)ij
R (x0, y0; q) '+ Θ(x0 − y0)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−i
Ωεi − Ωεj

×
(
e−iΩεi(x

0−y0) − e−iΩεj(x0−y0)
)

(3.28)

and

G
′(eq)ij
A (x0, y0; q) '−Θ(y0 − x0)

∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

−i
Ω∗εi − Ω∗εj

×
(
e−iΩ

∗
εi(x

0−y0) − e−iΩ
∗
εj(x

0−y0)
)
. (3.29)

We also used the approximation Π(Ωεi) ' Π(Ωεj) ' Π(εωq) because Γi � Γ`φ.

The minus signs in the parentheses come from the relative minus sign of the residue

in (3.27). Because of this, the off-diagonal Green functions vanish at x0 = y0:

G′R/A(x, y)
∣∣
x0=y0 = 0 . (3.30)

This should generally hold by the definition of GR/A in (2.8) because Gijρ (x, y) is propor-

tional to δijδ3(x− y) at equal time x0 = y0:

γ0GijR(x, y)
∣∣
x0=y0 = Θ(x0 − y0)γ0Gijρ (x, y)

∣∣
x0=y0 =

i

2
δ(x− y)δij . (3.31)
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Note that the flavor off-diagonal components of the retarded (advanced) propagators are

enhanced by the factor 1/(Ωi −Ωj) (or its complex conjugate). Such a large enhancement

comes from the large mixing of the RH neutrinos with almost degenerate masses.

For the self-energies ΠR/A = Πh ± Πρ/2, if we use the vacuum value Π′ρ(εωq) =

−gw<(h†h)′iε/qε/(16π) and Π′h(εωq) = 0 as in appendix D, the following expressions [56]

are reproduced:

G
′(eq)ij
R (x0, y0; q) '+ Θ(x0 − y0)

∑
ε

/qε +M

2ωq

gwM
2<(h†h)′/(16π)

M2
i −M2

j − iε(MiΓi −MjΓj)

×
(
e−iΩεi(x

0−y0) − e−iΩεj(x0−y0)
)
,

G
′(eq)ij
A (x0, y0; q) '−Θ(y0 − x0)

∑
ε

/qε +M

2ωq

−gwM2<(h†h)′/(16π)

M2
i −M2

j + iε(MiΓi −MjΓj)

×
(
e−iΩ

∗
εi(x

0−y0) − e−iΩ
∗
εj(x

0−y0)
)
. (3.32)

Here we have used the relation

ε

2ωq

1

Ωεi − Ωεj
' 1

ω2
iq − ω2

jq − iε(ωiqΓiq − ωjqΓjq)

' 1

M2
i −M2

j − iε(MiΓi −MjΓj)
(3.33)

which is valid for ωq ' ωiq ' ωjq and ωqΓq ' MΓ. Hence, the enhancement factor

1/(Ωi − Ωj) corresponds to taking the regulator (MiΓi −MjΓj) is obtained. As shown

in section 3.6, the same enhancement factor, that is, the same regulator appears in the

off-diagonal Wightman function in the thermal equilibrium. For the deviations of the off-

diagonal Wightman functions out of equilibrium, however, we show in section 4.5 that

the enhancement factor is changed to be 1/(Ωi − Ω∗j ). This corresponds to the regulator

(MiΓi +MjΓj).

Finally we note the validity of the expansion with respect to the off-diagonal compo-

nents of the Yukawa couplings (h†h)′. From the expressions (3.32), the iterative expan-

sions (3.13) and (3.14) turn out to be valid when the real part of the off-diagonal compo-

nents of Yukawa coupling <(h†h)′ is smaller than the mass difference |Mi − Mj |/M '
Γ/M ∼ (h†h)dii. Hence the expansion is understood as an expansion of the ratio

(h†h)′/(h†h)d.8

3.4 Wightman functions

The Wightman functions can be solved as (2.14) or (2.48). If we take terms up to the first

order of (h†h)
′
, the flavor diagonal component is given by

Gdii>< =−GdiiR ∗Πdii
><
∗GdiiA . (3.34)

Similarly the flavor off-diagonal component is given by

G
′ij
><

=−G
′ij
R ∗Πdjj

><
∗GdjjA −G

dii
R ∗Πdii

><
∗G

′ij
A −G

dii
R ∗Π

′ij
><
∗GdjjA . (3.35)

8In [56], numerical analysis has been done beyond this parameter region.
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By using (3.14) and (3.34), (3.35) can be also rewritten as

G
′ij
><

=−GdiiR ∗Π
′ij
R ∗G

djj
><
−Gdii>< ∗Π

′ij
A ∗G

djj
A −G

dii
R ∗Π

′ij
><
∗GdjjA (3.36)

which makes it clear that the off-diagonal part of the self-energy causes the flavor mixing

of the RH neutrino.9

3.5 Diagonal Wightman Gd≷ in thermal equilibrium

In the thermal equilibrium, the Wightman function can be easily obtained by using the

KMS relation. From (3.34), the diagonal component Gd(eq)
><

can be written as

Gd(eq)
><

(x0, y0; q) =−
∫
dq0

2π
e−iq0(x0−y0)G

d(eq)
R (q)Πd(eq)

><
(q)G

d(eq)
A (q) . (3.37)

Let f(q) be the thermal distribution function for the RH neutrinos. Note that f(q) is a

function of q0, which is not equal to the on-shell energy ωq. The KMS relation for the

self-energy function is

Π(eq)
><

(q) = −i

{
1− f(q0)

−f(q0)

}
Π(eq)
ρ (q) . (3.38)

Using the solution of the KB equation for the spectral density Gρ ≡ GR − GA = −GR ∗
Πρ ∗GA, we have

Gd(eq)
><

(x0, y0; q)

= −
∫
dq0

2π
e−iq0(x0−y0)(−i)

{
1− f(q0)

−f(q0)

}
G
d(eq)
R (q)Πd(eq)

ρ (q)G
d(eq)
A (q)

= +

∫
dq0

2π
e−iq0(x0−y0)(−i)

{
1− f(q0)

−f(q0)

}[
G
d(eq)
R (q)−Gd(eq)

A (q)
]
. (3.39)

It is nothing but the KMS relation (2.9) for the Green function.

Performing the q0 integration, it becomes

Gd(eq)ii
><

(x0, y0; q) '
∑
ε

{
1− f εiq
−f εiq

}
(−i)Ziε

(
Θ(x0 − y0)e−iΩεi(x

0−y0)

+ Θ(y0 − x0)e−iΩ
∗
εi(x

0−y0)
)
. (3.40)

Here we have dropped the contributions from poles of the distribution function f(q0) since

they are suppressed by Γ/T � 1. Furthermore we used the distribution function

f εip ≡ f(q0 = εωiq) =
1

eεωiq/T + 1
(3.41)

by dropping the imaginary part of the pole Ωεi in f(q) because it is suppressed again by

the factor Γ� T . Recall that it satisfies the relation (1− f εip) = +f−εip .

9This form is convenient for the systematic derivation of the Boltzmann equation from the KB equation

in the hierarchical mass spectrum [68], in which the diagonal components of the Wightman propagator are

identified as the on-shell external line of the RH neutrinos. In this paper, we are focusing on the resonant

mass spectrum, and we use this form, without such an assumption, to solve the off-diagonal components of

the Wightman propagator.
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3.6 Off-diagonal Wightman G′≷ in thermal equilibrium

Next we calculate the flavor off-diagonal component G
′(eq)
><

in the thermal equilibrium. The

off-diagonal component also satisfies the KMS relation and we have

G
′(eq)ij
><

(x0, y0; q) = +

∫
dq0

2π
e−iq0(x0−y0)(−i)

{
1− f(q0)

−f(q0)

}
G
′(eq)ij
ρ (q) (3.42)

= +

∫
dq0

2π
e−iq0(x0−y0)(−i)

{
1− f(q0)

−f(q0)

}[
G
′(eq)ij
R (q)−G

′(eq)ij
A (q)

]
.

Performing q0 integration, it becomes

G
′(eq)ij
><

(x0, y0; q) =
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−i
Ωεi − Ωεj

× (−i)

[{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) −

{
1− f εjq
−f εjq

}
e−iΩεj(x

0−y0)

]
(3.43)

for x0 > y0. We have used similar approximations by dropping suppressed contributions

by Γ/T and Γ/Γ`φ.

The off-diagonal component of the thermal Wightman functions are enhanced by the

same factor 1/(Ωεi−Ωεj) as in (3.28). Hence the flavor oscillation of the Wightman function

in the thermal equilibrium is enhanced by a factor with the regulator MiΓi −MjΓj .

At the temperature T � ∆M we have in mind, fi and fj can be almost identified.

Writing fi ' fj ' f , we have

G
′(eq)ij
><

(x0, y0; q) = Θ(x0 − y0)
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−1

Ωεi − Ωεj

×

{
1− f εq
−f εq

}(
e−iΩεi(x

0−y0) − e−iΩεj(x0−y0)
)

+ Θ(y0 − x0)
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

−1

Ω∗εi − Ω∗εj

×

{
1− f εq
−f εq

}(
e−iΩ

∗
εi(x

0−y0) − e−iΩ
∗
εj(x

0−y0)
)
. (3.44)

The off-diagonal Wightman functions in the thermal equilibrium vanishes at the equal time

x0 = y0:

lim
x0→y0

G
′(eq)ij
≷ (x0, y0; q) ∝ (Ωi − Ωj)(x

0 − y0) ∼ ∆M(x0 − y0)→ 0 . (3.45)

Later this property becomes very important to evaluate the deviation of the off-diagonal

component of the Wightman function when the system is out of thermal equilibrium.

3.7 Summary of this section

In this section, we calculated various propagators of the RH neutrinos in the thermal

equilibrium. We especially focused on the resonant enhancement of the flavor oscillation
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of Ni. Retarded or advanced propagators are composed of two propagating modes, i and

j flavors. The flavor diagonal components are given by (3.20) or (3.23). Since their masses

are almost degenerate, the flavor off-diagonal component is largely enhanced due to their

oscillation as in (3.28) or (3.29). The enhancement factor is proportional to 1/(Ωi−Ωj) (or

its complex conjugate) where Ωi = ωi − iΓi/2 and gives the regulator Rij = MiΓi −MjΓj
to the enhancement factor. Similarly, the resonant enhancement of Wightman functions is

calculated. In the thermal equilibrium, because of the KMS relation, the behavior of the

Wightman functions is the same as the retarded (advanced) Green functions. The flavor

diagonal component Gd≷ is given by (3.40) while the off-diagonal component G
′
≷ is given

by (3.43). A very important property of G
′
≷ is that it vanishes at the equal time as (3.45).

4 Propagators out of equilibrium

Now we study effects of the expanding universe into account. First we summarize various

time-scales in the system. An important time scale is given by the Hubble expansion rate

H of the universe. Other scales are the decay widths of the SM particles Γφ,Γ` and of

the RH neutrino Γi. Another important time scale in the resonant leptogenesis is given by

the mass difference ∆M of the RH neutrinos because it gives the frequency of the flavor

oscillation.

In type I sea-saw model studied in the present paper, the decay width Γi of the RH

neutrino is approximately given by Γi ∼ (h†h)iiMi/8π. The ratio of Γi to the Hubble

parameter (2.26) at temperature T = Mi is rewritten in terms of the “effective neutrino

mass” m̃i as (see e.g. [3])

Ki =
Γi

H(Mi)
=

m̃i

10−3eV
, m̃i ≡

(h†h)iiv
2

Mi
. (4.1)

where v is the scale of the EWSB. Hence if we take the Yukawa coupling so as to m̃i ∼
0.1 eV, the ratio becomes Ki ∼ 100. This corresponds to the strong washout regime.

The Yukawa coupling itself is very small (h ∼ 10−5 for M ∼ 10 TeV), and we have the

inequalities

Γφ,Γ` � Γi � H . (4.2)

4.1 Deviation of self-energy from the thermal value

Under the condition (4.2), we can expand the scale factor as

a(X) = a(t) + a(t)H(t)(X − t) + · · · . (4.3)

The other physical quantities such as temperature are correlated with the change of the

scale factor, and can be similarly expanded.

In order to calculate the out-of-equilibrium behavior of various Green functions in

the expanding universe, we need to evaluate the change of the self-energies Π(x, y). The

self-energy of the RH neutrino is a rapidly decreasing function with the relative time as

∼ e−Γ`φ(x0−y0) due to the SM gauge interactions. So in the leading order approximation,
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the self-energy Π(x, y) can be evaluated by the thermal value with the local temperature at

the center-of-mass time x0 ∼ y0 ∼ Xxy. Therefore it is convenient to write the self-energy as

Π(x0, y0; q) = Π(Xxy; sxy; q) ' Π(eq)(Xxy; sxy; q) , (4.4)

where

Xxy ≡
x0 + y0

2
, sxy ≡ x0 − y0 . (4.5)

The first equation of of (4.4) is the definition of Π(X; s; q). In the second equality, we

replaced Π by its thermal value Π(eq) since the SM leptons and Higgs are in the thermal

equilibrium and the self-energy of the RH neutrinos is well approximated by its thermal

value. Π(eq)(Xxy; s) means the thermal self-energy in the thermal equilibrium evaluated at

time Xxy.

In evaluating the Wightman function G≷ of the RH neutrinos, we need to know a

difference of the self-energy Π(u, v) from the thermal value at a later time t. For example,

in (2.48), the difference of the self-energy Π(Xuv; s) at Xuv and the thermal value Π(eq)(t; s)

at t = Xxy controls the behavior of Gij≷ . In this case, the time difference between Xuv and

t = Xxy is given by the inverse of the decay width Γi of the RH neutrino Ni. Since

1

Γ`φ
� t−Xuv ∼

1

Γi
� 1

H
, (4.6)

the derivative expansion of the self-energy around the thermal value is a good approxima-

tion:

Π(Xuv; s; q) ' Π(eq)(t; s; q) + (Xuv − t)∂tΠ(eq)(t; s; q) + ∆µ(X)Π . (4.7)

The second term is of order O(H/Γi) owing to (4.6). The third term comes from the

chemical potential of leptons generated by CP -violating decay of the RH neutrinos. So it

is the genuine deviation of the self-energy from the thermal value at the same time Xuv.

In this section, we mainly focus on the change of the physical quantities, namely the

second term because the back reaction of the generated lepton asymmetry to the evolution

of the number density of the RH neutrinos is very small. The effect of the chemical

potential becomes important in the generation of the lepton asymmetry and is considered

in section 5.

4.2 Notice for notations

As already used in (4.4), Π(X; s) is the self-energy at the center-of-mass time X with the

relative time s. For the thermal value Π(eq)(X; s), X is not necessarily at the center-of-mass

time, but, more generally, denotes the reference time when it is evaluated. s is always the

relative time. For the thermal value, we also use its Fourier transform

Π(eq)(X; q) =

∫
ds Π(eq)(X; s)e−iqs . (4.8)
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In order to avoid complications of appearance, we use the same notations Π for Π(X; s)

and its Fourier transform Π(X; q). They can be distinguished by their arguments, s or q,

if necessary. We always use s for the relative time and q for its conjugate frequency. For

the first argument (the reference time), we use X or t. The same notation is used for the

thermal Green functions. We hope it does not cause any confusion to the readers.

4.3 Retarded propagator out of equilibrium ∆GR

First we study how the retarded (advanced) propagators of the RH neutrinos deviate from

the thermal value in the expanding universe. Consider the flavor diagonal component GdR/A
first. We write the deviation around the thermal value Gd(eq) by ∆Gd:

GdR/A(Xxy; sxy; q) = G
d(eq)
R/A (t; sxy; q) + ∆GdR/A(Xxy; sxy; q) . (4.9)

Note that ∆GdR/A depends on the reference time t at which the equilibrium value is evalu-

ated. It is calculated in appendix G and given by

∆GdR(x0, y0; q) ' Θ(sxy)
∑
ε

[
∂t
(
Zεe
−iΩεsxy) (Xxy − t)

− i
H(t)M

4ω2
q

γ0γ · q
a(t)

sxy e
−iΩεqsxy

]
. (4.10)

The first term is the change of the physical parameters such as mass or width in Ωε and

Zε. The second term represents a change of the spinor structure due to an expansion of the

universe in the propagator during the propagation. The retarded (advanced) propagator

does not have the memory effect, and the deviation is essentially determined by the change

of the local temperature.

By taking a variation of (3.14), the deviation of the off-diagonal components G′R/A can

be expressed in terms of the deviation of the diagonal components GdR/A as

∆G
′ij
R/A =−Gd(eq)ii

R/A ∗∆Π
′(eq)ij
R/A ∗Gd(eq)jj

R/A −∆GdiiR/A ∗Π
′(eq)ij
R/A ∗Gd(eq)jj

R/A

−Gd(eq)ii
R/A ∗Π

′(eq)ij
R/A ∗∆GdjjR/A . (4.11)

The above formula is used to evaluate the deviation of the Wightman functions of the RH

neutrinos in the latter section 4.5. Since the above relation (4.11) is sufficient for latter

calculations of ∆G
′
≷, we do not calculate an explicit form of ∆G

′
R here. We note that,

since the retarded (advanced) propagators do not have the memory effect, its deviation

is essentially determined by the change of the local temperature. Also note that the

enhancement factor is proportional to 1/(Ωi − Ωj) as the Green functions in the thermal

equilibrium since there is no chance to mix GR and GA.

4.4 Diagonal Wightman out of equilibrium ∆Gd≷

The deviation of the flavor diagonal Wightman function ∆Gd><(x0, y0) can be calculated by

taking a variation of (3.34):

∆Gd>< =−∆GdR ∗Πd(eq)
><

∗Gd(eq)
A −Gd(eq)

R ∗Πd(eq)
><

∗∆GdA

−Gd(eq)
R ∗∆Πd(eq)

><
∗Gd(eq)

A . (4.12)

– 25 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

There are three terms. The first two terms are interpreted as the change of the spectrum

in the expanding universe contained in GR/A. On the other hand, the third term reflects

the memory effect.

The third term is explicitly written10 as

−
∫ x0

−∞
du

∫ z0

−∞
dv G

d(eq)
R (x, u) ∆Πd(eq)

><
(u, v) G

d(eq)
A (v, z) . (4.13)

This shows that the Wightman function is sensitive to the change of the background before

x0 and y0 unlike the retarded or advanced Green functions. Writing the self-energy in terms

of the center of mass coordinate Xuv = (u+ v)/2 and the relative coordinate suv = u− v,

its deviation from the thermal self-energy at time t = x0 is written as

∆Π(eq)
><

(Xuv; suv; q) =

∫
dq0

2π
e−iq0suv∂XΠ(eq)

><
(X; q)

∣∣
X=t

(Xuv − t) (4.14)

'
∫
dq0

2π
e−iq0suv∂X

[
(−i)

{
1− f(q0)

−f(q0)

}
Π(eq)
ρ (X; q)

]
X=t

(Xuv − t) .

Note that |suv| . 1/Γ`φ due to the rapid damping of SM leptons and Higgs propagators.

In the second equality the KMS relation for the thermal self-energy (3.38) is used. As

explained in eq. (4.4), the self-energy function out of equilibrium can be approximated

by the equilibrium self-energy Π(eq) of (3.38) at the local temperature. Note that the

distribution function f(q0) = 1/(eq0/T +1) is time-dependent through the time-dependence

of the temperature T = T (X).

The calculation of the deviation of the diagonal Wightman function ∆Gd≷ is performed

in appendix I. For x0 > y0, it is given by

∆Gdii>< (x0, y0; q) ' (−i)
∑
ε

[{
1− f εiq
−f εiq

}
∆ĜdiiR (x0, y0; ε,q)

+ dt

{
1− f εiq
−f εiq

}(
−1

Γiq
+ (Xxy − t− |sxy|/2)

)
Ziεe
−iΩεi(x0−y0)

]
(4.15)

where

dt ≡
∂T

∂t

∂

∂T
+
∂ωq
∂t

∂

∂ωq
. (4.16)

Each term of (4.15) is classified into three types of terms.

The first term of ∆Gd≷ in the square bracket reflects the change of the spectrum in the

propagators GR and related by the KMS relation (3.39). It reflects a change of the local

temperature during the period x0 and y0.

The term proportional to (Xxy − t) comes from a difference between the distribution

function fq(t) at the reference time t and fq(Xxy) = fq(t)+(Xxy− t)dtfq at time Xxy. The

10Since all quantities are already Fourier transformed in the spatial direction with momentum q, we use

u, v instead of u0, v0 to avoid complications.
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time-dependence of fq comes from both of the local temperature and the physical frequency

ωq as shown in the definition of the derivative operator dt. The term with sxy is similar.

If x0 6= y0, the distribution function at Xxy is affected by the information at the past.

The most important part is the term proportional to 1/Γi, which reflects the memory

effect of the Wightman function. Since the Wightman function is written as a convolution

Gd≷(Xxy; sxy) = −(GR ∗Π≷ ∗GA)(Xxy; sxy), they depend on the information in the past at

Xuv where Xxy −Xuv ∼ 1/Γi (see (4.13)). In the expanding universe, the temperature is

higher in the past and the number density of leptons and Higgs are larger than the present

density. Accordingly the number density of the RH neutrinos is also larger by an amount of

∆

{
1− f εiq
−f εiq

}
≡ dt

{
1− f εiq
−f εiq

}
× −1

Γiq
=
dtf

ε
iq

Γiq
. (4.17)

Hence the term with 1/Γi is directly related to the memory effect of Gd≷.

In applying ∆G≷ to the evolution equation of the lepton asymmetry, it always appears

as a product with the propagators of the SM particles (leptons and Higgs) as in eq. (2.44).

Since these propagators damp quickly with the decay widths Γ`,φ, we can drop all the

terms in (4.15) except the term containing 1/Γi. Furthermore, during the period 1/Γ`φ,

RH neutrinos are almost stable: Γi � Γ`φ. Hence we can replace the frequency Ωi by its

real part ωi.

Let us write this simplified form of ∆G as ∆G:

∆Gdii><
(x0, y0; q) ≡

∑
ε

(−i)∆

{
1− f εiq
−f εiq

}
× Ziεe−iεωiq(x

0−y0) . (4.18)

The definition of Ziε is given in (3.22).
∑
Ziεe
−iεωiq(x0−y0) is nothing but Gdiiρ = GdiiR −GdiiA

within the above simplification.

As a final remark in this section, we mention that the above simplified form is directly

obtained from the classical Boltzmann equation as follows. The Boltzmann equation for

the RH neutrino distribution function is given by

dtfiq =
2

2ωiq

∫
d3p

(2π)3

1

2ωp

∫
d3k

(2π)3

1

2ωk
(2π)4δ4(q − p− k)

× |M|2tree

[
(1− fiq)f (eq)

`p f
(eq)
φk − fiq(1− f

(eq)
`p )(1− f (eq)

φk )
]
. (4.19)

All external momenta are on-shell. Leptons and Higgs are assumed to be in the thermal

equilibrium. |M|2tree = gw(h†h)ii(q · p) is the square of the tree-level decay amplitude of a

RH neutrino into a lepton and a Higgs. The spin in the initial state is averaged and the

isospin sum in the final state is performed. By using the relation (1 − f (eq)
iq )f

(eq)
`p f

(eq)
φk =

f
(eq)
iq (1− f (eq)

`p )(1− f (eq)
φk ), it is rewritten as

dtfiq = − 2

2ωiq

∫
d3p

(2π)3

1

2ωp

∫
d3k

(2π)3

1

2ωk
(2π)4δ4(q − p− k)

× |M|2tree

[
1− f (eq)

`p + f
(eq)
φk

] (
fiq − f (eq)

iq

)
= −Γiq

(
fiq − f (eq)

iq

)
. (4.20)
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Here, we have used the definition of the decay width (3.19) with (D.9).11 The solution

of (4.20) is given by

fiq(t) ∼ f (eq)
iq (t)− 1

Γiq
dtf

(eq)
iq (t) (4.21)

and (4.18) is reproduced.

4.5 Off-diagonal Wightman out of equilibrium ∆G′≷

We then investigate the deviation of the flavor off-diagonal Wightman function. It is most

important for generating the lepton asymmetry. Since the flavor off-diagonal Wightman

function is a sum of three terms as in (3.36), its variation contains 9 terms (J.1). Details

of the calculations are given in appendix J. 6 terms containing ∆GdR/A or ∆Π
′(eq)
R/A reflect

the change of the spectrum Ωε = εωq ∓ iΓq/2 during the decay of Ni. The change of the

distribution functions is contained in the 3 terms with ∆Gd>< and ∆Π
′(eq)
><

. In appendix K,

we give a different derivation of ∆Gd≷ and ∆G
′
≷.

After lengthy calculations in appendix J, we get (J.34). For x0 > y0, ∆G
′ij
≷ becomes

∆G
′ij
><

(x0, y0; q)

'

[∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε∆

{
1− f εjq
−f εjq

}
1

Ωεi − Ω∗εj
e−iΩεsxy

−
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε∆

{
1− f εiq
−f εiq

}
1

Ωεi − Ω∗εj
e−iΩεsxy

]
. (4.22)

In this expression, we have assumed that the reference time t is very close to Xxy, and the

conditions |Xxy − t|, |sxy| . 1/Γ`φ are satisfied. Such conditions appear when we use the

Wightman functions in evaluating the evolution equation of the lepton number. We also

took the leading order terms with respect to Γ/Γ`φ ∼ Γ/T . Eq. (4.22) is of order (H/Γ).12

We have also identified Ωi ' Ωj in e−iΩεsxy since the mass difference ∆M and the

widths Γi are much smaller than the typical scale of 1/|sxy| = Γ`φ.

Here is an important comment. As discussed in (3.6), the off-diagonal components

of the Wightman function in the thermal equilibrium (3.43) is enhanced by a large factor

1/(Ωi − Ωj) because of the resonant oscillation between flavors. But in the limit x0 → y0

it vanishes as in (3.45). Both of these properties are related to the behavior of G
′

R/A

through the KMS relation and the fact that G
′
≷ is separated into the retarded and advanced

propagators as in (3.42).

The deviation ∆G
′ij
≷ does not satisfy either properties. First, the enhancement factor

is replaced by 1/(Ωi − Ω∗j ). Second, ∆G
′ij
≷ does not vanish in the limit x0 → y0:

lim
x0→y0

∆G
′ij
≷ (x0, y0; q) 6= 0 . (4.23)

11The factor [1 − f (eq)
`p + f

(eq)
φk ] represents the finite density effects, which depend only linearly on the

distribution functions [59–62, 64, 78]. The RH neutrino interaction rate including all the relevant SM

couplings was computed in [79].
12Higher order contributions in the gradient expansion are of order H/T as found in [63]. Since H/T �

H/Γ, we do not consider such terms here.
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The replacement of the enhancement factor by 1/(Ωi−Ω∗j ) reflects the mixing between

the retarded and advanced propagators. Such mixing is naturally generated because the off-

diagonal component of the Wightman function is solved as in (3.36) to contain both types

of Green functions. Since the retarded and advanced propagators have poles at q0 = Ωεi

and q0 = Ω∗εj respectively, the appearance of the term 1/(Ωεi − Ω∗εj) by q0 integration

can be naturally understood. In the equilibrium case, since the retarded and advanced

propagators are decoupled by the KMS relation, such mixings of poles at q0 = Ωεi and

at q0 = Ω∗εj disappear in the final result of G
′ij
≷ so that the enhancement factor becomes

1/(Ωεi − Ωεj) or 1/(Ω∗εi − Ω∗εj).

When we use ∆G
′ij
≷ (x0, y0) in the evolution equation of the lepton number, the argu-

ments x0, y0 are restricted to the region sxy = x0− y0 < 1/Γ`φ ∼ 1/T as mentioned above.

During such short period, the decay of Ni is neglected and we can safely replace Ωεi in

e−iΩεsxy by its real part ωε. We write the simplified version of ∆G
′ij
≷ as ∆G′ij>< :

∆G′ij>< (x0, y0; q) '
∑
ε

e−iεωq(x
0−y0) ωqε

(M2
i −M2

j )− iε(MiΓi +MjΓj)

×

{
ZεΠ

′(eq)ij
ρ (εωq)Zε

[
∆

{
1− f εjq
−f εjq

}
+ ∆

{
1− f εiq
−f εiq

}]

+ 2ZεΠ
′(eq)ij
h (εωq)Zε

[
∆

{
1− f εjq
−f εjq

}
−∆

{
1− f εiq
−f εiq

}]}
. (4.24)

The second term in the square bracket with the real part of the self-energy can be dropped

by imposing Πh = 0 by the mass renormalisation. If we include the effect of the temperature

dependent mass, Πh is not always zero.

4.6 Summary of this section

In this section we studied the deviation of various Green functions from the thermal equi-

librium. The deviation of the retarded Green function ∆GdR is mainly caused by the

local change of the physical quantities. It is also true for the diagonal component of the

Wightman function (4.18). It is because the diagonal component in the time-dependent

background is determined by the distribution function at the local temperature.

In contrast, the off-diagonal components behave differently. The off-diagonal compo-

nent of the retarded (advanced) Green functions ∆G
′ij
R is largely enhanced by the factor

1/(Ωi − Ωj) due to the flavor oscillation.

The behavior of the off-diagonal components of the Wightman functions ∆G
′
≷ in (4.22)

is different. First it is not written as a change of the local equilibrium Green function G
′(eq)
≷

in (3.44):

(∆G≷)
′ij 6= ∆(G

′ij
≷ ) . (4.25)

Eq. (J.34) and this property are the main results of this section. The property (4.25)

becomes evident when we notice that G
′ij
≷ vanishes in the leading order approximation at

x0 = y0 as in (3.45) while ∆G
′
≷ is nonzero at the equal time, which produces the lepton
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asymmetry. Furthermore, unlike (3.44), (4.22) is enhanced by a factor 1/(Ωi − Ω∗j ). This

means that the resonant enhancement of ∆G
′
≷ occurs very differently from the resonant

oscillation of G
′(eq)
≷ which is controlled by the KMS relation. Or in other words, the process

of taking a variation ∆ and the flavor oscillation do not commute as in (4.25). We come

back to this property in section 6.

5 Boltzmann eq. from Kadanoff-Baym eq.

The evolution equation of the lepton asymmetry is given by the KB equation (2.44). The

r.h.s. is written as a functional of the Wightman functions of RH neutrinos, SM leptons

and SM Higgs. Since the SM leptons and Higgs are almost in the thermal equilibrium,

their distribution functions are approximated by the thermal values at the local tempera-

ture. But the RH neutrinos decay much slower, and furthermore the RH neutrinos with

almost degenerate masses coherently oscillate between different flavors during their decay.

Hence the Wightman functions Gij≷ of the RH neutrinos must be treated in a full quantum

mechanical way by using the KB equation, not by the classical Boltzmann equation. Once

Gij≷ are obtained, they can be inserted into the r.h.s. of (2.44) to obtain the Boltzmann

equation for the lepton asymmetry.

Here we summarize the basic ingredients of the evolution equation for the lepton asym-

metry. The evolution equation is given by

dnL
dt

+ 3HnL = 2<
∑
i,j

∫
d3q

(2π)3

∫ t

−∞
dτ (h†h)ji

×
[
tr
{
PRG

ij
<(t, τ ; q)PLπ>(τ, t; q)

}
− tr

{
PRG

ij
>(t, τ ; q)PLπ<(τ, t; q)

}]
(5.1)

where PLπ><PR = π̃>< as defined in (2.45). After Fourier transformation of the r.h.s., the

frequencies q0, p0, k0 of the Green functions, G≷(q0) and S><(p0), ∆><(k0) in π̃><, satisfy the

relation q0 = p0 + k0. Furthermore, in the thermal equilibrium, the Wightman functions

are related to the retarded (advanced) propagators through the KMS relation (2.9), (3.38)

and (3.39). Then, by using the relation

fN (q0)(1− f`(p0))(1 + fφ(k0)) = (1− fN (q0))f`(p0)fφ(k0) , (5.2)

two terms in the square bracket cancel each other. Hence there is no generation of lepton

asymmetry in the thermal equilibrium.

5.1 Lepton asymmetry out of equilibrium

In the expanding universe, there are three sources for changing the lepton asymmetry, and

the r.h.s. of (5.1) can be classified into the following three terms:

dnL
dt

+ 3HnL =
∑
K=d,′

(
CK∆f + CKW + CKBR

)
. (5.3)
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Here we rewrite the sum over i, j into the flavor diagonal part K = d and the off-diagonal

part K =′. Namely K = d corresponds to a summation of i = j = 1 and i = j = 2 while

K =′ corresponds to a summation of i = 1, j = 2 and i = 2, j = 1.

The first term CK∆f comes from the deviation of the Wightman functions of the RH

neutrinos (i.e., the distortion of the distribution function ∆f) from the thermal value

(∆G≷)
′

= G
′
≷ −G

′(eq)
≷ 6= 0 , (5.4)

and is given by

CK∆f = 2<
∫

d3q

(2π)3

∑
i,j∈K

(h†h)ji

×
∫ t

−∞
dτ

[
tr
(
PR∆GKij< (t, τ ; q)PLπ

(eq)
> (τ, t; p)

)
− tr

(
PR∆GKij> (t, τ ; q)PLπ

(eq)
< (τ, t; p)

)]
. (5.5)

This generates the lepton asymmetry in the expanding universe.

The second term comes from the deviation of π≷:

∆π≷ = π≷ − π(eq)
≷ (5.6)

which is caused by the deviation of the distribution functions of the SM leptons and Higgs.

CKW is written as

CKW = 2<
∫

d3q

(2π)3

∑
i,j∈K

(h†h)ji

×
∫ t

−∞
dτ

[
tr
(
PRG

K(eq)ij
< (t, τ ; q)PL∆π>(τ, t; p)

)
− tr

(
PRG

K(eq)ij
> (t, τ ; q)PL∆π<(τ, t; p)

)]
. (5.7)

This gives washout effect of the lepton asymmetry.

The third term comes from the back reaction of the generated lepton asymmetry to

G
′
≷, namely to the distribution function of the RH neutrinos. It is written as

CKBR = 2<
∫

d3q

(2π)3

∑
i,j∈K

(h†h)ji

×
∫ t

−∞
dτ

[
tr
{
PR∆µG

Kij
< (t, τ ; q)PLπ

(eq)
> (τ, t; p)

}
− tr

{
PR∆µG

Kij
> (t, τ ; q)PLπ

(eq)
< (τ, t; p)

}]
. (5.8)

Here ∆µG is defined as the back reaction of the generated chemical potential of the lepton

and Higgs to the RH Wightman function.
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5.2 Effect of ∆G≷ on the lepton asymmetry: C∆f

The deviation of the Wightman function from the equilibrium value generates the lepton

asymmetry out of equilibrium.

First let us look at the contribution of the flavor diagonal (K = d) part of CK∆f .

Inserting (4.18)13 and (2.46) into (5.5), we have

Cd∆f =
∑
i

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)3ωq
(2π)3δ3(q − p− k)

Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4
gw(h†h)ii(q · p)

×
{

∆fiq

(
(1− f`p)(1 + fφk)− (1− f`p)(1 + fφk)

)
−∆(1− fiq)

(
f`pfφk − f`pfφk

)}
= 0 . (5.9)

Here we took all the ε’s, ε in (4.18) and ε`, εφ in (2.46), the same ε = ε` = εφ because the

temperature considered is not so high that a process like φ→ `+N does not occur. Hence

the flavor diagonal component does not generate the asymmetry. In the last equality, we

used the relation f` = f` = f
(eq)
` , fφ = fφ = f

(eq)
φ for the thermal distribution function.

Next we calculate the off-diagonal term C′∆f with K =′. Inserting (4.24) into (5.5),

we have

C′∆f =
∑

i,j(i 6=j)

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)32ωq

(2π)3δ3(q − p− k)Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4
gw=(h†h)2

ij (5.10)

[
(M2

i −M2
j )/2

(M2
i −M2

j )2 + (MiΓi +MjΓj)2(
4i(q · π(eq)

ρ (ωq))(q · p) + 4i
(
−M2(p · π(eq)

ρ (ωq)) + (q · π(eq)
ρ (ωq))(q · p)

))
(

[∆fiq + ∆fjq] (1− f (eq)
`p )(1 + f

(eq)
φk )− [∆(1− fiq) + ∆(1− fjq)] f (eq)

`p f
(eq)
φk

)
+

MiΓi +MjΓj
(M2

i −M2
j )2 + (MiΓi +MjΓj)2(

4(q · π(eq)
h (ωq))(q · p) + 4

(
−M2(p · π(eq)

h (ωq)) + (q · π(eq)
h (ωq))(q · p)

))
(

[∆fiq −∆fjq] (1− f (eq)
`p )(1 + f

(eq)
φk )− [∆(1− fiq)−∆(1− fjq)] f (eq)

`p f
(eq)
φk

)]
.

Here, using the definition of π>< in (2.46), we have defined πρ = i(π> − π<) = (πR − πA),

πh = (πR + πA)/2 and their Fourier transform in the time direction, to separate the self-

energies Π
′(eq)
ρ/h in (4.24) into the Yukawa coupling (h†h)′ and the equilibrium values of πρ/h

13We note again that (Xxy − t) and sxy of the arguments of G≷(x0, y0) are smaller than 1/Γ`φ due to

π><(τ, t) ∼ e−(t−τ)Γ`φ/2. Hence the use of ∆G is justified.
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(see (D.8) and (D.14)). If we use the vacuum values14 for the self-energy calculated in

appendix D, i.e., πρ(εωq) = −gwiε/qε/(16π) and πh(εωq) = 0, the second term in the square

bracket is dropped and (5.10) is simplified as

C′∆f =
∑
i=1,2

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)3ωq

(2π)3δ3(q − p− k)Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4

× δ|M|2
(

∆fiq(1− f (eq)
`p )(1 + f

(eq)
φk )−∆(1− fiq)f (eq)

`p f
(eq)
φk

)
(5.11)

where

δ|M|2 ≡ gw=(h†h)2
ij(q · p)

gwM
2

8π

M2
i −M2

j

(M2
i −M2

j )2 + (MiΓi +MjΓj)2
. (5.12)

The factor δ|M|2 can be interpreted as the CP -asymmetric part of the decay amplitudes,

which gives the CP -asymmetry of the decay rates ΓNi→`φ − ΓNi→`φ.

The term (5.11) produces the lepton asymmetry through the CP -asymmetric decay of

the RH neutrinos that are out of the thermal equilibrium. The distortion of the distribution

function is given in (4.17). An important point in (5.11) is that the enhancement factor

of the CP -asymmetry is given by (M2
i −M2

j )/((M2
i −M2

j )2 + (MiΓi + MjΓj)
2), and the

regulator Rij relevant to the CP -asymmetric decay of the RH neutrinos is given, not by

(MiΓi −MjΓj), but by (MiΓi +MjΓj).

5.3 Washout effect on the lepton asymmetry: CW
The term CKW washes out the generated lepton asymmetry. In order to calculate ∆π, we

first perform the Fourier transform of π≷(τ, t; q) defined in (2.46):

π><(q) =− gw
∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

(2π)3δ3(q − p− k) Γ`φ
(q0 − ε`ωp − εφωk)2 + Γ2

`φ/4
/pε`D

ε`εφ
><(p,k) (5.13)

where Dε`εφ><(p,k) is defined in (2.47). Then ∆π≷ is given by

∆π><(q) ≡ π><(q)− π(eq)
><

(q) (5.14)

=− gw
∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

(2π)3δ3(q − p− k)Γ`φ
(q0 − ε`ωp − εφωk)2 + Γ2

`φ/4
/pε`∆D

ε`εφ
><(p,k)

where ∆Dε`εφ><(p,k) ≡ D
ε`εφ
><(p,k) −D

ε`εφ(eq)
><(p,k) .

First consider the diagonal component K = d. Inserting (3.40) into (5.7), we have

CdW =
∑
i

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)3ωq

(2π)3δ3(q − p− k)Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4

gw(h†h)ii(q · p)
{
f

(eq)
iq ∆

{
(1− f`p)(1 + fφk)− (1− f`p)(1 + fφk)

}
− (1− f (eq)

iq )∆
{
f`pfφk − f`pfφk

}}
. (5.15)

14In the flavored leptogenesis, medium effects play an important role [65, 75].
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This gives a washout effect on the generated lepton asymmetry and it is physically inter-

preted as the inverse decay of the RH neutrinos.

Next let us see the flavor off-diagonal component, K =′. Because of the property (3.45),

it vanishes in the leading order approximation:

C′W = 0 . (5.16)

Hence only the diagonal component plays a role of washing out the generated lepton

asymmetry.

5.4 Backreaction of the generated lepton asymmetry: CBR

Finally let us see the back reaction of the generated lepton number asymmetry (i.e., the

nonzero chemical potential of the SM leptons) to the Wightman functions of the RH

neutrinos.

By using (D.6) and the flavor symmetry Sαβ = δαβS, the deviation of the self-energy

in the presence of the chemical potential is written as

∆µ(t)
Πij
><

(q) =

∫
dse+iq0s∆µ(t)

Πij
><

(X = t; s; q)

=(h†h)ijPL∆π><(q) + (h†h)∗ijPR∆π><(q) . (5.17)

∆π>< is the CP -conjugate of ∆π>< and obtained by changing the sign of the chemical

potential of the SM leptons and the Higgs. ∆µG
d
><

(q) is given by replacing Πd
><

in (3.34) by

i = j component of (5.17), and the contribution of the flavor diagonal component is shown

to vanishes:

CdBR = 0 . (5.18)

Similarly the off-diagonal contribution becomes

C′BR =
∑
i

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)3ωq

(2π)3δ3(q − p− k)Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4

gw(q · p)(−1)
gwM

2

16π
(=(h†h)ij)

2 (MiΓi +MjΓj)

(M2
i −M2

j )2 + (MiΓi +MjΓj)2

×
[
f

(eq)
iq ∆

(
(1− f`p)(1 + fφk)− (1− f`p)(1 + fφk)

)
− (1− f (eq)

iq )∆
{
f`pfφk − f`pfφk

}]
. (5.19)

Details of the calculations are given in appendix L. In the above calculations, we took the

weak coupling limit discussed in appendix D. This term represents the effect of back reaction

of the generated lepton asymmetry on the Wightman functions of the RH neutrinos. Such a

term appears because we first solved the propagators of the RH neutrinos in the background

of the SM leptons and the Higgs. The relative sign of the back reaction to the washout

effect CdW in (5.15) is opposite so that the back reaction tends to reduce the washout of the

generation of lepton asymmetry. If we solve the KB equations for the lepton asymmetry

and the Wightman functions of the RH neutrinos simultaneously, the generated lepton

asymmetry (namely the effect of the chemical potential) makes the RH neutrinos further

away from the equilibrium. It is the reason why the back reaction reduces the washout.
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5.5 CP -violating parameter

The CP -violating parameter can be read off from (5.11). δ|M|2 of (5.12) gives the CP -

asymmetry of the decay rates ΓNi→`φ − ΓNi→`φ. Since the tree decay amplitude is given

by |M|2tree = gw(h†h)ii(q · p), the CP -violating parameter εi is given by

εi ≡
ΓNi→`φ − ΓNi→`φ
ΓNi→`φ + ΓNi→`φ

=

∑
j(6=i) gw=(h†h)2

ij(q · p)
gwM2

8π

M2
i −M2

j

(M2
i −M2

j )2+(MiΓi+MjΓj)2

2× gw(h†h)ii(q · p)

=
∑
j(6=i)

=(h†h)2
ij

(h†h)ii

gwM
2

16π

M2
i −M2

j

((M2
i −M2

j ))2 + (MiΓi +MjΓj)2

=
∑
j(6=i)

=(h†h)2
ij

(h†h)ii(h†h)jj

(M2
i −M2

j )MiΓj

(M2
i −M2

j )2 + (MiΓi +MjΓj)2
× (1 +O(∆M/M)) . (5.20)

Hence the regulator discussed in the introduction is given by

Rij = MiΓi +MjΓj . (5.21)

The result is consistent with the result obtained in [56]. In the paper [56], the CP -

violating parameter is obtained indirectly from the generated lepton asymmetry in a static

background with an out-of-equilibrium initial condition. In our calculation, we directly

obtained the same result in the expanding universe. It shows that the result obtained by

Garny et al. is universal and can be applied to the thermal resonant leptogenesis.

5.6 Summary of this section

By using ∆G
′ij
≷ calculated in the previous section 4 in the r.h.s. of (5.1), we obtained

the evolution equation (5.3) with three terms. C′∆f generates the lepton asymmetry and

corresponds to the CP -asymmetric decay of the RH neutrinos. CW gives the washout

effects on the generated lepton numbers. CBR is the effect of the back reactions of the

generated lepton asymmetry on the distribution functions of the RH neutrinos. From C′∆f ,

we extracted the CP -asymmetric parameter εi given in (5.20). The enhancement factor

due to the degenerate masses is regularized with an regulator Rij = MiΓi + MjΓj , which

reflects the enhancement factor of ∆G
′
≷.

6 Physical interpretation of the regulators

In this section, we give a physical interpretation of the appearance of the regulator

Rij = |MiΓi + MjΓj | instead of |MiΓi −MjΓj | in the flavor off-diagonal component of

the Wightman function ∆G
′
≷.

The Wightman Green functions of the RH neutrinos are solved as in (3.34) and (3.35)

in terms of the retarded, advanced propagators and the self-enegies. These equations mean

that the information of the distribution function of the RH neutrinos in the Wightman
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Figure 3. The information of the Wightman functions of the RH neutrinos are encoded in the self-

energies Π ≷ in the past and transferred from the past to t = x0, y0 by the retarded and advanced

Green functions.

functions Gij≷ are encoded in the self-energies Πkl
≷ in the past, and transferred from the

past to the present t = x0, y0. The self-energies Πkl
≷ encode the information of the distri-

butions functions of the SM leptons and the Higgs in the past (see figure 3). In the flavor

diagonal case of (3.34), all flavors of the RH neutrinos are the same in the leading order

approximation. On the other hand, in the flavor off-diagonal case of (3.35), the flavor

oscillation plays an important role.

Here we note that, as shown in (3.28) and (3.29), G
′ij
R/A is a coherent sum of two terms,

each of which corresponds to a propagation of the i-th (or j-th) flavor RH neutrino. We

divide it as follows:

G
′ij
R =

[
G
′ij
R

]
i
+
[
G
′ij
R

]
j
. (6.1)

A precise definition is given in (M.1).

6.1 On-shell and off-shell separation of G
′(eq)
≷

Now let’s investigate G
′ij
><

. By looking at the first term of (3.35), it contains GdjjA which de-

scribes the propagation of the j-th RH neutrino. The propagator G
′ij
R in the first term

contains both of the propagations of i-th and j-th flavor neutrinos. If the j-th neu-

trino propagates in G
′ij
R , only a single (j-th) neutrino propagates from the past, when

the decay/inverse-decay represented by Π≷ takes place, to the present at t = x0, y0. We

call this type of contributions the “on-shell” contributions.15 These contributions are all

taken into account in the classical Boltzmann equation.

On the contrary, if the i-th neutrino propagates in G
′ij
R , two different flavors propagate

from the past to the present. This type of contributions are essentially “off-shell”. In the

classical Boltzmann equation, we first calculate the S-matrix elements of various processes

and the external lines are taken to be on-shell. Hence this type of “off-shell” contributions

are not taken into account by ordinary methods.16 Separation of various Green functions,

especially ∆G
′ij
≷ , are calculated in appendix M.

For G
′
≷ in eq. (3.35), on-shell contributions come from j-th propagation

[
G
′ij
R

]
j

of G
′ij
R

in the first term and the i-th propagation
[
G
′ij
A

]
i

of G
′ij
A in the second term. All the other

15See the footnote of the section 3.2. Propagations of a single Ni corresponds to propagations of a single

mass eigenstate with mass Mi and width Γi. It is why we call this contrition as “on-shell”.
16In the evolution equation of the lepton number, “off-shell” contributions can be interpreted as the

interference terms in the (inverse)decay process of the superposition of different mass eigenstates.
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terms, i-th propagation
[
G
′ij
R

]
i

of G
′ij
R in the first term, the j-th propagation

[
G
′ij
A

]
j

of

G
′ij
A in the second term give the off-shell contributions. The third term is off-shell since

different mass eigenstates propagate in GdiiR and GdjjA . G
′(eq)
R is separated into

G
′(eq)
R =

[
G
′(eq)
R

]
on-shell +

[
G
′(eq)
R

]
off-shell . (6.2)

If we neglect the off-shell terms and take only the on-shell terms,
[
G
′(eq)
R

]
on-shell becomes

(x0 > y0) [
G
′(eq)ij
><

(x0, y0; q)
]
on-shell

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+i

Ωεi − Ωεj
(−i)

{
1− f εjq
−f εjq

}
e−iΩεj(x

0−y0)

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

−i
Ω∗εi − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) . (6.3)

Note that the sum of the on-shell contributions do not vanish even at x0 = y0 and fi ' fj :

lim
x0→y0

[
G
′(eq)ij
><

(x0, y0; q)
]
on-shell 6= 0 . (6.4)

It is different from the property of the full contributions given in (3.43).

6.2 On-shell and off-shell separation of ∆G
′
≷

We next investigate ∆G
′
≷. We show that neglecting the off-shell contribution in ∆G

′
≷, we

get an enhancement factor for the CP -violating parameter with a regulator |MiΓi−MjΓj |.
In appendix M.7, we separate ∆G

′
≷ into on-shell and off-shell contributions:17

∆G
′
≷ =

[
∆G

′ij
><

]
on-shell +

[
∆G

′ij
><

]
off-shell . (6.5)

The full ∆G
′
≷ is given in (J.34). The on-shell contribution is given by (for x0 > y0)[
∆G

′ij
><

(x0, y0; q)
]
on-shell

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)∆

{
1− f εjq
−f εjq

}
i

Ωεi − Ωεj
e−iΩεsxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)∆

{
1− f εiq
−f εiq

}
−i

Ω∗εi − Ω∗εj
e−iΩεsxy . (6.6)

17This is analogous to the separation in [56], in which the authors emphasized an importance of the first

principle calculation to keep the quantum coherence between the different flavor RH neutrinos. Calculating

the evolution of the generated lepton number under a non-equilibrium initial condition in the flat space-time,

they found two different behaviors of the generated lepton number. One is the ordinary term common in the

conventional Boltzmann equation. The other term is specific to the quantum treatment by the quantum KB

approach. The latter oscillates in time and reduces the eventual lepton number. “Off-shell” contribution

here corresponds to the latter effect. However, note that in the present case the CP -violating parameter,

and hence the resulting lepton number does not oscillate. the oscillatory behavior is averaged out because

the deviation from the equilibrium is caused by the expansion of the universe, and its expansion rate H is

much smaller than the oscillation scale ∆M ' Γ. This averaging also occurs in the analysis by [71] in the

strong washout regime.
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This on-shell contribution has two important properties. First, it satisfies[
∆G

′ij
><

]
on-shell = ∆

[
G
′ij
><

]
on-shell (6.7)

where
[
G
′ij
><

]
on-shell is given in (6.3). The on-shell contribution of (M.28) is simply obtained

by replacing f (eq) by its variation ∆f in (6.3). This replacing means that the process of

the flavor oscillations and the process of taking a variation from the thermal values are

commutative if we neglect the off-shell contributions. For full quantum calculations, (3.44)

cannot be obtained by such a replacement from (3.43). This is because the flavor oscillations

and the deviation from the thermal values are coherently mixed and these processes are not

commutable. Namely, dropping the off-shell contributions corresponds to neglecting the

interference between the flavor oscillations and the deviation of the distribution functions

from the thermal equilibrium.

Second, compared with the full result (J.34), the enhancement factor 1/(Ωi − Ω∗j ) is

replaced by 1/(Ωi − Ωj). It is related to the above non-commutativity of taking ∆ and

flavor oscillation effects.

By inserting the on-shell formula (6.3) and (M.28) into (5.5), and supposing πρ(εωq) =

−gwiε/qε/(16π), πh(εωq) = 0, we have an on-shell approximation
[
C′∆f

]
on-shell of C′∆f :

[
C′∆f

]
on-shell '

∑
i=1,2

∫
d3p

(2π)32ωp

d3k

(2π)32ωk

d3q

(2π)3ωq

(2π)3δ3(q − p− k)Γ`φ
(ωq − ωp − ωk)2 + Γ2

`φ/4

gw=(h†h)2
ij(q · p)

gwM
2

8π

M2
i −M2

j

(M2
i −M2

j )2 + (MiΓi −MjΓj)2

×
{

∆fiq(1− f (eq)
`p )(1 + f

(eq)
φk )−∆(1− fiq)f (eq)

`p f
(eq)
φk

}
. (6.8)

Hence the regulator |MiΓi +MjΓj | is replace by |MiΓi−MjΓj | if we take only the on-shell

terms. It is not valid in general, especially in the resonant leptogenesis. If the masses are

hierarchical, it becomes identical with the correct value in (5.11).

6.3 Summary of this section

As emphasized above, if we neglect the off-shell contributions that are not included in the

ordinary Boltzmann type analysis, we get a result (6.6) which is different from the correct

one given in (4.22). The only difference is the enhancement factor, and if the mass dif-

ference is much larger than the width they coincide. But the difference is enlarged when

the masses are almost degenerate. This reflects the fact that the flavor oscillation becomes

important only for degenerate masses. Another important point is that the property of the

noncommutativity (4.25) in the full result disappears if we take only the on-shell contri-

butions as in (6.7). The noncommutativity is related to the vanishing of G
′
≷ at the equal

time (3.45). For the on-shell contributions,
[
G
′
≷

]
on-shell does not vanish as shown in (6.4).

Based on this observation, we give another derivation of the properties of ∆G
′
≷ in ap-

pendix K by directly solving the KB equations. If we assume the vanishing condition (K.18)

of G
′
≷ which is equivalent to (3.45), we show that the enhancement factor with a regulator

MiΓi + MjΓj appears as in (K.19). On the other hand, if we erroneously assume that it

does not vanish, it leads to a much larger enhancement factor.
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7 Summary

We investigate the Kadanoff-Baym equations of the thermal resonant leptogenesis in the

expanding universe. The lepton asymmetry is generated in the CP -asymmetric decay of

the RH neutrinos which are deviated from the thermal equilibrium. If the RH neutrinos

have almost degenerate masses, they coherently oscillate during their decay into the SM

leptons and the Higgs. In such a situation, the classical Boltzmann equation is not valid

because the decays and the inverse-decays of the RH neutrinos cannot be separated into

different processes, and the full quantum mechanical approach is necessary. A systematic

approach is given by solving the KB equations.

Kadanoff-Baym approach to the resonant leptogenesis was performed in the previous

analysis [56]. In the paper, the authors studied the coherent oscillation of the RH neutrinos

in a time-independent background with a non-equilibrium initial condition. In the process

of approaching the equilibrium, the RH neutrinos coherently oscillate and decay into the

SM particles. From the generated amount of the lepton number, they extracted the CP -

violating parameter εi of the i-th RH neutrino (1.1) and obtained the regulator Rij =

|MiΓi +MjΓj |. Since the resonant enhancement is the key to the resonant leptogenesis, it

is essential to obtain the correct form of the regulator.

In the present paper, by extending the analysis in the static background [56] to the

thermal resonant leptogenesis in the expanding universe, we obtain an analytical expression

of the evolution equation of the lepton number asymmetry under an assumption that the

off-diagonal component of the Yukawa coupling (h†h)′ is smaller than the diagonal one. The

CP -violating parameter is obtained as in (5.20). The regulator we obtained is consistent

with the result [56].

The difference between the regulator Rij = |MiΓi+MjΓj | and Rij = |MiΓi−MjΓj | ob-

tained by [57] comes from different forms of the enhancement factors of flavor off-diagonal

components of the RH neutrino propagators. Since the RH neutrinos have almost degen-

erate masses, they coherently oscillate very much. We show that the resonant oscillations

between different flavors have two different types, one proportional to 1/(Ωi−Ω∗j ) and the

other proportional to 1/(Ωi − Ωj). Here Ωi = ωiq − iΓiq/2 is a position of the pole of the

i-th RH neutrino. In the thermal equilibrium, the resonant oscillations in the flavor off-

diagonal Green functions have the type 1/(Ωi − Ωj) ( or its complex conjugate) as shown

in (3.28) or in (3.44). Since 1/(Ωi − Ωj) is rewritten by (3.33), the enhancement of fla-

vor oscillation corresponds to the regulator Rij = |MiΓi −MjΓj |. However, the deviation

of the off-diagonal components of out of equilibrium has a different enhancement factor

1/(Ωi − Ω∗j ) as shown in (4.22), which corresponds to the regulator Rij = |MiΓi +MjΓj |.
Physical interpretation of the change of the regulator is given in section 6. The off-shell

contributions to the off-diagonal component to the Wightman functions are essential which

can be incorporated only by the KB equations. The property (3.45) is also important for

this change of the regulator. As we show in appendix K, if we erroneously assume that

the off-diagonal component of the Wightman function is non-vanishing and its deviation is

given by the change of the local temperature, it leads to much more enhanced oscillation

similar to the regulator Rij = |MiΓi −MjΓj |.
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In the present paper, we focus on the formalism of the thermal resonant leptogenesis

and derivations of the CP -violating parameter in the expanding universe. Phenomenolog-

ical investigations of the amount of the generated lepton asymmetry and the lower bound

of the leptogenesis scale consistent with the neutrino oscillation data are left for future

investigations.

Acknowledgments

The research of SI is supported by Grant-in-Aid for Scientific Research (C) No. 23540329

and (A) No. 23244057. This work was also partially supported by “The Center for the

Promotion of Integrated Sciences (CPIS)” of Sokendai. The research of MY is supported

by the Grant-in-Aid for Scientific research from the Ministry of Education, Science, Sports,

and Culture, Japan, No. 23740208, and No. 25003345.

A CTP formalism

In this appendix, we briefly review the closed time path (CTP) formalism.

In equilibrium field theories, we implicitly assume that the initial and final states

asymptotically approach the ground state of the free Hamiltonian. But this does not

hold in general, especially in time-dependent backgrounds such as the evolving universe.

The final state is generally different from the initial state. The CTP formalism, or the

Schwinger-Keldish formalism, is the general formalism to calculate physical quantities for

time-dependent wave functions.

Suppose that a system is described by a Hamiltonian Ĥ0 + Ĥ1, where Ĥ0 and Ĥ1 are

free and interaction Hamiltonians, and that the system is in the initial state |ψi〉 at time

t = ti. In the interaction picture, the expectation value of an observable Ô at time t is

given by

O(t) = 〈ψIi (t)|ÔI(t)|ψIi (t)〉 = 〈ψi|U I(ti, t)ÔI(t)U I(t, ti)|ψi〉 . (A.1)

Here the operator in the interaction picture ÔI(t) is related to the operator in the Heisen-

berg picture as

ÔH(t) = U I(t, ti)ÔI(t)U I†(t, ti) ,

U I(t, t′) = T exp

(
−i
∫ t

t′
dt′′Ĥ1

I
(t′′)

)
. (A.2)

In equilibrium cases, the final state at time t = tf is assumed to be proportional to

the initial state U I(tf , ti)|ψi〉 = eiθ|ψi〉 where θ(tf , ti) is a c-number phase. Then we can

factorize O(t) of (A.1) as

O(t) = 〈ψi|U I(ti, tf )|ψi〉〈ψi|U I(tf , t)ÔI(t)U I(t, ti)|ψi〉
= e−iθ〈ψi|U I(tf , t)ÔI(t)U I(t, ti)|ψi〉 . (A.3)
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Figure 4. A closed time path C from ti to tf and then back to ti. (i.e., C = C+ + C−.) Operators

are inserted at t = t1 and t2 for the time ordered product O(t1, t2). Interaction vertices are inserted

everywhere on the CTP.

Similarly, an expectation value of the time-ordering product of two operators ÔI1(t1) and

ÔI2(t2) is given by

O(t1, t2) = e−iθ〈ψi|T
(
ÔI1(t1)ÔI2(t2)U I(tf , ti)

)
|ψi〉 . (A.4)

This formula gives an ordinary perturbative expansion of correlation functions in equilib-

rium field theories. Namely, if we take ti → −∞ and tf → ∞, the interaction vertices

ĤI(t) are inserted in −∞ < t <∞.

In non-equilibrium cases where the final state is no longer proportional to the initial

state, the factorization property does not hold and we have

O(t1, t2) = 〈ψi|U I(ti, tf )T
(
ÔI1(t1)ÔI2(t2)U I(tf , ti)

)
|ψi〉 . (A.5)

In perturbative expansions, the interaction vertices are inserted not only on the path C+

from ti to tf , but also on the backward path C− from tf to ti. Figure 4 shows the closed

time path (CTP), C = C+ + C−. In this formalism, the final state is not specified at all and

we can calculate time-dependence of various quantities as in (A.5). The time-ordering TC
is defined on the CTP as a path-ordering along C = C+ + C−.

B Evolution equations of various propagators

We define various propagators and give a brief derivation of their evolution equations. In

the following we consider a real (Majorana) fermion field ψ̂ and write its conjugate by

ψ̂ = ψ̂tC where C = iγ2γ0. In the CTP formalism, a generating function of time-ordered

products of operators is given by

Z[J ] = eiW [J ] =
〈

TC e
i
∫
C d

4x
√
−g J(x)ψ̂(x)

〉
=

∫
dΨ+dΨ−〈Ψ+|ρ̂(ti)|Ψ−〉

∫
D′ψ eiS[ψ]+i

∫
C d

4x
√
−g J(x)ψ(x) (B.1)

where ρ̂(ti) = |ψi〉〈ψi|. The path integral
∫
D′ψ denotes an integration of the Grassmann

variables ψ± on C± with the fixed boundary conditions ψ±(ti) = Ψ±. The integrations of

Ψ± represent an weighting by the initial wave function |ψi〉. The source J(x) is defined on

C = C+ + C−. The 1PI effective action is obtained from the generating function W [J ] of

the connected Green function by the Legendre transformation. Defining the classical field
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by the left-derivative of W [J ] with respect to the Grassmannian source J :

Ψ(x) = +
δW [J ]

δJ(x)
, (B.2)

we have

Γ[Ψ] = W [J ]−
∫
C
d4xgJ(x)Ψ(x) . (B.3)

For notational simplicity, we use the following abbreviation

d4xg ≡ d4x
√
−g(x) (B.4)

unless the explicit dependence of the measure on x is necessary. The stationary condition

(δ/δΨ(x))Γ[Ψ] = 0 at J = 0 gives the equation of motion of Ψ.

By taking the second derivative of the effective action Γ with respect to Ψ, we obtain

the Schwinger-Dyson (SD) equation

iG−1(x, y) = iG−1
0 (x, y)− iΠ(x, y) . (B.5)

Π is the self-energy and only 1PI diagrams contribute to it. The connected Green function

G on C is defined by

G(x, y) = 〈TCψ̂(x)ψ̂(y)〉
= ΘC(x

0 − y0)G>(x, y) + ΘC(y
0 − x0)G<(x, y) , (B.6)

where ΘC(x0 − y0) is the step function on C and

G<(x, y) ≡ −〈ψ̂(y)ψ̂(x)〉 , G>(x, y) ≡ 〈ψ̂(x)ψ̂(y)〉 (B.7)

are the Wightman Green functions. iG−1
0 (x, y) = iG−1

0(x)δ
g
C(x − y) is an inverse of the free

propagator and Π(x, y) is the self-energy of the fermion field ψ.

The statistical propagator GF (x, y) and the spectral function Gρ(x, y) are defined by

GF (x, y) =
1

2
(G>(x, y) +G<(x, y)) =

1

2
〈[ψ̂(x), ψ̂(y)]〉 , (B.8)

Gρ(x, y) = i (G>(x, y)−G<(x, y)) = i〈{ψ̂(x), ψ̂(y)}〉 . (B.9)

GF contains information of the distribution function of the specified state while Gρ depends

only on the spectrum of the system. In this sense, GF is dynamical while Gρ is kinematical.

Especially, Gρ(x, y) becomes proportional to the spatial delta-function δ(3)(x − y) in the

equal-time limit. We further define the retarded and advanced Green functions by

GR/A(x, y) = ±Θ(±(x0 − y0))Gρ(x, y). (B.10)

They are related to Gρ as

GR(x, y)−GA(x, y) = Gρ(x, y) ,

GR(x, y) +GA(x, y) = sign(x0 − y0)Gρ(x, y) . (B.11)
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In terms of GF and Gρ, the Green function (B.6) can be written as

G(x, y) =GF (x, y)− i

2
signC(x

0 − y0)Gρ(x, y) , (B.12)

where the sign-function on C is defined by

signC(x
0 − y0) = ΘC(x

0 − y0)−ΘC(y
0 − x0) . (B.13)

By convoluting (B.5) with the full propagator G, we have

iG−1
0(x)G(x, y)− i

∫
C
d4zg Π(x, z)G(z, y) = iδgC(x− y) . (B.14)

Here δgC(x − y) is the delta-function on C with the space-time metric g, and satisfies∫
C d

4zgδ
g
C(x − y) = 1. By denoting x on C± as x± respectively, the delta-function on C

can be expressed by a 2× 2 matrix:

δgC(xa − yb) = cabδ
g(x− y) , cab = diag(1,−1) (B.15)

where a, b takes + or −. The minus sign on C− comes from the backward integral of the

time variable and corresponds to the anti-time-ordering of the Green function G in (B.6).

δg(x− y) is an ordinary delta-function for (x− y).

The 2-point function G(x, y) of (B.6) with x, y ∈ C can be similarly decomposed

(depending on whether x, y are on C+ or C−) into a 2× 2 matrix form as

Gab(x, y) =

(
G++(x, y) G+−(x, y)

G−+(x, y) G−−(x, y)

)
=

(
GT(x, y) G<(x, y)

G>(x, y) G
T̃

(x, y)

)
(B.16)

where T, T̃ denote time and anti-time orderings respectively, and

GT(x, y) = Θ(x0 − y0)G>(x, y) + Θ(y0 − x0)G<(x, y) ,

G
T̃

(x, y) = Θ(x0 − y0)G<(x, y) + Θ(y0 − x0)G>(x, y) . (B.17)

Θ(x0 − y0) is the ordinary step-function. By using (B.12) and (B.11), we have

Gab(x, y) =

(
GF − i

2sign(x0 − y0)Gρ GF + i
2Gρ

GF − i
2Gρ GF + i

2sign(x0 − y0)Gρ

)

=

(
GF − i

2(GR +GA) GF + i
2(GR −GA)

GF − i
2(GR −GA) GF + i

2(GR +GA)

)

= U t

(
0 GA
GR GF

)
U (B.18)

where

U ≡

(
−i/2 i/2

1 1

)
. (B.19)
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We also decompose the self-energy Π(x, y) as

Π(x, y) = ΘC(x
0 − y0)Π>(x, y) + ΘC(y

0 − x0)Π<(x, y)

= ΠF (x, y)− i

2
signC(x

0 − y0)Πρ(x, y) . (B.20)

Defining ΠR/A by

ΠR/A(x, y) = ±Θ(±(x0 − y0))Πρ(x, y) , (B.21)

the matrix form of the self-energy is obtained as

Πab =

(
ΠT Π<

Π> Π
T̃

)
= U t

(
0 ΠA

ΠR ΠF

)
U . (B.22)

Using these matrix forms of Gab and Πab, the equation (B.14) becomes

iG−1
0(x)Gab(x, y)− i

∫ tf

ti

d4zg Πac(x, z)ccdGdb(z, y) = iδg(x− y)cab . (B.23)

The matrix ccd between Π and G comes from the backward integration of the time variable

in the original integral in (B.14). By multiplying (U t)−1 on the left and U−1 on the right,

using (B.18) and (B.22) and noting

Uc U t =

(
0 −i
−i 0

)
, (B.24)

we obtain the following set of the evolution equations:

iG−1
0(x)GF (x, y)−

∫ ∞
tint

d4zg ΠR(x, z)GF (z, y)−
∫ ∞
tint

d4zg ΠF (x, z)GA(z, y) = 0 , (B.25)

iG−1
0(x)GR/A(x, y)−

∫ ∞
tint

d4zg ΠR/A(x, z)GR/A(z, y) = −δg(x− y) . (B.26)

From the equations (B.26), we obtain the evolution equation for the spectral density Gρ =

GR −GA:

iG−1
0(x)Gρ(x, y)−

∫ ∞
tint

d4zg ΠR(x, z)Gρ(z, y)−
∫ ∞
tint

d4zg Πρ(x, z)GA(z, y) = 0 . (B.27)

The Wightman Green function G>< = GF ∓ (i/2)Gρ satisfies

iG−1
0(x)G><(x, y)−

∫ ∞
tint

d4zg ΠR(x, z)G><(z, y)−
∫ ∞
tint

d4zg Π><(x, z)GA(z, y) = 0 . (B.28)
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C 2PI formalism

In this appendix, we give a brief review of a systematic approach to evaluate the self-energy

based on the 2PI formalism (see, e.g., [92] for more details). The generating functional

Z[J,R] in the presence of sources J(x) and R(x, y),18 is given by

Z[J,R] = eiW [J,R]

=

〈
TC e

i
∫
C d

4xg J(x)ψ̂(x)+ i
2

∫
C d

4xgd4yg ψ̂(x)R(x,y)ψ̂(y)

〉
. (C.1)

By taking a variation with respect to the source fields J(x) and R(y, x), we have

δW [J,R]

δJζ(x)
= +Ψζ(x) ,

δW [J,R]

δRηζ(y, x)
= −1

2

(
Ψζ(x)Ψη(y) +Gζη(x, y)

)
. (C.2)

Here ζ, η represent Spinor indices.

Ψ is defined as Ψ(x) ≡ Ψt(x)C and the connected Green function G is given by

Gζη(x, y) = i
δ2W [J,R]

δJζ(x)δJη(y)
. (C.3)

By taking the Legendre transform of W [J,R] with respect to the sources J,R, we obtain

the effective action in the presence of source fields

Γ[Ψ, G] ≡W [J,R]−
∫
C
d4xg Jζ(x)

δW [J,R]

δJζ(x)
−
∫
C
d4xgd

4ygRζη(x, y)
δW [J,R]

δRζη(x, y)

= W [J,R]−
∫
C
d4xgJΨ− 1

2

∫
C
d4xgd

4ygΨ(x)R(x, y)Ψ(y) +
1

2
TrGR . (C.4)

Tr in the last term represents a trace in the Spinor indices and an integration over the

closed time path C.
Now we decompose the effective action into

Γ[Ψ, G] = S(Ψ)− i

2
Tr lnG−1 − i

2
TrG−1

0 G+ Γ2[Ψ, G] . (C.5)

The first term is the classical action. The second and the third term are ‘1-loop’ type

contributions to the effective action. The meaning of the decomposition can be understood

by taking a functional derivative19 with respect to G:

δΓ[Ψ, G]

δGηζ(y, x)

∣∣∣∣
R=0

=
i

2
G−1
ζη (x, y)− i

2
G−1

0,ζη(x, y) +
δΓ2(Ψ, G)

δGηζ(y, x)
= 0 . (C.6)

18Note that the Majorana condition R(x, y) = CRt(y, x)C−1 is not imposed on the source field R(x, y).
19In taking the functional derivative with respect to G, the Majorana condition G(x, y) = CGt(y, x)C−1

should be used after setting the source field R zero.
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Figure 5. Another example of 2PI diagrams.

Compared with the SD equation (B.5), the last term can be identified as the self-energy Π:

Πζη(x, y; Ψ, G) = −2i
δΓ2(Ψ, G)

δGηζ(y, x)
. (C.7)

In this way, the proper self-energy Π is obtained by differentiating Γ2 with respect to the

full propagator G. Since the proper self-energy Π is calculated as a sum of contributions

from 1PI diagrams, Γ2 becomes a sum of contributions from 2PI diagrams with respect

to the full propagator. In another word, the proper self-energy can be systematically

obtained by taking a functional derivative of 2PI diagrams (in which all internal lines are

full propagators) with respect to the full propagator.

The SD equation (C.6) can be interpreted as a self-consistent equation for the full

propagators. By rewriting this equation on the forward time line C+, we obtain the set of

KB equations (B.25), (B.26), (B.27), (B.28) which can be interpreted as equations for the

full propagators.

For Dirac or Weyl fermions, we introduce additional source terms

+i

∫
C
d4xg ψ̂(x)J(x) + i

∫
C
d4xd4y ψ̂(x)R(x, y)ψ̂(y) .

The self-energy is similarly obtained as a functional of the full propagators:

Πζη(x, y; Ψ,Ψ, G) = −iδΓ2(Ψ,Ψ, G)

δGηζ(y, x)
. (C.8)

D Self-energies Σ,Π

In this appendix, using the 2PI formalism, we give an expression of the self-energy function

for the RH neutrino Π(x, y) in terms of the lepton and Higgs propagators. The simplest

and the most important contribution to the 2PI effective action Γ2 in the model (2.2) is

given by the 2-loop diagram of figure 2. The second simplest 2PI diagram is given by

figure 5. Note that each internal line represents a full propagator of the SM lepton, Higgs

and the RH neutrino. If the RH neutrinos have almost degenerate mass, we need to use

the resummed propagators for the RH neutrinos. Once resummed, we can use an ordinary

perturbative expansion with respect to the Yukawa coupling hiα. Hence it will not be a

bad approximation to use the simplest 2PI diagram to evaluate the self-energy.

– 46 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

In terms of the full propagators, the contribution from the diagram figure 2 becomes

Γ
(2loop)
2 [G,S,∆] =

i

2
h†iαhβj

∫
C
d4wgd

4zg εa′aεbb′∆a′b′(w, z)

× tr
[
PR

(
Gji(z, w) + CGt,ij(w, z)C−1

)
PLS

αβ
ab (w, z)

]
. (D.1)

Here G,S,∆ are full propagators of the RH neutrino, the SM lepton doublet and the

Higgs doublet respectively. (i, j), (α, β), (a, b, a′, b′) represent the flavor indices of the RH

neutrino, the flavor indices of the leptons and the SU(2)L indices of the SM doublets

respectively.

By using the formula (C.8), the self-energy of the SM lepton doublet is given by taking

a functional derivative of Γ2 with respect to the lepton propagator S:

Σαβ
ab (x, y) = hαih

†
jβPRG

ij(x, y)PLεaa′εb′b∆b′a′(y, x)

=− δabhαih†jβPRG
ij(x, y)PL∆(y, x) . (D.2)

Here we have used the Majorana property Gij(x, y) = CGtji(y, x)C−1 of the RH neutrinos.

In the second equality, we have used the fact that the lepton and the Higgs propagators are

SU(2)L symmetric and proportional to δab, Sab = Sδab,∆ab = ∆δab, in the early universe

where the SU(2)L symmetry is restored. This is indeed the case in the era of the lepton

asymmetry generation through the decay of the RH neutrino. Similarly the self-energy of

the RH neutrino is obtained by taking a functional derivative of Γ2 with respect to G:

Πij(x, y) ={h†iαhβjPLS
αβ
ab (x, y)PR∆a′b′(x, y)

+ h†jαhβiPRPS
βα
ba (x, y)PPL∆b′a′(x, y)}εa′aεbb′

=− gwh†iαhβjPLS
αβ(x, y)PR∆(x, y)

− gw(h†iαhβj)
∗PRPS

αβ
(x, y)PPL∆(x, y) (D.3)

where P = γ0. In the first equality, we have used

S
βα
ba (x, y) = CPStαβab (y, x)(CP )−1 , ∆ba(x, y) = ∆ab(y, x) . (D.4)

In the second equality, SU(2)L symmetry of S and ∆ is used. Decomposing these self-

energies into the Wightman functions as in (B.20), we have

Σαβ
ab ><

(x, y) =− δabhαih†jβPRG
ij
><

(x, y)PL∆<>(y, x) ≡ δabΣ
αβ
><

(x, y) , (D.5)

Πij
><

(x, y) =− gwh†iαhβjPLS
αβ
><

(x, y)PR∆><(x, y)

− gw(h†iαhβj)
∗PRPS

αβ
><

(x, y)PPL∆><(x, y) . (D.6)

In the following, we derive the self-energy of the RH neutrino Π(eq) under an assumption

that the lepton and the Higgs are in the thermal equilibrium. The approximation is justified

in the leading order calculation since the SM leptons and the Higgs particles interact faster

than the Hubble expansion rate in the era of the leptogenesis. See (2.43). Hence the
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deviation from the equilibrium can be neglected in the calculation of Π. In the equilibrium,

the lepton and the Higgs propagators become CP -symmetric and satisfy

S(x, y) = S(x, y) , ∆(x, y) = ∆(x, y) . (D.7)

By using the quasi-particle approximation for the propagators (2.37) and (2.38), the Fourier

transform of the self-energy Πρ = i(Π> −Π<) = ΠR −ΠA of the RH neutrino becomes

Π(eq)ij
ρ (q) =

(
<(h†h)ij − i=(h†h)ijγ5

)
π(eq)
ρ (q) , (D.8)

where

π(eq)
ρ (q) =(−gw)

∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

2ωk
δ3(q − p− k)

×
iΓ`φ

(q0 − ε`ωp − εφωk)2 + Γ2
`φ/4

/pε`D
ε`.εφ(eq)

ρ(p,k) . (D.9)

Dρ(p,k) is given by

Dε`εφρ(p,k) ≡ D
ε`εφ
>(p,k) −D

ε`εφ
<(p,k) = (−1)ε`(−1)εφ

(
1− f ε``p + f

εφ
φk

)
(D.10)

with the definition of D≷(p,k) in (2.47), and satisfy the relation D−ε`−εφ(eq)

ρ(p,k) = −D+ε`+εφ(eq)

ρ(p,k)

and is followed by the relation of

π(eq)
ρ (−q0,q) = +γ0π(eq)

ρ (+q0,q)γ0 . (D.11)

In the calculation we have used the integral (in the limit tint → −∞)

2

∫ t

−∞
dτei(−q

0+ε`ωp+εφωk+iΓ`φ/2)(t−τ) =
Γ`φ − 2i(q0 − ε`ωp − εφωk)

(q0 − ε`ωp − εφωk)2 + Γ2
`φ/4

. (D.12)

The contribution from the boundary at τ = −∞ vanishes because of the damping factor

∼ e−Γ`φ(t−τ)/2.

In the weak coupling limit of the SM gauge couplings, Γ`φ becomes much less than

the typical energy transfer (q0 − ε`ωp − εφωk) ∼ T where T is the temperature at which

the leptogenesis occurs. In such a limit, the above integral becomes proportional to δ(q0−
ε`ωp − εφωk), and the exact energy conservation is satisfied instead of the Lorentz type

in (D.9). Furthermore, in order to simplify the form of the self-energy (D.9), we neglect

the medium effects (e.g., the Pauli exclusion of the SM lepton and the induced emission of

the Higgs) encoded in Dρ in (D.9) and drop the distribution function f .

Adopting these two simplifications of the weak coupling limit and neglecting the

medium effects, the self-energy (D.9) reduces to the vacuum one:

πρ(q)→
−igw
16π

Θ(q2)sign(q0)/q . (D.13)

Since the main purpose of the present paper is to obtain the effect of quantum oscillations

of almost degenerate RH neutrinos, we use this simplified form of the self-energy. The
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full treatment is investigated by using the integral form (D.9) of the self-energy instead

of (D.13).

Similarly, for 2Πh = ΠR + ΠA, we have

Π
(eq)ij
h (q) =

(
<(h†h)ij − i=(h†h)ijγ5

)
π

(eq)
h (q) , (D.14)

where

π
(eq)
h (q) =(−gw)

∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

2ωk
δ3(q − p− k)

×
−(q0 − ε`ωp − εφωk)

(q0 − ε`ωp − εφωk)2 + Γ2
`φ/4

/pε`D
ε`εφ(eq)

ρ(p,k) . (D.15)

It satisfies the relation

π
(eq)
h (−q0,q) = −γ0π

(eq)
h (+q0,q)γ0 . (D.16)

Note that π
(eq)
ρ (q) is pure imaginary while π

(eq)
h (q) is real. The real part πh(q) contains

a diverging integral which is subtracted by the mass renormalisation. In the body of the

paper, we have implicitly assumed that the self-energy π
(eq)
h (q) is already regularized. The

imaginary part π
(eq)
ρ gives a decay width of the RH neutrino.

E Kramers-Moyal product

The convolution ∗ is defined on bi-local functions f(x, y) and g(x, y):

(f ∗ g)(x, y) ≡
∫
dz f(x, z)g(z, y) . (E.1)

The Wigner representation of bi-local functions is also defined as the Fourier transform of

the relative coordinate as

f̃(X; p) ≡
∫
dx eipxf

(
X +

x

2
, X − x

2

)
. (E.2)

Then it is straightforward to show that

(f̃ ∗ g)(X; p)

=

∫
dp1

2π

dp2

2π
dX1dX2f̃

(
X +

X2

2
; p+ p1

)
g̃

(
X − X1

2
; p+ p2

)
e−i(p1X1+p2X2)

=

∫
dp1

2π

dp2

2π
dX1dX2e

p1∂
f
p+X2∂

f
X/2f̃(X; p)ep2∂

g
p−X1∂

g
X/2g̃(X; p)e−i(p1X1+p2X2)

= e
i
2

(∂fp ∂
g
X−∂

f
X∂

g
p)f̃(X; p)g̃(X; p) (E.3)

where ∂fX is a Xderivative on the function f . The non-commutative product is called the

Kramers-Moyal product. In the leading order approximation of the derivative expansion,

the commutator of the ∗-product is reduced to the Poisson bracket:

[f̃ , g̃]∗(X; p) ∼ i
(
∂pf̃∂X g̃ − ∂X f̃∂pg̃

)
. (E.4)
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F Useful identities

The Green functions are written in terms of convulsions, and by taking a variation, various

functions are inserted in the integral. Thus we ofter encounter the following types of

integrals: ∫
dτ G1(x− τ)G2(τ − x) f(τ) . (F.1)∫
dudv G1(x− u)Π(u− v)G2(v − y) f1(Xuv)f2(Xxu)f3(Xvy) . (F.2)

Here Gi or Π are assumed to be functions of the relative coordinate only. Xuv = (u+ v)/2

etc. are the center of mass coordinates. In order to evaluate these integrals, we consider

the following identities. For the integral (F.1),∫
dq1

2π

dq2

2π
G̃(q1)G̃(q2)

∫
dτe−iq1(x−τ)−iQτ−iq2(τ−y)

=

∫
dq

2π
G̃1(q +Q/2)G̃2(q −Q/2)e−iq(x−y)−iQXxy . (F.3)

By acting (i∂Q − t) on both sides and setting Q = 0, we obtain∫
dτ G1(x− τ)G2(τ − y)× (τ − t)

=

∫
dq

2π

(
i

2
(∂(1)
q − ∂(2)

q ) +Xxy − t
)
G̃1(q)G̃2(q)e−iq(x−y) . (F.4)

∂(i) are derivatives acting on Gi. Taking higher derivatives with respect Q, we can obtain

other relations. For the next type integral (F.2), we start from the following identity:∫
dq

2π

dq1

2π

dq2

2π
F (q1, q, q2)

∫
dudv e−iq1(x−u)−iq(u−v)−iq2(v−y)e−iQ1Xxu−iXuvQ−iQ2Xvy

=

∫
dq

2π

dq1

2π

dq2

2π
F (q1, q, q2)(2π)δ(q − (q1 + q2)/2 + (Q1 −Q2)/4)

×
∫
dXuve

−iq1(x−X)−iQ1(x+Xuv)/2−iXuvQ−iq2(Xuv−y)−iQ2(Xuv+y)/2

=

∫
dq

2π
F (q +

Q1

2
+
Q

2
, q, q − Q2

2
− Q

2
)e−i(q+

Q1
2
−Q2

2
)sxy−i(Q1+Q2+Q)Xxy . (F.5)

To relate with the integral (F.2), we set F (q1, q, q2) = G̃(q1)Π̃(q)G̃(q2). By acting (i∂Q− t)
and setting Q = Q1 = Q2 = 0, we have∫

dudv G1(x− u)Π(u− v)G2(v − y) (Xuv − t)

=

∫
dq

2π

(
i

2
(∂(1)
q − ∂(2)

q ) +Xxy − t
)
G̃1(q)Π̃(q)G̃2(q)e−iq(x−y) .

(F.6)

– 50 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

If Π(u − v) = δ(u − v), the identity is reduced to (F.4). By acting (i∂Q1 − t) and setting

Q = Q1 = Q2 = 0, we have∫
dudv G1(x− u)Π(u− v)G2(v − y) (Xxu − t)

=

∫
dq

2π

(
i

2
∂(1) + x− t

)
G̃1(q)Π̃(q)G̃2(q)e−iq(x−y) . (F.7)

Here note that x = Xxy + sxy/2 where sxy = x − y. By acting (i∂Q2 − t) and setting

Q = Q1 = Q2 = 0, we have∫
dudv G1(x− u)Π(u− v)G2(v − y) (Xvy − t)

=

∫
dq

2π

(
− i

2
∂(2) + y − t

)
G̃1(q)Π̃(q)G̃2(q)e−iq(x−y) . (F.8)

Note that y = Xxy − sxy/2.

G Calculation of ∆Gd
R/A

The deviation of the retarded (advanced) propagators out of equilibrium can be calculated

by taking a variation of (2.11). In this section, we consider the diagonal component GdR/A.

By dropping the higher order term Π′G′, the diagonal component of the equation (2.11) is

written symbolically as

Dd
R/AG

d
R/A = −δxy . (G.1)

where

Dd
R/AG

d
R/A =

(
iγ0∂x0 −

γ · q
a(x0)

−M
)
GdR/A(x0, y0; q)

−
∫
dz0 Πd

R/A(x0, z0; q)GdR/A(z0, y0; q) . (G.2)

Then expand D and G around the thermal equilibrium values (at the reference time

t) as D = D
(eq)
t + ∆D and G = G

(eq)
t + ∆G. Inserting them into above we have

D
d(eq)
R/A ∆GdR/A + ∆Dd

R/A GdR/A = 0 (G.3)

where we usedD
d(eq)
R/A G

d(eq)
R/A = −δxy and dropped the higher order term ∆D∆G of deviations

from the equilibrium. It can be solved as

∆GdR/A = G
d(eq)
R/A ∆Dd

R/A G
d(eq)
R/A . (G.4)

The deviation ∆DR/A comes from the change of the physical momentum through a(t) and

the change of the self-energy ΠR/A. Thermal corrections to the mass M are included in Π.

Writing the integral explicitly, ∆Gd becomes

∆GdR/A(x0, y0; q) =

∫
dudv G

d(eq)
R/A (t;x0 − u) ∆Dd

R/A(u, v) G
d(eq)
R/A (t; v,−y0; q) . (G.5)

For notational simplicity, we did not write the reference time t explicitly in ∆DR/A(u, v).
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Note that the equilibrium self-energy Π
d(eq)
R/A (t;u − v) is a function of the relative co-

ordinate u − v with the temperature at time t. Since the self-energy Π
d(eq)
R/A (t;u − v) is

obtained by loop integrals of the SM particles, it decreases rapidly as e−Γ`φ(u−v)/2. Hence

we can adopt derivative expansions of the self-energy Π(u, v) around the thermal value

Π
(eq)
R/A(t;u− v).

From (G.2), we have

∆Dd
R/A(u, v) = Dd

R/A(u, v)−Dd(eq)
R/A (t;u− v)

∼
[
γ · q
a(t)

H(t)δ(u− v)− ∂tΠd(eq)
R/A (t;u− v)

]
(Xuv − t) . (G.6)

The first term is the change of the physical momentum. The second term is the change of

the background SM plasma, i.e. the change of the distribution functions and the spectrum

of the SM leptons and the Higgs. Let us write the Fourier transform of the coefficient in

the square bracket of (G.6) with respect to (u− v) as

ζR/A(t; q) ≡ γ · q
a(t)

H(t) − ∂tΠ̃
d(eq)
R/A (t; q) . (G.7)

The retarded (advanced) Green functions in the (local) equilibrium are given by

G
d(eq)
R/A (X; q) = −

(
γ0q0 −

γ · q
a(X)

−Π
d(eq)
R/A (X; q)−M

)−1

=
−1

/QR/A −M
(G.8)

where /QR/A ≡ /q −ΠR/A(q). They satisfy

( /QR +M)( /QR −M) = (q0 − Ω+)(q0 − Ω−) ,

( /QA +M)( /QA −M) = (q0 − Ω∗+)(q0 − Ω∗−) . (G.9)

We also define G
d(eq)
RS = tr{Gd(eq)

R }/4 = −M/(Q2
R −M2).

Physical quantities are determined by the local temperature at time X. Then by taking

derivatives with respect to X and q0, we have

∂tG
d(eq)
R/A (t; q) ≡ ∂XG

d(eq)
R/A (X; q)

∣∣∣
X=t

= G
d(eq)
R/A (t; q)ζR/A(t; q)G

d(eq)
R/A (t; q) , (G.10)

∂q0G
d(eq)
R/A (t; q) ≡ ∂q0G

d(eq)
R/A (X; q)

∣∣∣
X=t

= G
d(eq)
R/A (t; q)ξR/A(t; q)G

d(eq)
R/A (t; q) (G.11)

where

ξR/A(t; q) ≡ γ0 − ∂q0Π̃
d(eq)
R/A (t; q) . (G.12)

By using (G.8), ∂q0G
d(eq)
R (t; q) is written as

∂q0G
d(eq)
R (t; q) =

G
d(eq)
RS

M

(
{ξR, /QR}( /QR +M)

G
d(eq)
RS

M
+ ξR

)
. (G.13)
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Let us now calculate ∆GdR/A(x0, y0)) for x0 > y0. Inserting (G.6) into (G.5) and using

the identities (F.4) and (F.6), we get

∆GdR/A(x0, y0; q) ≡
∫
dq0

2π
∆G̃dR/A(Xxy; q)e

−iq0sxy ≡ U1 + U2 ,

U1 =

∫
dq0

2π

i

2
e−iq0sxy

(
∂q0G

d(eq)
R/A (t; q)ζR/AG

d(eq)
R/A (t; q)

−Gd(eq)
R/A (t; q)ζR/A∂q0G

d(eq)
R/A (t; q)

)
,

U2 =

∫
dq0

2π
∂tG

d(eq)
R/A (Xxy − t)e−iq0sxy . (G.14)

By using (G.13), U1 becomes

U1 =

∫
dq0

2π

i

2

(
G
d(eq)
RS

M

)2

(ξRζR( /QR +M)− ( /QR +M)ζRξR) e−iq0sxy

'
∫
dq0

2π

i

2

2HM

(q0 − Ω+)2(q0 − Ω−)2
γ0γ · q

a
e−iq0sxy

' Θ(sxy)
∑
ε

(−i)HM
4ω2

q

γ0γ · q
a

sxye
−iΩεsxy . (G.15)

In the first equality, the triple pole contributions are canceled out each other. In the second

line, only the lowest order terms in Yukawa couplings are taken. In the third line, we have

performed the q0 integration and neglected higher order terms in Γ/M ' h†h.20 U2 can

be calculated much easier because the time derivative in U2 is commutable with the q0

integral. Then we get

U2 = ∂X G
d(eq)
R (X; sxy)

∣∣∣
X=t

(Xxy − t) . (G.16)

Summing up (G.15) and (G.16), we get the time representation of the deviation of the

retarded(advanced) propagator:

∆GdR/A(x0, y0; q) ≡ Θ(±sxy)
∑
ε

∆ĜdR/A(x0, y0; ε,q)

' ±Θ(±sxy)
∑
ε

[
∂t

(
Zεe
−i(εωεq∓iΓq/2)sxy

)
(Xxy − t)

− i
H(t)M

4ω2
q

γ0γ · q
a(t)

(x0 − y0) e−i(εωεq∓iΓq/2)sxy

]
. (G.17)

The first term comes from U2, It is written as the change of the mass and width in Ωε =

εωεq−iΓq/2 and the physical quantities in Zε. The second term comes from U1. It represents

a change of the spinor structure in the propagator during the propagation in the expanding

universe.

20In the third line, we picked up only a term containing ∂q0e
−iq0sxy because sxy ∼ 1/Γ � 1/M and it

becomes much larger than the other terms.
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H Calculation of ∆Gd
ρ

The deviation of the spectral density from the equilibrium value is obtained by taking a

variation of the relation Gρ = −GR ∗Πρ ∗GA:

∆Gdρ =−∆GdR ∗Πd(eq)
ρ ∗Gd(eq)

A −Gd(eq)
R ∗Πd(eq)

ρ ∗∆GdA

−Gd(eq)
R ∗∆Πd(eq)

ρ ∗Gd(eq)
A . (H.1)

In this appendix we explicitly evaluate these terms since it is similar to and instructive for

more complicated calculations of ∆Gd≷ in appendix I.

By using (G.14) and (F.7), the first term in the r.h.s. of ∆Gdρ is given by

−(∆GdR ∗Πd(eq)
ρ ∗Gd(eq)

A )(x0, y0)

= −
∫
dudv ∆GdR(x0, u)Πd(eq)

ρ (u, v)G
d(eq)
A (v, y0) ≡ T11 + T12 + T13 + T14 ,

T11 = −
∫
dq0

2π

i

2

(
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

)
Πd(eq)
ρ G

d(eq)
A e−iq0sxy ,

T12 = −
∫
dq0

2π

i

2
∂q0∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A e−iq0sxy ,

T13 = −
∫
dq0

2π
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A (Xxy − t)e−iq0sxy ,

T14 = −
∫
dq0

2π
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A

sxy
2
e−iq0sxy . (H.2)

(T12 + T13 + T14) came from U2 while T11 came from U1. By using (G.14) and (F.8), the

second term is

−Gd(eq)
R ∗Πd(eq)

ρ ∗∆GdA ≡ T21 + T22 + T23 + T24 ,

T21 = −
∫
dq0

2π

i

2
G
d(eq)
R Πd(eq)

ρ

(
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

)
e−iq0sxy ,

T22 = −
∫
dq0

2π

−i
2
G
d(eq)
R Πd(eq)

ρ ∂q0∂tG
d(eq)
A e−iq0sxy ,

T23 = −
∫
dq0

2π
G
d(eq)
R Πd(eq)

ρ ∂tG
d(eq)
A ((Xxy − t)) e−iq0sxy ,

T24 =

∫
dq0

2π
G
d(eq)
R Πd(eq)

ρ ∂tG
d(eq)
A

sxy
2
e−iq0sxu . (H.3)

Finally, by using (4.14) and (F.6), the third term becomes

−Gd(eq)
Rq ∗∆Π

d(eq)
ρq ∗Gd(eq)

Aq ≡ T31 + T32 ,

T31 = −
∫
dq0

2π

i

2

(
∂q0G

d(eq)
R ∂tΠ

d(eq)
ρ G

d(eq)
A −Gd(eq)

R ∂tΠ
d(eq)
ρ ∂q0G

d(eq)
A

)
e−iq0sxy ,

T32 = −
∫
dq0

2π
G
d(eq)
R ∂tΠ

d(eq)
ρ G

d(eq)
A (Xxy − t) e−iq0sxy . (H.4)

Note that Πρ = ΠR −ΠA and hence ∂tΠρ = −(ζR − ζA).

– 54 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

Let us look at the above terms separately. First, the terms proportional to (Xxy − t)
become Ta:

Ta ≡ T13 + T23 + T32 = −
∫
dq0

2π
∂t

(
G
d(eq)
R Πd(eq)

ρ G
d(eq)
A

)
(Xxy − t) e−iq0sxy

=

∫
dq0

2π
∂t

(
G
d(eq)
R −Gd(eq)

A

)
(Xxy − t) e−iq0sxy . (H.5)

Next, the terms proportional to sxy can be rewritten as Tb + T44:

T14 + T24 ≡ Tb + T44 , (H.6)

T44 = −
∫
dq0

2π

−i
2
∂q0

(
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A −Gd(eq)

R Πd(eq)
ρ ∂tG

d(eq)
A

)
e−iq0sxy ,

Tb = −
∫

dq

2π
∂q0

[
+i

2

(
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A −Gd(eq)

R Πd(eq)
ρ ∂tG

d(eq)
A

)
e−iq0sxy

]
.

Tb is a total derivative and vanishes, but we keep it for later convenience in calculating

∆Gd≷ in the next section.

The other terms and T44 are combined to become

Tc ≡T44 + T11 + T12 + T21 + T22 + T31

=−
∫
dq0

2π

i

2

(
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

)
e−iq0sxy

−
∫
dq0

2π

−i
2

(
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

)
e−iq0sxy . (H.7)

where we used the relation Gρ = GR −GA = −GRΠρGA and ∂tΠ = ζA − ζR.
As a result, ∆Gdρ becomes

∆Gdρ(x
0, y0; q) = Ta + Tb + Tc = Ta + Tc

=

∫
dq0

2π

[
∆G

d(eq)
R (Xxy; q)−∆G

d(eq)
A (Xxy; q)

]
e−iq0sxy

= ∆GdR(x0, y0; q)−∆GdA(x0, y0; q) , (H.8)

as expected. Here we used (G.14). In the second equality, Tb is dropped since it is a total

derivative. In the calculation of ∆Gd≷, Tb is modified to contain a function f(q0) outside

the derivative ∂q0 , and contributes to the final result.

I Calculation of ∆Gd
≷

Diagonal components of the Wightman functions are obtained in the leading order approx-

imation as Gd≷ = −GdR ∗ Πd
≷ ∗ GdA. As explained in (4.4), the self-energy function can be

safely replaced by its equilibrium value at the local temperature:

Π≷ −→ Π
(eq)
≷ = (−i)

{
1− f(q0)

−f(q0)

}
Π(eq)
ρ . (I.1)
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The distribution function f(q0) = 1/(eq0/T (t) + 1) is time-dependent through the tempera-

ture T (X).

The calculation of the deviation ∆Gd≷ is parallel to the calculation of ∆Gdρ in the

previous section. The only difference is that Π
d(eq)
ρ is replaced by Π

d(eq)
≷ in (H.1). Especially

in (H.4), ∂tΠρ is replaced by

∂tΠ≷ = (−i)∂t

{
1− f
−f

}
Πρ + (−i)

{
1− f
−f

}
∂tΠρ (I.2)

and we have

∆Gd><(x0, y0; q) = V1 + V2 + V3 + V4 ,

V1 =

∫
dq0

2π
(−i)

{
1− f
−f

}[
∆G

d(eq)
R (Xxy; q)−∆G

d(eq)
A (Xxy; q)

]
e−iq0sxy ,

V2 =

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
+i

2

(
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A −Gd(eq)

R Πd(eq)
ρ ∂tG

d(eq)
A

)
e−iq0sxy ,

V3 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
−i
2

(
∂q0G

d(eq)
R Πd(eq)

ρ G
d(eq)
A −Gd(eq)

R Πd(eq)
ρ ∂q0G

d(eq)
A

)
e−iq0sxy ,

V4 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}(
G
d(eq)
R −Gd(eq)

A

)
(Xxy − t)e−iq0sxy . (I.3)

V1 is obtained by inserting the distribution function in the integrand of (H.8) for ∆Gρ. V2

comes from Tb-type term of (H.6) in the previous appendix. In the calculation of ∆Gρ, this

term vanishes because it is a total divergence. In the present case, since the distribution

function depends on q0, the derivative can act on it and the term remains. V3 and V4 come

from time-dependence of the distribution function f(q0).

Let us consider the region x0 > y0, and perform the q0 integration. First, V4 and

Ta-type contribution (H.5) in V1 turn out to represent the change of local temperature as

∂X Gd(eq)
><

(X; sxy)
∣∣∣
X=t

(Xxy − t) . (I.4)

Tc-type contribution (H.7) in V1 is of higher order with respect to Γi/M and can be ne-

glected.21 Therfore, we get

V1 + V4 '
∑
ε

(−i)dt

{
1− f εq
−f εq

}
(Xxy − t)Zεe−iΩεsxy

+
∑
ε

(−i)

{
1− f εq
−f εq

}
∆ĜdR(x0, y0; ε,q) . (I.5)

21It is nothing but the one obtained by inserting the distribution function into U2 in the retarded propaga-

tor. In (G.15), we neglected higher order contribution in Γ/M . In the present case, although q0 derivative,

coming from the double pole integral, can act on the distribution function f(q), the contribution becomes

a higher order contribution because of ∂q0f(q0) ∼ f(q0)/T ∼ f(q0)/M , and can be neglected again.
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Let’s move on to V3. By using the explicit expression (G.13) of ∂q0G
d(eq)
R/A , we get

V3 =

∫
dq0

2π

−1

2
∂t

{
1− f
−f

}
G
d(eq)
RS

M

G
d(eq)
AS

M
e−iq0sxy

×

[(
{ξR, /QR}( /QR +M)

G
d(eq)
RS

M
+ ξR

)
Πd(eq)
ρ ( /QA +M)

− ( /QR +M)Πd(eq)
ρ

(
{ξA, /QA}( /QA +M)

G
d(eq)
AS

M
+ ξA

)]
≡V31 + V32 + V33 ,

where

V31 =

∫
dq0

2π

−1

2
∂t

{
1− f
−f

}(
G
d(eq)
RS

M

)2(
G
d(eq)
AS

M

)1

e−iq0sxy

× {ξR, /QR}( /QR +M)Πd(eq)
ρ ( /QA +M) ,

V32 =

∫
dq0

2π

−1

2
∂t

{
1− f
−f

}(
G
d(eq)
RS

M

)1(
G
d(eq)
AS

M

)2

e−iq0sxy

× (−1){ξA, /QA}( /QR +M)Πd(eq)
ρ ( /QA +M) ,

V33 =

∫
dq0

2π

−1

2
∂t

{
1− f
−f

}(
G
d(eq)
RS

M

)1(
G
d(eq)
AS

M

)1

e−iq0sxy

×
(
ξRΠd(eq)

ρ ( /QA +M)− ( /QR +M)Πd(eq)
ρ ξA

)
. (I.6)

Note that the number of the factor GS/M in V33 is less than those in the other two terms.

Hence V33 turns out to be a higher order with respect to Γ/M and can be neglected. The

q0 integration of V31 and V32 can be similarly performed as in U1, and we get

V3 '
∑
ε

∂T

∂t

∂

∂T

{
1− f εq
−f εq

}
{/qε,Πd

ρ}
4εωq

(
−2

Γ2
q

− sxy
Γq

)
Zεe
−iΩεsxy

=
∑
ε

(−i)∂T
∂t

∂

∂T

{
1− f εq
−f εq

}(
−1

Γq
− sxy

2

)
Zεe
−iΩεsxy . (I.7)

In the first line, half of the term containing 2/Γ2
q comes from V32, and the other half of it

arises from the q0 derivative of GAS/M . The term sxy/Γq comes from ∂q0e
−iq0sxy in V31.

Note that time-derivatives in (I.6) act on the distribution function only through the time

dependence of temperature. In the second line, we have used the definition of the width.

Noticing that V2 is obtained from V3 by changing its sign and exchanging ∂q0 and ∂t.

Then we can immediately get the time representation for V2. Similarly to (G.13), we get

∂tG
d(eq)
R (t; q) =

G
d(eq)
RS

M

(
{ζR, /QR}( /QR +M)

G
d(eq)
RS

M
+ ζR

)
. (I.8)
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An exchange of ∂q0 and ∂t leads to an exchange of ξ and ζ. From the definitions of ξ

in (G.12) and ζ in (G.7), the exchange results in

∂T

∂t

∂

∂T
→ (−1)× H|q|2

εωqa2

∂

∂(εωq)
=
∂ωq
∂t

∂

∂ωq
(I.9)

in (I.7) in the leading order. Hence we get the expression of V2 as

V2 '
∑
ε

(−i)∂ωq
∂t

∂

∂ωq

{
1− f εq
−f εq

}(
−1

Γq
− sxy

2

)
Zεe
−iΩεsxy . (I.10)

Putting (I.7) and (I.10) together,

V3 + V2 '
∑
ε

(−i)dt

{
1− f εq
−f εq

}(
−1

Γq
− sxy

2

)
Zεe
−iΩεsxy (I.11)

is obtained.

Finally, from (I.5)+(I.11), we get the final result:

∆Gdii>< (x0, y0; q) =
∑
ε

(
Θ(sxy)∆G

(1)
≷ + Θ(−sxy)∆G(2)

≷

)
, (I.12)

∆G
(1)
≷ '− idt

{
1− f εiq
−f εiq

}(
−1

Γiq
+ (Xxy − t− |sxy|/2)

)
Ziεe
−iΩεi(x0−y0)

− i

{
1− f εiq
−f εiq

}
∆ĜdiiR (x0, y0; ε,q) ,

∆G
(2)
≷ '− idt

{
1− f εiq
−f εiq

}(
−1

Γiq
+ (Xxy − t− |sxy|/2)

)
Ziεe
−iΩ∗εi(x0−y0)

+ i

{
1− f εiq
−f εiq

}
×∆ĜdiiA (x0, y0; ε,q) ,

where

dt ≡
∂T

∂t

∂

∂T
+
∂ωq
∂t

∂

∂ωq
. (I.13)

J Calculation of ∆G′
≷

In the leading order approximation, off-diagonal components of the Wightman function are

given by eq. (3.36). Its deviation from the thermal value is obtained by taking a variation:

∆G
′ij
><

=−∆GdiiR ∗Π
′ij
R ∗G

djj
><
−GdiiR ∗∆Π

′ij
R ∗G

djj
><
−GdiiR ∗Π

′ij
R ∗∆Gdjj><

−∆Gdii>< ∗Π
′ij
A ∗G

djj
A −G

dii
><
∗∆Π

′ij
A ∗G

djj
A −G

dii
><
∗Π

′ij
A ∗∆GdjjA

−∆GdiiR ∗Π
′ij
><
∗GdjjA −G

dii
R ∗∆Π

′ij
><
∗GdjjA −G

dii
R ∗Π

′ij
><
∗∆GdjjA . (J.1)

We will calculate these 9 terms in the following sections.
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Among all these 9 terms, it will turn out that leading order contributions to ∆G′≷ that

eventually remain in the limit

H � Γ� Γ`φ ∼ T ∼M (J.2)

come from three terms containing variations of the Wightman functions ∆Gd≷ or ∆Π′≷,

namely the 3rd term, the 4th term and the 8th term in (J.1). These terms represent

variation of the distribution function ∆f , and are shown to be of order O(H/Γ). After

summation of various terms, the other terms becomeO(H/Γ)×O(Γ/Γ`φ) etc. and negligible

in the above limit compared to the leading terms.

We first give order estimations of the following quantities. First, since the distribution

function f(q0) contains a factor e−q0/T (t), the derivatives are

∂tf(q0) ∼ Ṫ q0

T 2
f(q0) ∼ Hf(q0) , ∂q0f(q0) ∼ f(q0)

T
. (J.3)

We have used Ṫ ∝ HT and that the typical frequency in the analysis is q0 ∼ T . On the

other hand, the derivatives of Green functions (G.10) and (G.11) are

∂tG(t; q0) ∼ HT

Γ
G(t; q0) , ∂q0G(t; q0) ∼ G(t; q0)

Γ
. (J.4)

Green functions contain a factor 1/(q0 − Ωj) or 1/(q0 − Ω∗j ) where Ω = ωi − iΓi/2. In q0

integrations, q0 is replaced by positions of poles coming from other similar factors, and

these factors become 1/(Ωi − Ωj) for i 6= j or 1/(Ωi − Ω∗j ). Both of them are of order

1/∆M ∼ 1/Γ. Acting ∂t, we have

∂t
1

q0 − Ωj
=

Ω̇j

(q0 − Ωi)2
∼ HΩj

(q0 − Ωj)2
∼ HT

(q0 − Ωj)2
. (J.5)

Then replacing q0 by Ωi, the first relation of (J.4) is obtained. The second relation comes

from the relation

∂q0
1

q0 − Ωj
=

−1

(q0 − Ωj)2
(J.6)

and 1(q0−Ωj)→ O(1/Γ). Hence, for both of the derivatives, (∂f)/f is smaller than (∂G)/G

by a factor Γ/T .

(∂Π)/Π is also smaller than (∂G)/G. It is because of the following reason. The self-

energy Π(q0) contains a factor 1/(q0− (ωp +ωk ∓ iΓ`φ/2)) where ωp and ωk are energies of

the SM lepton and the Higgs propagating in the self-energy diagram. After performing q0

integration, q0 is replaced by the position of poles Ωi,j in G(q0). Due to (J.2), 1/(q0− (ωp+

ωk∓ iΓ`φ/2)) becomes of order 1/T ∼ 1/Γ`φ unlike 1/Γ for G. Therfore, acting derivatives,

(∂Π)/Π becomes smaller than (∂G)/G by a factor Γ/T .

J.1 Leading contributions

We first calculate three terms that are obtained by taking variations of the Wightman-type

functions. The other terms, which turn out to be subleading, are evaluated in appendix J.3.
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Since ∆Gd≷ is written as a sum of four terms of V1,2,3,4 in (I.3), the 3rd term in (J.1)

can be also written as a sum of the following four terms V ′1,2,3,4 respectively. By us-

ing (I.3), (G.14) and (F.8), it becomes

−
∫
dudvG

d(eq)
R (sxu; q)Π

′(eq)
R (suv; q)∆Gd><(Xvy, svy; q) = V ′1 + V ′2 + V ′3 + V ′4 . (J.7)

The first term V ′1 is written as

V ′1 = V ′11 + V ′12 + V ′13 + V ′14

where

V ′11 =

∫
dq0

2π
(−i)

{
1− f
−f

}
−i
2
G
d(eq)
R Π

′(eq)
R

{[
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

]
−
[
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

]}
e−iq0sxy , (J.8)

V ′12 =

∫
dq0

2π
(−i)

{
1− f
−f

}
+i

2
G
d(eq)
R Π

′(eq)
R ∂q0∂tG

d(eq)
ρ e−iq0sxy , (J.9)

V ′13 =

∫
dq0

2π
(−i)

{
1− f
−f

}
(−1)G

d(eq)
R Π

′(eq)
R ∂tG

d(eq)
ρ

(
Xxy − t−

sxy
2

)
e−iq0sxy , (J.10)

V ′14 =

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
+i

2
G
d(eq)
R Π

′(eq)
R ∂tG

d(eq)
ρ e−iq0sxy . (J.11)

Only the last term V ′14 (J.11) becomes O(H/Γ) and remains in the above limit. The other

terms turn out to be negligible. Using the relation (G.10), the first term V ′11 looks of order

O(HT/Γ2) ∼ O(H/Γ) × O(T/Γ). But the factor O(T/Γ) is cancelled between two terms

in the square brackets. Furthermore, combined with other terms in appendix J.3, they

become eq. (J.46) and negligible compared to the leading terms of O(H/Γ). V ′12 looks of

order O(HT/Γ2), but again combined with other terms in appendix J.3, they become (J.42)

and negligible. V ′13, which is O(H/Γ), is similarly combined to be (J.43) and (J.44), and

can be neglected.

V ′2 and V ′3 are given by

V ′2 =

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
−i
2
G
d(eq)
R Π

′(eq)
R

[
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A

−Gd(eq)
R Πd(eq)

ρ ∂tG
d(eq)
A

]
e−iq0sxy , (J.12)

and

V ′3 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
+i

2
G
d(eq)
R Π

′(eq)
R

[
∂q0G

d(eq)
R Πd(eq)

ρ G
d(eq)
A

−Gd(eq)
R Πd(eq)

ρ ∂q0G
d(eq)
A

]
e−iq0sxy . (J.13)

Both of them remain in the above limit.
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Finally the last term V ′4 is written as

V ′4 = V ′41 + V ′42 + V ′43

where

V ′41 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
+i

2
G
d(eq)
R Π

′(eq)
R ∂q0G

d(eq)
ρ e−iq0sxy , (J.14)

V ′42 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
(−1)G

d(eq)
R Π

′(eq)
R Gd(eq)

ρ

(
Xxy − t−

sxy
2

)
e−iq0sxy , (J.15)

V ′43 =

∫
dq0

2π
(−i)∂q0∂t

{
1− f
−f

}
+i

2
G
d(eq)
R Π

′(eq)
R Gd(eq)

ρ e−iq0sxy . (J.16)

Only the first term V ′41 is O(H/Γ) and remains. The other two terms become negligible

because V ′42 = O(H/Γ`φ) = O(H/T )� O(H/Γ) and V ′43 = O(H/T )� O(H/Γ).

Similarly, by using (I.3), (G.14) and (F.7), the 4th term in (J.1) becomes

−
∫
dudv∆Gd≷(Xxu; sxu; q)Π

′(eq)
A (suv; q)G

d(eq)
A (svy; q) = V ′′1 + V ′′2 + V ′′3 + V ′′4 (J.17)

where

V ′′1 =

∫
dq0

2π
(−i)

{
1− f
−f

}
−i
2

{[
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

]
−
[
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

]}
Π
′(eq)
A G

d(eq)
A e−iq0sxy

+

∫
dq0

2π
(−i)

{
1− f
−f

}
−i
2
∂q0∂tG

d(eq)
ρ Π

′(eq)
A G

d(eq)
A e−iq0sxy

+

∫
dq0

2π
(−i)

{
1− f
−f

}
(−1)∂tG

d(eq)
ρ Π

′(eq)
A G

d(eq)
A

(
Xxy − t+

sxy
2

)
e−iq0sxy

+

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
−i
2
∂tG

d(eq)
ρ Π

′(eq)
A G

d(eq)
A e−iq0sxy , (J.18)

V ′′2 =

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
−i
2

[
∂tG

d(eq)
R Πd(eq)

ρ G
d(eq)
A

−Gd(eq)
R Πd(eq)

ρ ∂tG
d(eq)
A

]
Π
′(eq)
A G

d(eq)
A e−iq0sxy , (J.19)

V ′′3 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
+i

2

[
∂q0G

d(eq)
R Πd(eq)

ρ G
d(eq)
A

−Gd(eq)
R Πd(eq)

ρ ∂q0G
d(eq)
A

]
Π
′(eq)
A G

d(eq)
A e−iq0sxy , (J.20)
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V ′′4 =

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
−i
2
∂q0G

d(eq)
ρ Π

′(eq)
A G

d(eq)
A e−iq0sxy

+

∫
dq0

2π
(−i)∂t

{
1− f
−f

}
(−1)Gd(eq)

ρ Π
′(eq)
A G

d(eq)
A

(
Xxy − t+

sxy
2

)
e−iq0sxy

+

∫
dq0

2π
(−i)∂q0∂t

{
1− f
−f

}
−i
2
Gd(eq)
ρ Π

′(eq)
A G

d(eq)
A e−iq0sxy . (J.21)

The arguments are parallel to V ′ and we do not repeat the discussions.

The last term containing a variation of the Wightman function comes from the 8th

term in (J.1). It contains ∆Π′≷, and becomes

−
∫
dudv G

d(eq)
R (sxu; q)∆Π

′(eq)
><

(Xuv; suv; q)G
d(eq)
A (svy; q) = V ′′′1 + V ′′′2 (J.22)

where

V ′′′1 =−
∫
dq0

2π
(−i)

{
1− f
−f

}[
G
d(eq)
R ∂tΠ

′(eq)
ρ G

d(eq)
A (Xxy − t)

+
i

2

(
∂q0G

d(eq)
R ∂tΠ

′(eq)
ρ G

d(eq)
A −Gd(eq)

R ∂tΠ
′(eq)
ρ ∂q0G

d(eq)
A

) ]
e−iq0sxy , (J.23)

V ′′′2 =−
∫
dq0

2π
(−i)∂t

{
1− f
−f

}[
G
d(eq)
R Π

′(eq)
ρ G

d(eq)
A (Xxy − t)

+
i

2

(
∂q0G

d(eq)
R Π

′(eq)
ρ G

d(eq)
A −Gd(eq)

R Π
′(eq)
ρ ∂q0G

d(eq)
A

) ]
e−iq0sxy . (J.24)

Only the second term of V ′′′2 becomes O(H/Γ) and remains in the limit. The first terms of

V ′′′1 and V ′′′2 are combined to be (J.43), and the second term of V ′′′1 is combined to be (J.46);

these are negligibly small.

J.2 ∆G′≷ in the time-representation

We now calculate the time-representation of ∆G′≷ by Fourier transforming the leading

contributions in the previous subsection J.1. The other terms in (J.1) are evaluated in

the next subsection and after being combined they are shown to become negligible. We

consider the case x0 > y0 in the following. The calculations are performed in parallel to

those in appendix I, so we do not repeat detailed calculations.

We suppose that the reference time t and the arguments x0, y0 in ∆G(x0, y0) satisfy the

conditions, (Xxy−t)<∼ 1/Γ`φ and sxy
<∼ 1/Γ`φ since such situations appear in the calculation

of the lepton asymmetry (5.1). It is due to the fast damping of the self-energy Π≷. In

performing the Fourier transformation, we drop higher order terms with respect to H/Γ

compared to the leading terms of order O(H/Γ).
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For V ′1 , the leading order contribution with respect to H/Γ comes from V ′14. Performing

q0 integration, it becomes

V ′14 '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωjq
∂t

∂

∂ωjq

{
1− f εjq
−f εjq

}
+1/2

(Ωεi − Ωεj)2
e−iΩεjsxy

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}[
−1/2

(Ωεi−Ωεj)2
+

+1/2

(Ωεi−Ω∗εj)
2

]
e−iΩεisxy

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωq
∂t

∂

∂ωq

{
1− f εq
−f εq

}
+1/2

(Ωεi − Ω∗εj)
2
e−iΩεsxy . (J.25)

V ′14 have poles at q0 = Ωi of G
d(eq)
R and q0 = Ωj of ∂tG

d(eq)
ρ = ∂t(G

d(eq)
R − Gd(eq)

A ). The

first line is the contribution of the pole at q0 = Ωj while the second term corresponds to

the residue of the pole at q0 = Ωi. We have dropped higher order terms, e.g., a residue

at the pole of the self-energy Π′ or the distribution function f since they are much more

suppressed by a factor Γ/T . The second equality is obtained by identifying Ωi and Ωj in

the leading approximation.

V ′2 and V ′3 are evaluated as

V ′2 '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωjq
∂t

∂

∂ωjq

{
1− f εjq
−f εjq

}

×
[

+1/2

(Ωεi − Ωεj)2
+

−1

Ωεi − Ωεj

i

Γjq

]
e−iΩεjsxy

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}

×

[
+1/2

(Ωεi − Ωεj)2

iΓjq
Ωεi − Ω∗εj

+
−1/2

(Ωεi − Ω∗εj)
2

iΓjq
Ωεi − Ωεj

]
e−iΩεisxy

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωq
∂t

∂

∂ωq

{
1− f εq
−f εq

}

× −i
2

[
1

Γj

(
1

Ωεi − Ω∗εj
+

1

Ωεi − Ωεj

)
+

1

(Ωεi − Ω∗εj)
2

Γjq
Ωεi − Ωεj

]
e−iΩεsxy (J.26)

and

V ′3 '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εjq
−f εjq

}

×
[

+1/2

(Ωεi − Ωεj)2
+

−1

Ωεi − Ωεj

i

Γjq

]
e−iΩεjsxy

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}

×

[
+1/2

(Ωεi − Ωεj)2

iΓjq
Ωεi − Ω∗εj

+
−1/2

(Ωεi − Ω∗εj)
2

iΓjq
Ωεi − Ωεj

]
e−iΩεisxy
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'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εq
−f εq

}

× −i
2

[
1

Γj

(
1

Ωεi − Ω∗εj
+

1

Ωεi − Ωεj

)
+

1

(Ωεi − Ω∗εj)
2

Γjq
Ωεi − Ωεj

]
e−iΩεsxy . (J.27)

For V ′4 , the leading contribution comes from V ′41. It becomes

V ′41 '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εjq
−f εjq

}
−1/2

(Ωεi − Ωεj)2
e−iΩεjsxy

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}[
+1/2

(Ωεi − Ωεj)2
+

−1/2

(Ωεi − Ω∗εj)
2

]
e−iΩεisxy

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
−1/2

(Ωεi − Ω∗εj)
2
e−iΩεsxy . (J.28)

Similarly, we get the leading order terms from V ′′ as

V ′′1 '
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
−1/2

(Ωεi − Ω∗εj)
2
e−iΩεisxy , (J.29)

V ′′2 '
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}

×

[
+1/2

(Ωεi − Ω∗εj)
2

+
+1

Ωεi − Ω∗εj

i

Γiq

]
e−iΩεisxy , (J.30)

V ′′3 '
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}

×

[
+1/2

(Ωεi − Ω∗εj)
2

+
+1

Ωεi − Ω∗εj

i

Γiq

]
e−iΩεisxy , (J.31)

V ′′4 '
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
+1/2

(Ωεi − Ω∗εj)
2
e−iΩεisxy . (J.32)

Finally, the leading order contributions in (J.24) comes from the second term of V ′′′2 .

It becomes

V ′′′2 '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
+1

(Ωεi − Ω∗εj)
2
e−iΩεisxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εj)
2
e−iΩεisxy . (J.33)
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Summing up all these contributions (J.25)∼(J.33), we get the final expression

∆G
′ij
><

(x0, y0; q)

' Θ(sxy)

[∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)∆

{
1− f εjq
−f εjq

}
i

Ωεi − Ω∗εj
e−iΩεsxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)∆

{
1− f εiq
−f εiq

}
−i

Ωεi − Ω∗εj
e−iΩεsxy

]

+ Θ(−sxy)

[∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)∆

{
1− f εjq
−f εjq

}
i

Ωεi − Ω∗εj
e−iΩ

∗
ε sxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)∆

{
1− f εiq
−f εiq

}
−i

Ωεi − Ω∗εj
e−iΩ

∗
ε sxy

]
. (J.34)

J.3 Irrelevant contributions

In this appendix we will see that after being combined, the other terms in (J.1) neglected

in appendices J.2 become subdominant in the limit of H � Γ and (Xxy − t)<∼ 1/Γ`φ,

sxy
<∼ 1/Γ`φ.

The neglected terms are obtained by taking variations of the retarded or advanced-type

functions. By using (G.14) and (F.7), the first term in (J.1) becomes

−
∫
dudv ∆GdR(Xxu; sxu; q)Π

′(eq)
R (suv; q)Gd(eq)

><
(svy; q)

=

∫
dq0

2π
(−i)

{
1− f
−f

}[
−i
2

(
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

)
−
(
Xxy − t+

sxy
2

)
∂tG

d(eq)
R − i

2
∂q0∂tG

d(eq)
R

]
Π
′(eq)
R Gd(eq)

ρ e−iq0sxy . (J.35)

The second term becomes

−
∫
dudv G

d(eq)
R (sxu; q)∆Π

′(eq)
R (Xuv, suv; q)Gd(eq)

><
(svy; q)

=

∫
dq0

2π
(−i)

{
1− f
−f

}[
−Gd(eq)

R ∂tΠ
′(eq)
R Gd(eq)

ρ (Xxy − t)

− i

2

(
∂q0G

d(eq)
R ∂tΠ

′(eq)
R Gd(eq)

ρ −Gd(eq)
R ∂tΠ

′(eq)
R ∂q0G

d(eq)
ρ

)]
e−iq0sxy

+

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
+i

2
G
d(eq)
R ∂tΠ

′(eq)
R Gd(eq)

ρ e−iq0sxy . (J.36)

– 65 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

The 5th and 6th term become

−
∫
dudv Gd(eq)

><
(sxu; q)∆Π

′(eq)
A (Xuv; suv; q)G

d(eq)
A (svy; q)

=

∫
dq0

2π
(−i)

{
1− f
−f

}[
−Gd(eq)

ρ ∂tΠ
′(eq)
R G

d(eq)
A (Xxy − t)

− i

2

(
∂q0G

d(eq)
ρ ∂tΠ

′(eq)
A G

d(eq)
A −Gd(eq)

ρ ∂tΠ
′(eq)
A ∂q0G

d(eq)
A

) ]
e−iq0sxy

+

∫
dq0

2π
(−i)∂q0

{
1− f
−f

}
−i
2
Gd(eq)
ρ ∂tΠ

′(eq)
A G

d(eq)
A e−iq0sxy (J.37)

and

−
∫
dudv Gd(eq)

><
(sxu; q)Π

′(eq)
A (suv; q)∆GdA(Xvy; svy; q)

=

∫
dq0

2π
(−i)

{
1− f
−f

}
Gd(eq)
ρ Π

′(eq)
A

×
[
−i
2

(
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

)
−
(
Xxy − t−

sxy
2

)
∂tG

d(eq)
A +

i

2
∂q0∂tG

d(eq)
A

]
e−iq0sxy . (J.38)

The 7th and 9th term become

−
∫
dudv ∆GdR(Xxu, sxu; q)Π

′(eq)
><

(suv; q)GdA(svy; q) (J.39)

=

∫
dq0

2π
(−i)

{
1− f
−f

}
e−iq0sxy

×
[
−i
2

(
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

)
− i

2
∂q0∂tG

d(eq)
R −

(
Xxy − t+

sxy
2

)
∂tG

d(eq)
R

]
Π
′(eq)
ρ G

d(eq)
A (J.40)

and

−
∫
dudv G

d(eq)
R (sxu; q)Π

′(eq)
><

(suv; q)∆GdA(Xvy, svy; q)

=

∫
dq0

2π
(−i)

{
1− f
−f

}
G
d(eq)
R Π

′(eq)
ρ e−iq0sxy

×
[
−i
2

(
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

)
+
i

2
∂q0∂tG

d(eq)
A − ∂tGd(eq)

A

(
Xxy − t−

sxy
2

)]
. (J.41)

– 66 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

First let’s combine terms containing ∂q0∂tGR,A,ρ. Such terms appear

in (J.9), (J.18), (J.35), (J.38), (J.40), (J.41) and are shown to be combined to become

∫
dq0

2π

−1

2

{
1− f
−f

}[(
∂q0∂tG

d(eq)
R Π

′(eq)
R G

d(eq)
R −Gd(eq)

R Π
′(eq)
R ∂q0∂tG

d(eq)
R

)
(J.42)

−
(
∂q0∂tG

d(eq)
A Π

′(eq)
A G

d(eq)
A −Gd(eq)

A Π
′(eq)
A ∂q0∂tG

d(eq)
A

) ]
e−iq0sxy .

Each of them is of order O(HT/Γ2) but their difference becomes of order O(H/T )� H/Γ

due to the cancellation between contributions from the pole Ωi and Ωj .

Next let us see terms containing (Xxy − t). Such terms appear

in (J.10), (J.15), (J.18), (J.21), (J.23), (J.24), (J.35), (J.38), (J.40). They are com-

bined to become

∂XG
′(eq)
><

(X; sxy)
∣∣∣
X=t

(Xxy − t) . (J.43)

The derivative ∂X acting on G is O(HT/Γ) and (Xxy − t) = O(1/T ). Hence it seems

that the term is of the same order O(H/Γ) as the leading order terms in appendices J.2.

But there is further suppression because the off-diagonal Wightman function in thermal

equilibrium itself vanishes as ∆M/Γ`φ ∼ Γ/Γ`φ as shown in (3.45). Hence (J.43) is smaller

than H/Γ by a factor Γ/Γ`φ ∼ Γ/T , and can be neglected.

The terms containing sxy in (J.10), (J.18), (J.35), (J.38), (J.40) are combined to be

∫
dq0

2π

{
1− f
−f

}[(
∂tG

d(eq)
R Π

′(eq)
R G

d(eq)
R −Gd(eq)

R Π
′(eq)
R ∂tG

d(eq)
R

)
−
(
∂tG

d(eq)
A Π

′(eq)
A G

d(eq)
A −Gd(eq)

A Π
′(eq)
A ∂tG

d(eq)
A

) ] isxy
2
e−iq0sxy . (J.44)

Each of them is of orderO(H/Γ) but their difference becomes of negligible orderO(H/T )�
H/Γ due to the cancellation between contributions from the pole Ωi and Ωj . Eq. (J.23)

and the third line of (J.36) and (J.37), which contain ∂tΠR,A, are combined to be

∫
dq0

2π

−1

2

{
1− f
−f

}[(
∂q0G

d(eq)
R ∂tΠ

′(eq)
R G

d(eq)
R −Gd(eq)

R ∂q0Π
′(eq)
R ∂tG

d(eq)
R

)
−
(
∂q0G

d(eq)
A ∂tΠ

′(eq)
A G

d(eq)
A −Gd(eq)

A ∂tΠ
′(eq)
A ∂q0G

d(eq)
A

) ]
e−iq0sxy . (J.45)

Again, each of them is of order O(H/Γ) but their difference turns out to be of negligible

order O(H/T ) because of the similar cancellations.

Finally the terms containing ζ in (J.18), (J.35), (J.38), (J.40), (J.41), and (J.8) are
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combined to be∫
dq0

2π

−1

2

{
1− f
−f

}
e−iq0sxy

×
[ (
∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R

)
Π
′(eq)
R G

d(eq)
R

−Gd(eq)
R Π

′(eq)
R

(
G
d(eq)
R ζR∂q0G

d(eq)
R − ∂q0G

d(eq)
R ζRG

d(eq)
R

)
−
(
∂q0G

d(eq)
A ζAG

d(eq)
A −Gd(eq)

A ζA∂q0G
d(eq)
A

)
Π
′(eq)
A G

d(eq)
A

+G
d(eq)
A Π

′(eq)
A

(
G
d(eq)
A ζA∂q0G

d(eq)
A − ∂q0G

d(eq)
A ζAG

d(eq)
A

) ]
. (J.46)

Each of them is of order O(HT/Γ2) but each line becomes of order O(H/Γ). Moreover,

because of the cancellation between the first and second line, or the third and fourth line,

it turns out to be of order O(H/T ) so that they are negligible again.

K Another derivation of ∆G′
≷

In this appendix we give another, quick and heuristic, derivation of ∆G′≷. The derivation

use some of the results justified in the systematic derivation adopted in the paper. First

we assume that the deviations of the Wightman functions from the thermal value at time

t is given by the following form:

∆Gij>< (Xxy, sxy = 0; q) =
∑
ε

ε

2ωq
(/qε +M)

{
∆Aij>< + ∆Ȧij>< (Xxy − t)

+ ε∆Bij>< + ε∆Ḃij>< (Xxy − t) + · · ·
}
. (K.1)

∆A,∆B are terms which remain at Xxy = t, and A and B are introduced to represent ε

dependence of the sum. Here we take the leading order with respect to (Xxy− t)H ∼ H/Γ.

Both of ∆A and ∆B have no spinor indices.

K.1 Solving KB equation for G
(eq)ij
≷

For the diagonal component, (I.12) shows that

∆Ad>< = 0 , ∆Bd>< =
dtf

(eq)
q

Γq
= ∆

{
1− fq
−fq

}
, (K.2)

∆Ȧd>< = 0 , ∆Ḃd>< = −dtf (eq)
q = −Γq∆Bd>< . (K.3)

The Wightman functions in the thermal equilibrium at t are given in (3.40) for the

diagonal component and (3.44) for the off-diagonal component. Hence they are similarly

written in terms of A and B as

G(eq)ij
><

(Xxy, sxy = 0; q) =
∑
ε

ε

2ωq
(/qε +M)

{
A(eq)ij
><

+ εB(eq)ij
><

}
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where

Ad(eq)
> = −Ad(eq)

< =
1

2
, Bd(eq)

> = Bd(eq)
< =

1

2
(1− 2f (eq)

q ) (K.4)

for the diagonal component and

A′(eq)
><

= B′(eq)
><

= 0 (K.5)

for the off-diagonal component.

K.2 KB equation for ∆Gij≷

In the following we obtain the deviation of the off-diagonal component of the Wightman

functions ∆A′>< directly by solving the KB equations using the above information. The KB

equations for the off-diagonal Wightman functions are given by

iγ0∂x0Gij>< (x0, y0; q)−
{ γ · q
a(x0)

+Mi

}
Gij>< (x0, y0; q)

=

∫
dz0 Πik

R (x0, z0; q)Gkj>< (z0, y0; q) +

∫
dz0 Πik

><
(x0, z0; q)GkjA (z0, y0; q) (K.6)

or

−iγ0∂y0Gij>< (x0, y0; q)−Gij>< (x0, y0; q)
{ γ · q
a(y0)

+Mj

}
=

∫
dz0 Gik>< (x0, z0; q)Πkj

A (z0, y0; q) +

∫
dz0 GikR (x0, z0; q)Πkj

><
(z0, y0; q) (K.7)

Setting x0 = y0 = t and take a difference of these two equations. Summing over the spinor

indices, we have

i∂XG
ij
><V 0(X; q)

∣∣∣∣
X=t

− (Mi −Mj)G
ij
><S(X = t; q)

=

∫
dz0 1

4
tr
{

Πik
R (t, z0; q)Gkj>< (z0, t; q)−Gik>< (t, z0; q)Πkj

A (z0, t; q)
}

+

∫
dz0 1

4
tr
{

Πik
><

(t, z0; q)GkjA (z0, t; q)−GikR (t, z0; q)Πkj
><

(z0, t; q)
}
. (K.8)

On the other hand, multiplying γ0 and then summing over the spinor indices, we have

i∂XG
ij
><S(X; q)

∣∣∣∣
X=t

− 2

4
tr

{
γ0γ · q
a(t)

Gij>< (X = t; q)

}
− (Mi −Mj)G

ij
><V 0(X = t; q)

=

∫
dz0 1

4
tr
{
γ0Πik

R (t, z0; q)Gkj>< (z0, t; q)− γ0Gik>< (t, z0; q)Πkj
A (z0, t; q)

}
+

∫
dz0 1

4
tr
{
γ0Πik

><
(t, z0; q)GkjA (z0, t; q)− γ0GikR (t, z0; q)Πkj

><
(z0, t; q)

}
(K.9)

where

Gij><S(X; q) ≡ 1

4
tr{Gij>< (X, s = 0; q)} , Gij><V µ(X; q) ≡ 1

4
tr{γµGij>< (X, s = 0; q)} . (K.10)
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We are now interested in the deviation from the thermal values at time t. The equa-

tions (K.8) and (K.9) are rewritten as

i∆Ȧij>< − (Mi −Mj)
M

ωq
∆Bij><

=

∫
dz0 1

4
tr
{

Π
(eq)ik
R (t, z0; q)∆Gkj>< (z0, t; q)−∆Gik>< (t, z0; q)Π

(eq)kj
A (z0, t; q)

}
=
∑
ε

ε

2ωq
ηµνqεν

{
Π

(eq)ik
RV µ (εωq,q)(∆Akj>< + ε∆Bkj>< )−Π

(eq)kj
AV µ (εωq,q)(∆Aik>< + ε∆Bik>< )

}
=

1

2ωq

{
q ·Π(eq)ik

ρ (ωq,q)∆Akj>< + q ·Π(eq)kj
ρ (ωq,q)∆Aik><

}
+

1

ωq

{
q ·Π(eq)ik

h (ωq,q)∆Bkj>< − q ·Π
(eq)kj
h (ωq,q)∆Bik><

}
(K.11)

and

i
M

ωq
∆Ḃij>< −

2

4
tr

{
γ0γ · q
a(t)

∆Gij>< (X = t; q)

}
− (Mi −Mj)∆Aij><

=

∫
dz0 1

4
tr
{
γ0Π

(eq)ik
R (t, z0; q)∆Gkj>< (z0, t; q)− γ0∆Gik>< (t, z0; q)Π

(eq)kj
A (z0, t; q)

}
=
∑
ε

εM

2ωq

{
Π

(eq)ik
RV 0 (εωq,q)(∆Akj>< + ε∆Bkj>< )−Π

(eq)kj
AV 0 (εωq,q)(∆Aik>< + ε∆Bik>< )

}
=

M

2ωq

{
Π

(eq)ik
ρV 0 (ωq,q)∆Bkj>< + Π

(eq)kj
ρV 0 (ωq,q)∆Bik><

}
+
M

ωq

{
Π

(eq)ik
hV 0 (ωq,q)∆Akj>< −Π

(eq)kj
hV 0 (ωq,q)∆Aik><

}
. (K.12)

The first line of each equation is nothing but the l.h.s. of (K.8) and (K.9) written in term

of the definitions in (K.1). The second lines of them are the r.h.s. of (K.8) and (K.9) in

which small deviations from the thermal values are considered. The terms represent the

dominant contributions and terms like ∆ΠR/A, ∆Π>< and ∆GR/A are dropped. This is

justified because of the large damping factor Π(t, z0) ∼ e−|t−z0|Γ`φ/2 of the self-energies. In

the second equalities , we performed time integrations and taking the trace with respect

to indices of spinor. In the third equalities, we used (D.11) and (D.16).

K.3 Diagonal component ∆Gdii≷

Let us first look at the diagonal component. We use the simple expression of the

self-energy (D.13) by neglecting the medium effects and in the weak coupling limit. Then

we have

Π
d(eq)
ρV 0 (ωq,q) = (ωq/M

2)q ·Π(eq)ik
ρ (ωq,q)

= −i(ωq/M)Γ = −i(ω2
q/M

2)Γq . (K.13)

With this relation, (K.11) and (K.12) are simplified to be

i∆Ȧd>< = −iΓq∆Ad>< (K.14)
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and

i
M

ωq
∆Ḃd>< −

2

4
tr

{
γ0γ · q
a(t)

∆Gd><(X = t; q)

}
= −iωq

M
Γq∆Bd>< . (K.15)

Eq. (K.3) indeed satisfies (K.14). The second term of the l.h.s. of (K.15) vanishes in the

leading order approximation (K.1), but using the next to leading order approximation of

∆Gd, the second term becomes −iΓq(|q|2/a2)/(Mωq). Then eq. (K.15) is satisfied.

K.4 Off-diagonal component ∆G
′ij
≷

Then we study the off-diagonal component. Using Π(ωq,q) ∝ /q, (K.11) and (K.12) become

i∆Ȧ′ij>< − (Mi −Mj)
M

ωq
∆B′ij><

= −i M
2ωq
{Γi + Γj}∆A′ij>< +

1

2ωq
(q ·Π′(eq)ij

ρ (ωq,q))
{

∆Adjj>< + ∆Adii><
}

+
1

ωq
(q ·Π

′(eq)ij
h (ωq,q))

{
∆Bdjj><

−∆Bdii><

}
(K.16)

and

i
M

ωq
∆Ḃ′ij>< −

2

4
tr

{
γ0γ · q
a(t)

∆G
′ij
><

(X = t; q)

}
− (Mi −Mj)∆A

′ij
><

= −i1
2
{Γi + Γj}∆B′ij>< +

1

2M
(q ·Π′(eq)ij

ρ (ωq,q))
{

∆Bdjj><
+ ∆Bdii><

}
+

1

M
(q ·Π

′(eq)ij
h (ωq,q))

{
∆Adjj>< −∆Adii><

}
. (K.17)

Here we absorbed the real part of the self-energy Πh into the mass term in the l.h.s. by the

mass renormalisation.

For the off-diagonal component, we can expect that

∆Ȧ′>< = ∆Ḃ′>< = 0 . (K.18)

This comes from the relation (3.45) or equivalently (K.5). Since it vanishes in the thermal

equilibrium, its variation due to the change of the local temperature is also expected to

vanish in the leading order approximation. Indeed it is confirmed by using (J.43). On the

contrary, since the equilibrium diagonal Wightman function survives in the same limit, its

variation (or ∆Ḃd 6= 0) does not vanish either. Furthermore, the second term in the l.h.s.

of (K.17) is also expected to give no leading contribution like the first term ∆Ḃ′><.

Using the above arguments, the equations (K.16) and (K.17) are simplified as equations

to determine ∆A′>< and ∆B′>< in terms of ∆Ad>< and ∆Bd><, and they are solved as(
∆A′ij><
∆B′ij><

)
=

−1

(∆M2
ij)

2 + (MΓi +MΓj)2

(
i(MΓi +MΓj) ∆M2

ij

∆M2
ij i(MΓi +MΓj)

)

×

(
2(q ·Π

′(eq)ij
h (ωq,q))

{
∆Bdjj><

−∆Bdii><

}
(q ·Π

′(eq)ij
ρ (ωq,q))

{
∆Bdjj><

+ ∆Bdii><

} ) . (K.19)

The regulator MiΓi + MjΓj controls the enhancement of the solutions for ∆G′≷. This

expression corresponds to (4.24).
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K.5 ∆G
′
≷ based on a wrong assumption G

′
≷ 6= 0

Finally in this appendix, we discuss how we will obtain an erroneous answer with the

regulator of the type MiΓi−MjΓj . Let us assume (which turns out to be wrong) that the

off-diagonal component did not vanish and is given by

i∆Ȧ′′>< = −iΓq∆A
′′
><

(K.20)

and

i
M

ωq
∆Ḃ′′>< −

2

4
tr

{
γ0γ · q
a(t)

∆G
′′
><

(X = t; q)

}
= −iωq

M
Γq∆B

′′
><
. (K.21)

Here Γq = ΓM/ωq is of the same order as Γiq = ΓiM/ωq (i = 1, 2). These are similar to

the correct relations for the diagonal components, (K.14) and (K.15).

The above equations (K.20) and (K.21) are based on a correct-looking assumption that

the deviations of the off-diagonal Wightman functions out of equilibrium are obtained by

taking a variation of the the equilibrium value with respect to the local temperature. In

other words, it is assumed that there exists an “off-diagonal distribution function f
′(eq)
q ”

which does not vanish at sxy = x−y = 0 and its deviation from the equilibrium value satis-

fies the relation ∆f
′
q = −dtf

′(eq)
q /Γq. (As a matter of fact, such a function does not exist.)

Under such incorrect assumptions, additional terms change the l.h.s. of (K.16)

and (K.17), and the regulator is modified to be

Γi + Γj → Γi + Γj − 2Γ ∼ Γi − Γj . (K.22)

This is the way we could obtain an erroneous enhancement factor.

L Effects of backreactoin

Backreactions of the generated lepton asymmetry to the RH Wightman functions are given

by inserting (5.17) into (3.34) and (3.35):

∆µG
dii
><

(sxy; q) =−
∫
dq0

2π
e−iq0(x0−y0)G

d(eq)ii
R/A (q)∆µΠdii

R/A(q)G
d(eq)ii
R/A (q) , (L.1)

∆µG
′ij
><

(sxy; q) =−
∫
dq0

2π
e−iq0(x0−y0)G

′(eq)ij
R (q)∆µΠdjj

><
(q)G

d(eq)jj
A (q)

−
∫
dq0

2π
e−iq0(x0−y0)G

d(eq)ii
R (q)∆µΠdii

><
(q)G

d(eq)ij
A (q) (L.2)

−
∫
dq0

2π
e−iq0(x0−y0)G

d(eq)ii
R (q)∆µΠ

′ij
><

(q)G
d(eq)jj
A (q) . (L.3)
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Here by using (D.6) ∆µΠ><(q) becomes

∆µΠij
><

(q) =

∫
ds e+iq0s∆µΠij

><
(t; s; q)

=
∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
(−gw) (2π)3δ3(q − p− k)

×
Γ`φ

(q0 − ε`ωp − εφωk)2 + Γ2
`φ/4

/pε`

×
[

1

2

{
(h†h)ij∆D

ε`εφ
><(p,k) + (h†h)∗ij∆D

ε`εφ
><(p,k)

}
+

1

2
γ5

{
(h†h)ij∆D

ε`εφ
><(p,k) − (h†h)∗ij∆D

ε`εφ
><(p,k)

}]
(L.4)

where

Dε`εφ><(p,k) ≡

{
ε`εφ(1− f ε`

`p
)(1 + f

εφ

φk
)

ε`εφ(−f ε`
`p

)(+f
εφ

φk
)

= D−ε`−εφ<>(p,k) (L.5)

and

∆Dε`εφ><(p,k) ≡ D
ε`εφ
><(p,k) −D

ε`εφ(eq)
><(p,k) , ∆Dε`εφ><(p,k) ≡ D

ε`εφ
><(p,k) −D

ε`εφ(eq)
><(p,k) . (L.6)

In the leading order approximation of small deviations from the thermal equalibrium, the

square bracket in (L.4) becomes

1

2

[
i=(h†h)ij + <(h†h)ijγ5

] {
∆Dε`εφ><(p,k) −∆Dε`εφ><(p,k)

}
. (L.7)

Let us write (L.1) and (L.2) as

∆µG
ij
><

(s; q) =
∑
ε

∆µZ
ij
><ε(q) e−iΩεs . (L.8)

We have adopted the approximation e−iΩis ' e−iΩjs ' e−iΩs because we are especially

interested in the case 1/Γ`φ
>∼ s > 0. Also we have dropped rapidly damping contributions

∼ e−sΓ`φ/2 from the pole of self-energy which are the higher order in Γ/Γ`φ. Plugging

this form into (5.1) with the equilibrium value of π>< and performing the time integration,

we get

dnL
dt

+ 3HnL

∣∣∣∣
∆µG><

=

∫
d3q

(2π)3

∑
ε

∫
dq0

2π
2<
[
(h†h)ji

i

q0 − Ωε

[
tr
{
PR∆µZ

ij
<ε(q)PLπ

(eq)
> (q0,q)

}
− tr

{
PR∆µZ

ij
>ε(q)PLπ

(eq)
< (q0,q)

}]]
. (L.9)
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Focusing on q0 integration and using the KMS condition for the self-energy, we get∫
dq0

2π

i

q0 − Ωε
π(eq)
><

(q0,q) =

∫
dq0

2π

i

q0 − Ωε
(−i)

{
1− f(q0)

−f(q0)

}
π(eq)
ρ (q0,q)

'
∑
ε`,εφ

∫
d3p

(2π)32ωp

d3k

(2π)32ωk
(−gw) (2π)3δ3(q − p− k)× (−1)

×
−Dε`εφ(eq)

ρ(p,k)

εωq − ε`ωp − εφωk − iΓ`φ/2
/pε`(−i)

{
1− f(q0)

−f(q0)

}∣∣∣∣∣
q0=ε`ωp+εφωk+iΓ`φ/2

. (L.10)

In the second line, we have neglected the poles of f(q0) in contour integral through the

upper q0 plane. Considering the weak couplong limit in which Γ`φ � T , the imaginary

part of the distribution function is negligible. Moreover, in this limit, we can confirm

that the real part of 1/(εω − ε`ωp − εφωk − iΓ`φ/2) does not contribute in (L.9) by the

straightforward calculation. the remaining imaginary part goes to the Dirac delta function

πδ(εω−ε`ωp−εφωk). This means that, in (L.9), the approximation f(ε`ωp+εφωk) ' f(εωq)

is justified and the distribution function is allowed to come out from the inside of p and k

integration. This approximation is equivalent to the replacement:∫
dq0

2π

i

q0 − Ωε
π(eq)
><

(q0,q)→ (−i)

{
1− f(εωq)

−f(εωq)

}
−1

2
π(eq)
ρ (εωq,q) (L.11)

in (L.9). Using the expression πρ(εωq) = −gwiε/qε/(16π), πh(εωq) = 0, It turns out that

only the off-diagonal components of ∆µG>< contribute to (L.9). After simple calculations,

we get the backreactions (5.18) and (5.19).

M Separation of ∆G′
≷ into “on-shell” and “off-shell”

In this appendix we give detailed calculations of the separation of various Green functions

into “on-shell” and “off-shell” contributions discussed in section 6. Since the leading order

terms in G
′ij
≷ contain derivatives of the distribution functions, we consider only terms

including ∂ωf and ∂tf .

M.1 G
′(eq)
R/A

We first extract terms oscillating with frequencies Ω1 and Ω2 in G
′(eq)
R/A . For the equilib-

rium Green functions, the extraction can be easily carried out by looking at their time

representations, (3.28) and (3.29):

G
′(eq)ij
R (x0, y0; q) = [G

′(eq)ij
R (x0, y0; q)]i + [G

′(eq)ij
R (x0, y0; q)]j

[G
′(eq)ij
R (x0, y0; q)]i ≡ Θ(sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−i
Ωεi − Ωεj

e−iΩεi(x
0−y0)

[G
′(eq)ij
R (x0, y0; q)]j ≡ Θ(sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+i

Ωεi − Ωεj
e−iΩεj(x

0−y0) (M.1)
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and

G
′(eq)ij
A (x0, y0; q) = [G

′(eq)ij
A (x0, y0; q)]i + [G

′(eq)ij
A (x0, y0; q)]j

[G
′(eq)ij
A (x0, y0; q)]i ≡ Θ(−sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+i

Ω∗εi − Ω∗εj
e−iΩ

∗
εi(x

0−y0)

[G
′(eq)ij
R (x0, y0; q)]j ≡ Θ(−sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−i
Ω∗εi − Ω∗εj

e−iΩ
∗
εj(x

0−y0) . (M.2)

M.2 ∆G
′

R/A

For the out-of-equilibrium Green functions ∆G
′

R/A, the separation is a bit more involved.

Let us start with the expression (4.11) of the off-diagonal retarded propagator:

∆G
′ij
R (x0, y0; q) = W1 +W2 +W3 ,

W1 ≡ −
∫
du0dv0G

d(eq)ii
R (x0, u0; q)Π

′(eq)ij
R (u0, v0; q)∆GdjjR (v0, y0; q) ,

W2 ≡ −
∫
du0dv0∆GdiiR (x0, u0; q)Π

′(eq)ij
R (u0, v0; q)G

d(eq)jj
R (v0, y0; q) ,

W3 ≡ −
∫
du0dv0G

d(eq)ii
R (x0, u0; q)∆Π

′(eq)ij
R (u0, v0; q)G

d(eq)jj
R (v0, y0; q) . (M.3)

By using identities in appendix F, we can calculate these integrals. W1 becomes

W1 =

∫
dq0

2π

−i
2
G
d(eq)ii
R Π

′(eq)ij
R (∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R )jje−iq0sxy

+

∫
dq0

2π

+i

2
G
d(eq)ii
R Π

′(eq)ij
R ∂q0∂tG

d(eq)jj
R e−iq0sxy

+

∫
dq0

2π
(−1)G

d(eq)ii
R Π

′(eq)ij
R ∂tG

d(eq)jj
R

(
Xxy − t−

sxy
2

)
e−iq0sxy . (M.4)

The leading order terms containing waves with frequency Ωi is given by taking the residue

of the Ωi in G
d(eq)ii
R and we have

[W1]i '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

ε

(Ωεi − Ωεj)2

∂ωq
∂t

(
i∂Q1 − t−

i

2
∂Ωεi

)
e−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

.

(M.5)

Here we used the identity (F.5). To extract a leading order contribution with frequency

Ωj , it’s convenient to rewrite W1 into the following form:

W1 =

∫
dq0

2π

−i
2
G
d(eq)ii
R Π

′(eq)ij
R (∂q0G

d(eq)
R ζRG

d(eq)
R −Gd(eq)

R ζR∂q0G
d(eq)
R )jje−iq0sxy

+

∫
dq0

2π

−i
2
∂q0

(
G
d(eq)ii
R Π

′(eq)ij
R

)
∂tG

d(eq)jj
R e−iq0sxy

+

∫
dq0

2π
(−1)G

d(eq)ii
R Π

′(eq)ij
R ∂tG

d(eq)jj
R (Xxy − t) e−iq0sxy . (M.6)
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It is equal to (M.4) up to a total derivative. Taking the residue of the pole Ωj in ∆GdjjR ,

we get the leading order contribution with frequency Ωj as

[W1]j '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−ε
(Ωεi − Ωεj)2

∂ωq
∂t

(
i∂Q1 − t+

i

2
∂Ωεi

)
e−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+iε

Ωεi − Ωεj

∂ωq
∂t

(i∂Q1 − t)
i

2
∂Ωεie

−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

.

(M.7)

Similarly, we can extract the following leading order contributions from W2:

[W2]j '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

ε

(Ωεi − Ωεj)2

∂ωq
∂t

(
i∂Q1 − t+

i

2
∂Ωεi

)
e−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

(M.8)

and

[W2]i '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−ε
(Ωεi − Ωεj)2

∂ωq
∂t

(
i∂Q1 − t−

i

2
∂Ωεi

)
e−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

+
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−iε
Ωεi−Ωεj

∂ωq
∂t

(i∂Q1−t)
i

2
∂Ωεie

−iΩεisxy−iQ1Xxy

∣∣∣∣∣
Q1=0

. (M.9)

W3 in (M.3) is calculated as

W3 =

∫
dq0

2π

−i
2

(
∂q0G

d(eq)ii
R ∂tΠ

′(eq)ij
R G

d(eq)
R −Gd(eq)ii

R ∂tΠ
′(eq)ij
R ∂q0G

d(eq)
R

)
e−iq0sxy

+

∫
dq0

2π
(−1)G

d(eq)ii
R ∂tΠ

′(eq)ij
R G

d(eq)jj
R (Xxy − t) e−iq0sxy . (M.10)

It turns out that all terms are suppressed by a factor Γ/T and there are no leading order

contributions from W3:

[W3]i = [W3]j = 0 . (M.11)

Summing up Wi (i = 1, 2, 3), the retarded Green function ∆G′R is separated in the

leading order approximation as

∆G
′ij
R (x0, y0; q) '[∆G

′ij
R (x0, y0; q)]i + [∆G

′ij
R (x0, y0; q)]j ,

[∆G
′ij
R (x0, y0; q)]i ≡Θ(sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−iε
Ωεi − Ωεj

× ∂ωq
∂t

(i∂Q1 − t)
i

2
∂Ωεie

−iΩεisxy−iQ1Xxy

∣∣∣∣
Q1=0

,

[∆G
′ij
R (x0, y0; q)]j ≡Θ(sxy)

∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+iε

Ωεi − Ωεj

× ∂ωq
∂t

(i∂Q1 − t)
i

2
∂Ωεie

−iΩεisxy−iQ1Xxy

∣∣∣∣
Q1=0

. (M.12)
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M.3 Useful identities

In order to perform the following calculations, we first introduce two useful identities

∫
dq

2π

dq2

2π
F (Ωε, q, q2)

∫ x

du

∫
dve−iΩε(x−u)−iQ1(x+u)/2−iq(u−v)−iXQ−iq2(v−y)−iQ2(v+y)/2

=

∫
dq

2π
F (Ωε, q +Q/2 +Q2/2, q)

+i

q − Ωε +Q+ (Q1 +Q2)/2

× e−i(q+Q/2+Q1/2)sxy−i(Q1+Q2+Q)Xxy (M.13)

and

∫
dq

2π

dq1

2π
F (q1, q,Ω

∗
ε )

∫
du

∫ y

dve−iq1(x−u)−iQ1(x+u)/2−iq(u−v)−iXQ−iΩ∗ε (v−y)−iQ2(v+y)/2

=

∫
dq

2π
F (q, q −Q/2−Q1/2,Ω

∗
ε )

−i
q − Ω∗ε −Q− (Q1 +Q2)/2

× e−i(q−Q/2−Q2/2)sxy−i(Q1+Q2+Q)Xxy . (M.14)

Note that the complex frequency Ω is introduced in the above identities unlike (F.5). In

the following, we will use these identities together with (F.5).

M.4 G
′
≷

By using the decomposition (M.1) and (M.2), we separate G≷
′(eq) into “on-shell” and“off-

shell” terms as

G
′(eq)ij
><q =[G

′(eq)ij
><q ]on-shell + [G

′(eq)ij
><q ]off-shell ,

[G
′(eq)ij
><q ]on-shell ≡− [G

′(eq)ij
Rq ]j ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq

−Gd(eq)ii
Rq ∗Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]i ,

[G
′(eq)ij
><q ]off-shell ≡− [G

′(eq)ij
Rq ]i ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq

−Gd(eq)ii
Rq ∗Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]j

−Gd(eq)ii
Rq ∗Π

′(eq)ij
><q ∗Gd(eq)jj

Aq . (M.15)

In the “on-shell” terms, the same mass eigenstate i or j propagates.22 On the other hand,

the “off-shell” terms contain both of the mass eigenstates i and j simultaneously.

22Since Π′ is flavor off-diagonal, differences between the flavor eigenstates and the mass eigenstates in

GR/A are higher orders with respect to (h†h)′/(h†h)d.
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M.5 On-shell part of G
′(eq)
≷

Plugging the decomposition (M.1) and (M.2) into above and using the identities (M.13)

and (M.14), we obtain the following on-shell contributions:

−
[
G
′(eq)ij
R q

]
j
∗Π

d(eq)jj
>< q ∗Gd(eq)jj

A q

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

−i
Ωεi − Ωεj

iΓjq
Ωεj − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0)

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+i

Ωεi − Ωεj
(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) (M.16)

and

−Gd(eq)ii
R q ∗Π

d(eq)ii
>< q ∗

[
G
′(eq)ij
A q

]
i

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

−i
Ω∗εi − Ω∗εj

−iΓiq
Ωεi − Ω∗εi

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0)

=
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

−i
Ω∗εi − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) . (M.17)

Summing the above two on-shell contributions, we have eq. (6.3).

M.6 Off-shell part of G
′(eq)
≷

The first off-shell contribution comes from the i-th propagation in G
′ij
R of the first term

of (3.35), and becomes (supposing x0 > y0)

−
[
G
′(eq)ij
R q

]
i
∗Π

d(eq)jj
>< q ∗Gd(eq)jj

A q

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε

+i

Ωεi − Ωεj

iΓjq
Ωεi − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) . (M.18)

The j-th propagation of the second term in (3.35) gives the off-shell contribution and

becomes (for x0 > y0)23

−Gd(eq)ii
R q ∗Π

d(eq)ii
>< q ∗

[
G
′(eq)ij
A q

]
j

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε

+i

Ω∗εi − Ω∗εj

−iΓiq
Ωεi − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) . (M.19)

From the last line of (M.15), we get the off-shell contribution by using the identity (F.5)

(for x0 > y0):

−Gd(eq)ii
R q ∗Π

′(eq)ij
>< q ∗Gd(eq)jj

A q

'
∑
ε

ZεΠ
′(eq)ij
ρ (εωq)Zε

−i
Ωεi − Ω∗εj

(−i)

{
1− f εiq
−f εiq

}
e−iΩεi(x

0−y0) . (M.20)

23Note that the frequency of the wave function is given by Ωεi. It is because, for x0 > y0, the pole of the

j-th eigenstate of G
′ij
A does not contribute to the Cauchy integral because the pole is in the lower complex

plane.
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Note that the enhancement factors of these off-shell contributions have a factor 1/(Ωi−
Ω∗j ). Summing the on-shell (6.3) and off-shell contributions, we can of course recover the

full result (3.43).

M.7 On-shell part of ∆G
′ij
≷

Finally, we move on to ∆G′ij≷ . Taking a variation of (3.35), we get the following 7 terms:

∆G
′ij
><

=−∆G
′ij
R ∗Πd(eq)jj

><
∗Gd(eq)jj

A −G
′(eq)ij
R ∗∆Πd(eq)jj

><
∗Gd(eq)jj

A

−G
′(eq)ij
R ∗Πd(eq)jj

><
∗∆GdjjA −∆GdiiR ∗Πd(eq)ii

><
∗G

′(eq)ij
A

−Gd(eq)ii
R ∗∆Πd(eq)ii

><
∗G

′(eq)ij
A −Gd(eq)ii

R ∗Πd(eq)ii
><

∗∆G
′ij
A

−∆
{
GdiiR ∗Π

′ij
><
∗GdjjA

}
. (M.21)

Let us apply the decomposition (M.12) into the first term. Using the identity (M.13)

and performing q0 integration to pick up the pole q0 = Ωεi,j −Q1/2 in [∆G
′ij
R ]i,j , f(q0) is

replaced by f(Ωεi,j − Q1/2). The derivatives with respect to Q1 or Ωεi,j act on it in the

leading order approximation. As a result we have

−[∆G
′ij
Rq ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq ]on-shell ≡ −[∆G
′ij
Rq]j ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωjq
∂t

∂

∂ωjq

{
1− f εjq
−f εjq

}
1

(Ωεj − Ω∗εj)
2

+iΓjq
Ωεi − Ωεj

e−iΩεjsxy

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωjq
∂t

∂

∂ωjq

{
1− f εjq
−f εjq

}
−1

Γjq

i

Ωεi − Ωεj
e−iΩεjsxy . (M.22)

For the second term in (M.21), we apply the decomposition of G′R in (M.1). After

using (M.13), we get

−[G
′(eq)ij
Rq ∗∆Π

d(eq)jj
><q ∗Gd(eq)jj

Aq ]on-shell ≡ −[G
′(eq)ij
Rq ]j ∗∆Π

d(eq)jj
><q ∗Gd(eq)jj

Aq

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εjq
−f εjq

}
1

(Ωεj − Ω∗εj)
2

+iΓjq
Ωεi − Ωεj

e−iΩεjsxy

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εjq
−f εjq

}
−1

Γjq

i

Ωεi − Ωεj
e−iΩεjsxy . (M.23)

Summing up the these two on-shell contributions, (M.22) and (M.23), we get

−∆
{[
G
′ij
R q

]
j
∗Πdjj

>< q ∗G
djj
A q

}
'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i) dt

{
1− f εjq
−f εjq

}
+1

(Ωεj − Ω∗εj)
2

+iΓjq
Ωεi − Ωεj

e−iΩεj(x
0−y0)

=
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i) dt

{
1− f εjq
−f εjq

}
−1

Γjq

i

Ωεi − Ωεj
e−iΩεj(x

0−y0). (M.24)
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For the 4th term in (M.21), we apply the decomposition of G
′(eq)
A (M.2). Using (M.14),

we get

−[∆GdiiRq ∗Π
d(eq)ii
><q ∗G

′(eq)ij
Aq ]on-shell ≡ −∆GdiiRq ∗Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]i

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
1

(Ωεi − Ω∗εi)
2

−iΓiq
Ω∗εi − Ω∗εj

e−iΩεisxy

=
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
−1

Γiq

−i
Ω∗εi − Ω∗εj

e−iΩεisxy . (M.25)

On-shell contribution from the 5th term in (M.21) is similarly calculated as

−[G
d(eq)ii
Rq ∗∆Π

d(eq)ii
><q ∗G

′(eq)ij
Aq ]on-shell ≡ −G

d(eq)ii
Rq ∗∆Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]i

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
1

(Ωεj − Ω∗εj)
2

−iΓiq
Ω∗εi − Ω∗εj

e−iΩεisxy

=
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
−1

Γiq

−i
Ω∗εi − Ω∗εj

e−iΩεisxy . (M.26)

Summing us another set of these two on-shell contributions, (M.25) and (M.26), we get

−∆
{
G
d(eq)ii
R q ∗Π

d(eq)ii
>< q ∗

[
G
′(eq)ij
A q

]
i

}
'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εi)
2

+iΓiq
Ω∗εi − Ω∗εj

e−iΩεi(x
0−y0)

=
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
−1

Γiq

−i
Ω∗εi − Ω∗εj

e−iΩεi(x
0−y0). (M.27)

To summarize, after summing all on-shell contributions, (M.24 ) and (M.27), we have

(for x0 > y0)[
∆G

′ij
><

(x0, y0; q)
]
on-shell

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)∆

{
1− f εjq
−f εjq

}
i

Ωεi − Ωεj
e−iΩεjsxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)∆

{
1− f εiq
−f εiq

}
−i

Ω∗εi − Ω∗εj
e−iΩεisxy . (M.28)

M.8 Off-shell part of ∆G
′ij
≷

Let us also calculate off-shell contributions to ∆G
′ij
≷ for completeness.

The off-shell contribution of the first term in (M.21) is given by

−[∆G
′ij
Rq ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq ]off-shell ≡ −[∆G
′ij
Rq]i ∗Π

d(eq)jj
><q ∗Gd(eq)jj

Aq (M.29)

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
1

(Ωεi − Ω∗εj)
2

−iΓjq
Ωεi − Ωεj

e−iΩεisxy .
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From the second term in (M.21), we have the following off-shell contribution:

−[G
′(eq)ij
Rq ∗∆Π

d(eq)jj
><q ∗Gd(eq)jj

Aq ]off-shell ≡ −[G
′(eq)ij
Rq ]i ∗∆Π

d(eq)jj
><q ∗Gd(eq)jj

Aq

'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
1

(Ωεi − Ω∗εj)
2

−iΓjq
Ωεi − Ωεj

e−iΩεisxy . (M.30)

Summing (M.29) and (M.30), we have (for x0 > y0)

−∆
{[
G
′ij
R q

]
i
∗Πdjj

>< q ∗G
djj
A q

}
'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εj)
2

+iΓjq
Ωεi − Ωεj

e−iΩεi(x
0−y0) . (M.31)

The third term in (M.21) has no leading order contribution:

−[G
′(eq)ij
Rq ]i ∗Π

d(eq)jj
><q ∗∆GdjjAq = −[G

′(eq)ij
Rq ]j ∗Π

d(eq)jj
><q ∗∆GdjjAq = 0 . (M.32)

To see this, perform the time and frequency integration. Using (M.13) with Q = 0, we have

a factor f(q0 + Q2/2) = f(Ωε) by picking up the pole at Ωε − Q2/2. The derivative with

respect to Ω would come from the double poles of ∆GA (G.14), but since we are interested

in the region x0 > y0, these poles on the upper complex plane do not contribute. Therefore

no derivatives of the distribution function appear. Similarly the 6th term in (M.21) also

vanishes in the leading order approximation:

−Gd(eq)ii
Rq ∗Π

d(eq)ii
><q ∗ [∆G

′ij
Aq]j = −Gd(eq)ii

Rq ∗Π
d(eq)ii
><q ∗ [∆G

′ij
Aq]i = 0 . (M.33)

The 4th term in (M.21) give the following off-shell contribution:

−[∆GdiiRq ∗Π
d(eq)ii
><q ∗G

′(eq)ij
Aq ]off-shell ≡ −∆GdiiRq ∗Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]j (M.34)

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
1

(Ωεi − Ω∗εj)
2

+iΓiq
Ω∗εi − Ω∗εj

e−iΩεisxy .

The 5th term in (M.21) gives the off-shell contribution as

−[G
d(eq)ii
Rq ∗∆Π

d(eq)ii
><q ∗G

′(eq)ij
Aq ]off-shell ≡ −G

d(eq)ii
Rq ∗∆Π

d(eq)ii
><q ∗ [G

′(eq)ij
Aq ]j

'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
1

(Ωεi − Ω∗εj)
2

+iΓiq
Ω∗εi − Ω∗εj

e−iΩεisxy . (M.35)

Summing (M.34) and (M.35), we have

−∆
{
G
d(eq)ii
R q ∗Π

d(eq)ii
>< q ∗

[
G
′(eq)ij
A q

]
j

}
'
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
+1

(Ωεi − Ω∗εj)
2

+iΓiq
Ω∗εi − Ω∗εj

e−iΩεi(x
0−y0) . (M.36)

– 81 –



J
H
E
P
0
4
(
2
0
1
4
)
0
6
2

The last line in (M.21) gives off-shell contributions. They are composed of (J.22), (J.40)

and (J.41). Using (F.5), we get the following leading order contributions:

(J.22) '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
+1

(Ωεi − Ω∗εj)
2
e−iΩεisxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂T

∂t

∂

∂T

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εj)
2
e−iΩεisxy ,

(M.37)

(J.40) + (J.41) '
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
+1

(Ωεi − Ω∗εj)
2
e−iΩεisxy

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i)

∂ωiq
∂t

∂

∂ωiq

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εj)
2
e−iΩεisxy .

(M.38)

Summing up these, we have

−∆
{
G
d(eq)ii
R q ∗Π

′(eq)ij
>< q ∗Gd(eq)jj

A q

}
'
∑
ε

ZεΠ
′(eq)ij
R (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
+1

(Ωεi − Ω∗εj)
2
e−iΩεi(x

0−y0)

+
∑
ε

ZεΠ
′(eq)ij
A (εωq)Zε(−i) dt

{
1− f εiq
−f εiq

}
−1

(Ωεi − Ω∗εj)
2
e−iΩεi(x

0−y0) . (M.39)

Of course, if we sum up all the on-shell and off-shell contributions, (M.28)

and (M.31), (M.36), (M.39), we can recover the full result (J.34).
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