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This article investigates a new method of motion estimation based on block matching criterion through the modeling of image
blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices)
are estimated by the Expectation Maximization algorithm (EM) which maximizes the log-likelihood criterion. The similarity
between a block in the current image and the more resembling one in a search window on the reference image is measured by
the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real
images have given good results, and PSNR reached 3 dB.

1. Introduction

Motion estimation is the process which generates the motion
vectors that determines how each motion compensated
prediction frame is created from the previous frame. It
examines the movement of objects in an image sequence
to try to obtain vectors representing the estimated motion.
Motion compensation uses the knowledge of object motion
obtained to achieve data compression.

Motion estimation plays a key role in many video appli-
cations, such as frame-rate video conversion, video retrieval,
video surveillance, and video compression.

The key issue in these applications is to define appro-
priate representations that can efficiently support motion
estimation with the required accuracy.

In interframe coding, motion estimation and com-
pensation have become powerful techniques to eliminate
the temporal redundancy due to high correlation between
consecutive frames [1].

In real video scenes, motion can be a complex combi-
nation of translation and rotation. Such motion is difficult
to estimate and may require large amounts of processing.
However, translational motion is easily estimated and has
been used successfully for motion compensated coding.

Most of the motion estimation algorithms make the follow-
ing assumptions [2–4].

(1) Objects move in translation in a parallel plane to the
camera plane, that is, the effects of camera zoom and
object rotations are not considered.

(2) Illumination is spatially and temporally uniform.

(3) Occlusion of one object by another and uncovered
background are neglected.

Several motion estimation approaches have been pro-
posed so far in the open literature such as pel-recursive
algorithms, frequency domain techniques, optical flow, and
block matching methods.

Pel-recursive Algorithms rely on iterative refining of
motion estimation for individual pels by gradient methods
that enable to predict recursively the displacement of each
pel from its neighbouring pels. These algorithms involve
more computational complexity and less regularity and are
therefore difficult to realize in hardware [5]. Frequency
motion estimation techniques are mainly used for the global
motion estimation. The most known frequency technique is
the phase correlation method that capitalizes on the well-
known Fourier shift theorem which states that shifts in the
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Figure 1: Block Matching Process, the two frames used to
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Figure 2: Block Matching a macroblock of side 16 pixels and a
search parameter p of size 3 pixels.

spatial domain correspond to linear phase changes in the
Fourier domain [6–8]. Optical flow estimation ensures high
accuracy for scenes with small displacements but fails when
the displacements are large. In general, these methods suffer
from the aperture problem because each neighbourhood
of pixels can have a different motion in the image [9–
11]. Block Matching Algorithms estimate motion on the
basis of rectangular blocks and produce one motion vector
for each block. These algorithms are more suitable for a
simple hardware realization because of their regularity and
simplicity [12].

Figure 1 illustrates a process of block matching algorithm
BMA. In a typical BMA, each frame is divided into blocks,
each one of them consists of luminance and chrominance
blocks. Usually, for coding efficiency, motion estimation is
performed only on the luminance block. Each luminance
block in the present frame is matched against candidate
blocks in a search area on the reference frame. These

candidate blocks are just the displaced versions of the original
block. The best (least distorted, i.e., most matched) candidate
block is found, and its displacement (motion vector) is
recorded. In a typical interframe coder, the input frame
is subtracted from the prediction of the reference frame.
Consequently the motion vector and the resulting error can
be transmitted instead of the original luminance block; thus,
interframe redundancy is removed and data compression is
achieved. At the receiver end, the decoder builds the frame
difference signal from the received data and adds it to the
reconstructed reference frames. The summation gives an
exact replica of the current frame. The better the prediction,
the smaller the error signal and hence the transmission bit
rate [13]. Despite the success of block matching standards
method, these techniques are only based on the luminosity,
and one can find misleading cases where the hypothesis of
constant levels of gray is not verified. Some models take
into account a factor of change of brightness in the scene.
Thus the change in brightness is supposed to offset during
the estimation. Such adjustments can improve the result
of global changes in brightness, for which it is possible to
estimate the change in a reliable manner, as against it does
not take into account local variations, such as shadows.
Therefore, we propose a statistical method to estimate the
motion based on modeling image blocks by a mixture of
Gaussian distributions. These mixtures are robust, relatively
easy to use, and have traditionally learned independently,
class by class, using a criterion of maximum likelihood
[14–16]. The optimization is then performed using the
algorithm EM (Expectation-Maximization) based on an
iterative optimization of the model parameters (a priori
probability, vectors means, and covariances matrices). Then
we resort to the Extended Mahalanobis distances to measure
the similarity and to search for the best matching between
two windows spaces (or blocks) located in consecutive
frames.

This paper is organized as follows. In Section 2, the
modeling and parameter estimation of Gaussian mixtures is
briefly described. The distance measure between Gaussian
mixtures models is studied in Section 3. We describe our
approach in Section 4. Section 5 presents simulation results
under and without influence of noise. Some concluding
remarks are given in Section 6.

2. Modeling and Parameter Estimation of
GaussianMixtures

We consider the following Gaussian mixture model [17]
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where k is the number of components in the mixture, (αi ≥
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where n is the dimensionality of the vector x, μi is the
mean vector, and Σi is the covariance matrix assumed to
be positive definite. For clarity, we let Θk be the collec-
tion of all the parameters in the mixture, that is, Θk =
(θ1, . . . , θk,α1, . . . ,αk).

Given a set of N i.i.d. samples, X = {xt}Nt=1, the
log-likelihood function for the Gaussian mixture model is
expressed as follows:
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which can be maximized to get a Maximum Likelihood (ML)
[18] estimate of Θk via the following EM algorithm:
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where P(i/xt) = αip(xt/θi)/
∑k

t=1 αip(xt/θi) are the posterior
probabilities.

As EM is highly dependent on initialization, the first set
of parameters selection is very important for EM algorithm.
If the initial parameters are not well selected, the algorithm
may converge into local maxima points. The convergence
properties of EM algorithm over Gaussian Mixture Model
have been extensively studied in [19, 20].

3. DistanceMeasures between Gaussian
Mixtures Models

Popular distance measures from the field of statistics include
the Kullback-Leibler divergence and the Extended Maha-
lanobis distance. The Kullback-Leibler divergence can be
seen as a dissimilarity measure between two probability
functions. However, it is not symmetric and does not obey
the triangle inequality and is thus not a true metric. The
Extended Mahalanobis distance metric can be extended to
a distance measure between two distributions by combining
the covariance matrices of the distributions [21]. We have
no prior preference for any of these two distances; they give
almost the same results, which is based on the statistical
distribution of data and not on data directly. The advantage
of the Extended Mahalanobis distance relies on the fact
that it is easy to calculate. In practice, in the case of
two Gaussian distributions N1(μ1,

∑
1) and N2(μ2,

∑
2) the

measure between two means vectors is defined as follows:
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However, this measure creates a singularity for singular
covariance matrices. In practical problems it often appears

in learning such models mixture. The acquired covariance
matrix are not always conditioned and their inversion
creates a problem. In our implementation, we replace the
inverse of singular covariance matrix by its pseudoinverse.
Singular value decomposition is used for the calculation of
the pseudoinverse. Roundoff errors can lead to a singular
value not being exactly zero even if it should be. Tolerance
parameter places a threshold when comparing singular
values with zero and improves the numerical stability of the
method with singular or near-singular matrices.

4. Approach and Conception of the
ProposedMethod

Considering a video sequence containing moving objects,
we estimate the displacement vector of each object in
the image plane by the technique of Full Search Block
Matching Algorithm. The current frame is divided into
a matrix of “macro-blocks” that are then compared with
the corresponding block and its adjacent neighbours in
the previous frame. This enables to create a vector that
stipulates the movement of a macro-block from one location
to another in the previous frame. This movement, calculated
for all the macro-blocks included in a frame, represents the
motion estimated in the current frame. The search area for a
good macro-block match is constrained up to p pixels on all
fours sides of the corresponding macro-block in the previous
frame. This “p” stands for the search parameter. Larger
motions require a larger p; the larger the search parameter is,
the more computationally expensive the process of motion
estimation becomes. The idea is depicted in Figure 2. The
matching of one macro-block with another is based on the
output of a cost function. The macro-block that results in
the least cost is the one that closely matches to current block
[22, 23].

4.1. The Cost Function. The cost function is defined by
Extended Mahalanobis distance weighted by the weight of
Gaussian distributions components. This distance is applied
between the following components: Gaussian interblocks
(reference/Current), the components of strong weights, the
components of medium weights, and the components of
weak weights (Figure 3).

The distances d1, d2 and d3 are defined as follows:
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When modeling by a mixture of two Gaussian dis-
tributions, the cost function is defined by the Extended
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Figure 3: Extended Mahalanobis distance between the components of strong weights (d1), the components of medium weights (d2), and
the components of weak weights (d3).
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NCC algorithms for the “Soccer” sequence without influence of
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Mahalanobis distance between the components of strong
weights (d1) and the components of weak weights (d3).

4.2. Steps of the Proposed Method. The proposed method is
based on three steps design.

(1) Each block in the reference image or the current
image is modeled by a mixture of three Gaussian
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Figure 5: PSNR comparisons of GMM3, GMM2, SAD, SSE, and
NCC algorithms for the “Cones” sequence without influence of
noise.

distributions. This modeling consists in estimating
the parameters of the mixture (weight, means vec-
tors, and covariance matrix).

(2) The Parameters are sorted based on their weights
in mixture. This allows the identification of the
components of weak weights, the components of
medium weights, and the components of strong
weights.
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Figure 6: Subjective Image Quality.
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Table 1: Matrix M1.

68.08 135.85 19.66

19.66 19.66 50.00

193.15 135.85 83.99

Table 2: Matrix M2.

12.66 0.93 15.90

15.90 15.90 56.04

14.36 70.64 13.80

Table 3: Matrix M3.

146.65 137.85 13.80

13.80 13.80 130.26

3.60 144.59 15.21

(3) Research of minimal interblocks distance (refer-
ence/current).

(a) The Extended Mahalanobis distances between a
block of the current image and all blocks in a
search window [−1, +1] in the reference image
are stored in the matrices M1, M2, and M3.

(M1) matrix contains the values of Extended
Mahalanobis distances between the com-
ponents of weak weights.

(M2) matrix contains the values of Extended
Mahalanobis distances between the com-
ponents of medium weights.

(M3) matrix contains the values of Extended
Mahalanobis distances between the com-
ponents of strong weights.

(b) The value of the minimal distance of the three
matrices M1, M2, and M3 corresponds to the
most similar block in reference image.

4.3. Practical Considerations. Matrices M1, M2, and M3 show
the Extended Mahalanobis distances between a block of the
current image and all blocks in a search window [−1, +1] in
the reference image of the Foreman sequence.

Matrix M1 contains the distances between the compo-
nents of weak weights.

Matrix M2 contains the distances between the compo-
nents of medium weights.

Matrix M3 contains the distances between the compo-
nents of strong weights.

The value of the minimum distance of the three matrices
M1, M2, and M3 is equal to 0.93 corresponding to the first
line second column indices in the matrix M2. These indices
correspond to the most similar blocks in the reference image.

For these types of Foreman sequence, about 80% min-
imum distances are in the matrix M1 (distances between
the components of weak weights). This percentage mainly
depends on statistical characteristics of pixels in the image.

5. Experimental Results

The parameters of motion estimation used for comparing
and evaluating the quality of the obtained results from our
proposed methods are as follows.

(i) Method: exhaustive block-matching (full search) is
the most obvious candidate for a search technique for
finding the best possible weight in the search area.

(ii) Classical criterion methods.

(a) Sum of Absolute Differences “SAD”.
(b) Sum of Square Error “SSE”.
(c) Normalized Cross-Correlation “NCC”.

(iii) Method proposed criterion: minimization of
Extended Mahalanobis distance between mixture of
two and three Gaussian distributions (“GMM2” and
“GMM3”).

(iv) Precision: pixel.

(v) Block Size: 16× 16.

(vi) Search area: [−1, +1].

5.1. Simulation Results without Noise Influence

5.1.1. Objective Evaluation. The proposed approach was
evaluated by using a standard measure, the average PSNR
(Peak Signal to Noise Ratio), given as

PSNRavg = 1
F

k∑
i=1

PSNRi, (7)

where PSNRi is the measured PSNR for frame i, and F is
the total number of frames. We will compare the “GMM3”
and “GMM2” methods against the “SAD”, “SSE”, and “NCC”
methods. In addition, the PSNR comparison among the five
algorithms will be introduced.

As an example, Table 4 shows that six test image se-
quences have different characteristics. While “Foreman” rep-
resents the characteristics of slow motion image sequences,
“Hand” and “Soccer” are fast motion image sequences,
“coastguard” is global motion image sequence, and Football
and Cones contain multiple objects moving. Table 4 shows
that the performance of “GMM3” and GMM2 methods are
better than “SAD”, “SSE”, and “NCC” methods for the test
video sequences.

Another performance comparison is made among the
first 15 frames of each sequence. As an example, Figures 4 and
5 show the performance comparison for the first 15 frames
of “Soccer” and “Cones” sequences. The PSNR comparison
shows that the “GMM3” and “GMM2” usually perform
better than the “SAD”, “SSE”, and “NCC” algorithms.

5.1.2. Subjective Evaluation. To demonstrate the perfor-
mance of our algorithm, we applied the new methods of
motion estimation (“GMM2” and “GMM3”) on the “soccer”
sequences (Figure 6). The players shadows (Figure 6(c)) and
(Figure 6(d)) are better estimated by the methods “GMM2”
and “GMM3” compared to the ones estimated by the method
“SSE” (Figure 6(b)).
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Table 4: Average PSNR Values for test images.

Sequences Algorithm PSNR [dB]

“Hand” “CORR” 22.49

255× 255 “SAD” 21.73

“SEE” 22.31

“GMM2” 24.05

“GMM3” 24.64

“Foreman” “CORR” 27.04

175× 256” “SAD” 28.60

“SEE” 28.53

“GMM2” 29.00

“GMM3” 29.58

“coastguard” “CORR” 23.37

240× 240 “SAD” 23.21

“SEE” 23.93

“GMM2” 24.31

“GMM3” 24.86

“Soccer” “CORR” 24.08

335× 270 “SAD” 23.87

“SEE” 24.21

“GMM2” 24.80

“GMM3” 25.18

“Football” “CORR” 24.26

240× 336 “SAD” 24.24

“SEE” 24.88

“GMM2” 25.22

“GMM3” 25.27

“Cones” “CORR” 21.63

256× 256 “SAD” 21.64

“SEE” 22.20

“GMM2” 22.64

“GMM3” 23.00

5.2. Simulation Results under Influence of Noise. Additive
Gaussian noise with standard deviation equal to 10 and
Uniform noise with standard deviation equal to 20 degraded
the video sequences. We applied the motion estimation
algorithms “SAD”, “SSE”, “NCC”, “GMM2”, and “GMM3” on
Soccer and Cones sequences. The results are summarized in
Figures 7 and 8.

6. Conclusion and Perspective

In this paper we have modeled sequence images blocks
by a mixture of two and three Gaussian distributions and
have used block matching criterion based on Mahalanobis
distance minimization between the clusters of mixture to
estimate motion. This technique has been compared to
other equivalent methods in the literature. The simulation
confirms that the proposed technique allows the significant
PSNR gains. These gains can be observed in terms of both
the perceptual quality and the PSNR of the restored images.
However, this technique requires more computations. It
might be necessary to further reduce computations to fit

real time requirements. Parameters estimation of Gaussian
mixture consists of repetitive operations which could greatly
benefit from some existing architectures to perform repet-
itive tasks efficiently. A forthcoming work will be devoted
to improve the speed of execution and further increase
performance by modeling the blocks of the image by a
Gaussian mixture where the number of clusters varies.
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