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Abstract Some individuals with a particular disease-

causing mutation or genotype fail to express most if not all

features of the disease in question, a phenomenon that is

known as ‘reduced (or incomplete) penetrance’. Reduced

penetrance is not uncommon; indeed, there are many

known examples of ‘disease-causing mutations’ that fail to

cause disease in at least a proportion of the individuals who

carry them. Reduced penetrance may therefore explain not

only why genetic diseases are occasionally transmitted

through unaffected parents, but also why healthy individ-

uals can harbour quite large numbers of potentially disad-

vantageous variants in their genomes without suffering any

obvious ill effects. Reduced penetrance can be a function

of the specific mutation(s) involved or of allele dosage.

It may also result from differential allelic expression, copy

number variation or the modulating influence of additional

genetic variants in cis or in trans. The penetrance of some

pathogenic genotypes is known to be age- and/or sex-

dependent. Variable penetrance may also reflect the action

of unlinked modifier genes, epigenetic changes or envi-

ronmental factors. At least in some cases, complete pene-

trance appears to require the presence of one or more

genetic variants at other loci. In this review, we summarize

the evidence for reduced penetrance being a widespread

phenomenon in human genetics and explore some of the

molecular mechanisms that may help to explain this

enigmatic characteristic of human inherited disease.

Introduction

One old conundrum in human genetics is that not everyone

with a given pathological mutation (or mutations) will

eventually develop the disease in question. The proportion

of those individuals harbouring a particular pathogenic

mutation or genotype who exhibit clinical signs of the

associated disorder within a specific and clearly defined

time period is termed the penetrance of that disorder. If this

proportion equals 100 %, the disease and/or disease

genotype(s) are said to show complete penetrance. If not,

they are said to exhibit reduced (or incomplete) penetrance.

Reduced penetrance is likely to be a consequence of the

combination of a variety of different genetic and environ-

mental factors. A classic example is phenylketonuria,

where inactivating mutations in the PAH gene encoding the

enzyme phenylalanine hydroxylase lead to severe intel-

lectual disability in the context of a normal diet, whereas a

life-long phenylalanine-restricted diet makes possible a

relatively healthy life (Blau et al. 2010). Regrettably, few
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other examples of reduced penetrance are as simple, well

understood or clinically manipulable as this one, and the pre-

cise mechanisms by which different factors give rise to reduced

penetrance remain largely unknown (Zlotogora 2003).

In formal terms, penetrance measures the proportion of

individuals in a given population with a specific disease-

associated genotype who also express the corresponding

disease phenotype. Large family/population studies have

traditionally been considered necessary to measure pene-

trance, either for specific mutations/genotypes or as a dis-

ease average. ‘Cascade genetic screening’, whereby

relatives of previously identified carriers are screened both

for the mutation(s) in question and for the presence/

absence of clinical symptoms, is one means to determine

the degree of penetrance for a given genotype (Berge et al.

2008). As we discuss below, large-scale sequencing and

genotyping studies of apparently healthy individuals from

the general population provide a powerful new approach to

understanding the penetrance of pathological mutations/

genotypes. The outcomes of such studies should allow us to

predict how likely it is that a given disease will manifest

itself in an individual who carries a specific genotype.

Reduced penetrance is most obviously evident in dis-

orders that follow an autosomal dominant mode of inher-

itance. In these instances, reduced penetrance is a

characteristic of the underlying mutation, rather than a

genotype. However, reduced penetrance can also occur in

autosomal recessive disorders where one and the same

mutation can have different phenotypic effects, depending

at least in part upon the second disease allele present.

Irrespective of the mode of inheritance, in most cases

penetrance is likely to be a function of the specific muta-

tion(s) involved. Thus, in some conditions normally char-

acterized by an autosomal dominant mode of inheritance,

two incompletely penetrant (or otherwise non-penetrant)

alleles may act in recessive fashion while mimicking the

normal dominant form of the disease (e.g. Grundy et al.

1991; Croxen et al. 2002; Kowalewski et al. 2007; Cast-

aman et al. 2007; Rossetti et al. 2009; Vujic et al. 2010;

Schaaf et al. 2011a). For a dominantly inherited condition,

one consequence of reduced penetrance is that the clinical

phenotype may not be evident in one generation, but can

nevertheless still be transmitted (through an apparently

unaffected parent) to subsequent generations where it again

manifests itself; specimen examples of this from clinical

practice include hereditary hyperekplexia (Kwok et al.

2001), cherubism (Preda et al. 2010), retinitis pigmentosa

(Rio Frio et al. 2009), rhabdoid tumour predisposition

syndrome (Ammerlaan et al. 2008), autism spectrum dis-

order (Fujita-Jimbo et al. 2012) and hypercholesterolaemia

(Garcia–Garcia et al. 2011). For all the above reasons,

reduced penetrance presents a major challenge to genetic

counsellors attempting to interpret the medical history of a

patient’s family to quantify the disease risk to the patient’s

offspring (Emery 1986; Otto and Maestrelli 2000).

Reduced penetrance is not uncommon; indeed, there are

many known examples of bona fide disease-causing vari-

ants or genotypes that fail to cause disease in at least a

proportion of individuals who carry them (Zlotogora 2003;

Waalen and Beutler 2009). By definition, penetrance refers

to the black and white issue of whether the clinical phe-

notype associated with a certain genotype is present or not.

We routinely distinguish it from variable expressivity

which refers to the degree of variation of the clinical

phenotype in those individuals with a particular genotype.

Although, in principle, penetrance and expressivity are

distinct terms with specific meanings (depending upon the

way a given clinical phenotype is defined), in practice they

are closely inter-related and likely to manifest via similar

mechanisms. We also distinguish reduced penetrance from

small effect size. Thus, most carriers of the risk alleles

discovered by genome-wide association studies (GWAS)

may never develop the disease in question; this is because

these variants generally only make a small contribution to

the multifactorial aetiology of the condition. To be able

instead to say that the variant is non-penetrant in some

individuals, we require the same variant in other individ-

ual(s) to make the crucial difference between the pheno-

type being manifested or not. In what follows, we shall

focus specifically on the molecular mechanisms that could

account for the phenomenon of reduced penetrance. This

notwithstanding, the discussion of genetic variants that

modulate the expressivity of a particular disease has

sometimes also been deemed appropriate.

In this review, we present the evidence for reduced

penetrance being a widespread phenomenon in human

genetics, evidence that comes not only from a plethora of

case studies of monogenic disorders but also more recently

from the next generation sequencing of entire exomes or

genomes of apparently normal healthy individuals from the

general population. Here, we have attempted to explore the

individual genetic components that contribute to the com-

plexity of primarily monogenic disorders with reduced

penetrance. This notwithstanding, the action of modifier

genes is one of the mechanisms responsible for reduced

penetrance, and one that has increasingly become recog-

nized as blurring the distinction between monogenic con-

ditions and complex disease (Nadeau 2003; Badano and

Katsanis 2003; Sidransky 2006). Finally, we explore some

of the molecular mechanisms which could account for the

reduced penetrance of many human inherited disorders and

provide evidence to support the view that, at least in some

instances, complete penetrance requires the presence of one

or more genetic variants at other loci.
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Deleterious and disease alleles in the general population

In the wake of the sequencing of multiple human genomes,

it has become apparent that healthy individuals can harbour

quite large numbers of potentially disadvantageous variants

without suffering any obvious ill effects (The 1000 Gen-

omes Project Consortium 2010; MacArthur et al. 2012;

Xue et al. 2012; Shen et al. 2013a). The underlying reasons

are likely to be many and varied: thus, the variants may

damage the protein in question but the intact protein may

not be necessary for the health of the carrier; individuals

may be asymptomatic carriers of single-mutant alleles that

could, in homozygosity or compound heterozygosity, cause

recessive disease; the mutation may be dominant but the

clinical phenotype might only be mild and classed as lying

within the range of normal healthy variation; the disorder

might be late in onset with expression being age- or sex-

dependent; or the disorder may require additional genetic

and/or environmental factors for it to manifest clinically.

Assessing the magnitude of the ‘genetic burden’

imposed on the general population by the presence of

deleterious alleles has been a key aim of medical and

population genetics for many decades. With the advent of

large-scale sequencing technologies, it has become possi-

ble to estimate the number of amino acid substitutions in

the human exome that would be predicted in silico to be

damaging (Kryukov et al. 2007; Lohmueller et al. 2008;

Boyko et al. 2008; Goode et al. 2010). However, personal

genome sequences have not only provided estimates of the

number of disease variants carried by each subject (Asan

et al. 2011), but have also given us a glimpse of the likely

complexity of the functional interpretation of such data

(Ashley et al. 2010; Strom and Gorin 2013). More recently,

Tennessen et al. (2012) suggested that 2.3 % of the 13,595

single nucleotide variants carried by the average person

impact upon protein function, involving *313 genes per

human genome. Adopting an alternative approach, Bell

et al. (2011) surveyed 437 genes known to be related to a

recessive Mendelian disease and identified 2.8 mutations

per individual (range 0–7). Taken together, these studies

suggest that individuals typically carry hundreds of mildly

disadvantageous variants and perhaps several tens of

potentially severe disease alleles.

In a pilot study for the 1000 Genomes Project Consor-

tium (2010), we reported the prevalence of disease alleles,

defined by reference to the disease-causing mutations

(DMs) listed in the Human Gene Mutation Database

(HGMD; http://www.hgmd.org; Stenson et al. 2009), in

population samples of African, European and East Asian

origin. These numbers were surprisingly high: 57–80 dis-

ease alleles per individual in a sample of 179 participants.

Moreover, further examination of these data showed that

191 disease alleles were present in the homozygous state in

at least one individual, and hence were not simply present

because their phenotypic/clinical effects had been masked

by a normal allele. Although little phenotypic information

other than sex, ethnicity, place of origin and relationship to

other participants is available for the 1000 Genomes Pro-

ject donors, the Project’s ethical framework requires that

sample donors are non-vulnerable adults who are compe-

tent to consent to participation in the project and hence are

likely to lack any obvious severe disease phenotype.

Instead, we need to seek some other explanation for the

high number of DMs present. One possibility is that the

penetrance of disease alleles and genotypes could be much

lower and more variable than previously realized. Con-

ventionally, most studies of human inherited disease that

have contributed mutation data to HGMD have sought to

identify a disease genotype, given a clinical phenotype

(Cooper et al. 2010). This is a very different scenario from

identifying a phenotype given a (potentially disease asso-

ciated) genotype. Indeed, the former strategy inevitably

avoids the whole issue of penetrance because, by defini-

tion, it focuses exclusively upon those individuals in whom

the mutation of interest has been penetrant. It follows that a

given variant could be genuinely causative in a set of

individuals manifesting a particular disease, yet may also

be present in a set of healthy individuals who differ in any

one of a number of ways to be discussed below.

Since the 1000 Genomes Project Consortium paper was

published in 2010, two further reports have appeared that

served to improve our knowledge of deleterious mutations

in the genomes of apparently healthy individuals. The most

readily recognized deleterious variants in the human gen-

ome are those that disrupt a protein-coding gene, either by

leading to a loss of function (e.g. a nonsense or frameshift

variant) or by altering an amino acid in the encoded protein

(missense variants). The former category of mutation has

been studied by MacArthur et al. (2012) who identified

1,285 putative loss-of-function variants (i.e. nonsense

mutations, splice site-disrupting single nucleotide variants,

micro-insertions/micro-deletions, etc.) in the genome

sequences of 185 humans from the 1000 Genomes Project.

From these data, they estimated that an average human

genome typically contains *100 genuine loss-of-function

variants with *20 genes having both copies inactivated.

Following on from this study, Xue et al. (2012) focused on

missense mutations, ascertaining the numbers of poten-

tially deleterious missense variants in the genomes of

apparently healthy individuals using low-coverage whole-

genome sequence data from 179 individuals in the 1000

Genomes Pilot Project. Each individual was found to carry

281–515 missense substitutions predicted with a high

degree of confidence to be damaging to the gene product,

40–85 of which were present in the homozygous state.

Taken together, these studies suggest that a typical healthy
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individual has about 80 of their genes severely damaged or

inactivated in both copies, further emphasizing the stark

contrast between damage to gene and protein on the one

hand, and damage to health on the other. The 1000 Gen-

omes Project participants also carried 40–110 variants

(3–24 homozygous) classified by HGMD as DMs. Whereas

many of these DMs could conceivably represent disease

attribution errors of some kind, between 0 and 8 DMs per

individual (0–1 homozygous) were predicted to be highly

damaging.

Among the missense DMs, Xue et al. (2012) identified

known pathological variants such as HBB (c.20A[T;

p.Glu7Val), which leads to increased resistance to malaria

in heterozygotes but to sickle cell disease in homozygotes

[confined to Africans (Yoruba, YRI) in whom there were

12 heterozygotes and 1 homozygote]. In addition, Xue

et al. (2012) identified an USH2A variant (c.2138G[C;

p.Gly713Arg), previously reported as being causal for

Usher syndrome type 2, a recessive disorder characterized

by combined deafness and blindness; three homozygotes

were noted in the YRI. Manual curation of the HGMD-

1000GP overlap revealed the presence of three types of

DM: (1) plausible severe disease-causing variants, (2)

variants convincingly causative for pathological condi-

tions, yet quite compatible with adult life and (3) variants

probably incorrectly assigned as disease causing. After

applying various filtering criteria designed to enrich for

true disease alleles, the list was reduced to 45 candidates

(Xue et al. 2012). Of these putative disease alleles, 34 were

present in the heterozygous state and were deemed likely to

Table 1 Disease variants potentially capable of either causing dominant disease, or causing recessive disease and observed in the homozygous

state, detected in 1000 Genomes Project participants (data from Xue et al. 2012)

Disease (MIM

number)

Inheritance Gene HGVS cDNA

mutation

Protein

alteration

Total

homozygotes

Total

heterozygotes

Comments

Ataxia

telangiectasia

(MIM# 607585)

AR ATM NM_000051.3:

c.4258C[T

p.Leu1420Phe 1 3 Low-penetrance breast

cancer susceptibility

allele

Usher syndrome

type IIA (MIM#

276901)

AR USH2A NM_206933.2:

c.2137G[C

p.Gly713Arg 3 22 Probable complex

pathogenicity; neutral

in YRI?

Nephronophthisis

4 (MIM#

606966)

AR NPHP4 NM_015102.3:

c.2542C[T

p.Arg848Trp 1 2 Growth retardation;

adult-onset renal

disease

Cushing

syndrome

(MIM# 607397)

AR MC2R NM_000529.2:

c.833T[G

p.Phe278Cys 1 10 Hormonal disorder;

variable gender-specific

symptoms; variant

functionally defective

in vitro

Low-

phospholipid-

associated

cholelithiasis

(MIM# 171060)

AR ABCB4 NM_000443.3:

c.2363G[A

p.Arg788Gln 2 9 Adult onset

Cardiomyopathy,

hypertrophic

(MIM# 115197)

AD MYBPC3 NM_000256.3:

c.1519G[A

p.Gly507Arg 0 2 Late onset; incomplete

penetrance

Glaucoma,

primary open

angle (MIM#

609887)

AD WDR36 NM_139281.2:

c.1586G[A

p.Arg529Gln 0 1 Adult onset; variant

functionally defective

in vitro

Colorectal cancer,

nonpolyposis

(MIM# 609310)

AD MLH1 NM_000249.3:

c.1742C[T

p.Pro581Leu 0 1 Adult onset; variant

functionally defective

in vitro

Renal cell

carcinoma

(MIM# 144700)

AD FLCN NM_144997.5:

c.715C[T

p.Arg239Cys 0 1 Late onset

Heparin cofactor

2 deficiency

(MIM# 612356)

AD SERPIND1 NM_000185.3:

c.623G[A

p.Arg208His 0 2 Deficiency state, but no

overt disease; risk factor

for thrombophilia

Lp(a) deficiency

(MIM# 152200)

AD LPA NM_005577.2:

c.4289?1G[A

essential

splice site

0 5 Late onset; risk factor for

heart disease
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be present in asymptomatic carriers. Among the remaining

11 (Table 1), the 6 linked to dominant disorders were

explicable in terms of either late onset (e.g. Gly507Arg in

MYBPC3) or covert disease (Arg208His in SERPIND1). In

similar vein, the presence of homozygotes for four of the

five recessive disorders could be explicable in terms of late

onset and/or reduced penetrance of disease. The USH2A

mutation (Gly713Arg) was, however, intriguing: this var-

iant was predicted to be damaging to the protein, and

pathogenic in some populations but not in others (e.g.

YRI). One explanation put forward to explain this apparent

contradiction was that, in the YRI population, the USH2A

locus is subject to copy number variation (Matsuzaki et al.

2009) that could provide functional complementation of

the mutant gene. In the majority of cases, however, the

most likely explanation for the absence of disease at the

time of recruitment was considered to be the probable late

onset of disease, although clinical penetrance was often

variable, and some phenotypes, such as loose anagen hair

syndrome [caused by Glu337Lys in KRT75 (MIM

600628)], might not even be regarded as ‘‘diseases’’ sensu

stricto. These factors notwithstanding, the findings of Xue

et al. (2012) suggest that incidental findings which are

potentially relevant to health and well-being might be made

in as many as 11 % of individuals sequenced.

Reduced penetrance is one of several possible explana-

tions for why some variants of putative pathological sig-

nificance, listed in HGMD and/or Locus-specific Mutation

Databases, nevertheless occur in apparently healthy indi-

viduals (Ashley et al. 2010; Bell et al. 2011; Xue et al. 2012;

Golbus et al. 2012; Wang et al. 2013a; Kenna et al. 2013;

Shen et al. 2013a). It is not hard to see why reduced pene-

trance might be much more common among described

mutations than originally thought: whereas known patho-

logical mutations have almost invariably been identified

through retrospective analyses of families or well-defined

groups of clinically symptomatic patients, relatively few

prospective studies of asymptomatic carriers have so far

been performed to derive estimates of penetrance (e.g.

Jensen et al. 2013; Mavaddat et al. 2013). Indeed, estab-

lishing that a specific mutation identified in a particular

patient with a given disease is the pathological lesion

responsible for that individual’s clinical phenotype does not

allow one automatically to judge whether this mutant

genotype will invariably give rise to the same clinical phe-

notype in all other individuals harbouring it. This can only

be established (or refuted) empirically by comprehensive,

ideally prospective, studies of the genotype in question.

One fairly obvious reason why comparing the output of

genome sequencing projects (e.g. the 1000 Genomes Pro-

ject) with a comprehensive database of putatively patho-

logical mutations (e.g. HGMD) is likely to generate a

considerable number of potentially pathogenic mutations in

the general population, is that many such mutations are

quite frequent in the population at large. In particular,

carrier frequencies for mutations underlying recessive

conditions can often be quite high. Thus, the ABCA4

Gly863Ala mutation causing Stargardt disease has a carrier

frequency of 1.8 % in Europe (Maugeri et al. 2002), the

GJB2 35delG mutation causing congenital deafness has a

carrier frequency of 2.9 % in southern Europe (Gasparini

et al. 2000), the ERCC8 Tyr322Term mutation causing

Cockayne syndrome has a carrier frequency of 6.8 % in

Israeli Christian Arabs (Khayat et al. 2010) and the SPG7

Ala510Val mutation associated with adult-onset neuroge-

netic disease has a carrier frequency of 3–4 % in the UK

population (Roxburgh et al. 2013). Disease allele fre-

quencies can be as high as 10 % in certain ethnic groups,

e.g. Jews (Zlotogora et al. 2007; Ostrer and Skorecki

2013). A recent screen of the Korean population for 20

common mutations contributing to six autosomal recessive

disorders yielded a combined carrier frequency of 6.7 %

(Song et al. 2012). Screening an ethnically diverse US popu-

lation sample (N = 364,890) for 87 different CFTR mutations

responsible for causing cystic fibrosis yielded a combined

carrier frequency of 2.6 % (Rohlfs et al. 2011). As part of the

NHLBI-Go Exome Sequencing Project, a screen of 5,400

individuals from the general population for variants in eight

long QT syndrome genes yielded a total of 33 different mis-

sense mutations (affecting 173 alleles), representing a carrier

frequency of 3.2 % (Refsgaard et al. 2012). A similar screen

for cardiomyopathy-associated gene variants yielded com-

bined carrier frequencies for mutations reported to be disease

associated of 25 % (1,474/5,810) for hypertrophic cardio-

myopathy, 15 % (963/6,334) for dilated cardiomyopathy and

(22 %) 1,393/6,359 for arrhythmogenic right ventricular

cardiomyopathy (Andreasen et al. 2013); the high number of

detected cardiomyopathy-associated gene variants suggests,

however, that many are only modest disease modifiers or even

non-pathogenic. Nishiguchi and Rivolta (2012) screened 46

complete genome sequences from the general population for

mutations in 106 genes associated with recessively inherited

retinal degeneration and identified null mutations in ten

individuals (22 %). Finally, a routine screen of 23,453 indi-

viduals for 417 pathogenic mutations associated with a total of

108 recessive diseases concluded that 24 % of individuals

were carriers of at least one disorder, whilst 5.2 % were car-

riers of two or more disorders (Lazarin et al. 2013). Clearly,

there is a veritable abundance of actual and potential patho-

logical variants segregating in the general population.

The examples that we cite in the text that follows and in

the accompanying tables are by no means comprehensive

and have been provided simply to illustrate the many and

varied mechanisms that are already known to underlie the

phenomenon of reduced penetrance in relation to clinical

disorders. However, these examples also demonstrate that

Hum Genet (2013) 132:1077–1130 1081
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it is often very hard for authors, diagnosticians and muta-

tion database curators alike to classify the pathogenicity of

identified variants with any degree of certainty. Thus, is a

given missense mutation a bona fide pathological lesion

that exhibits greatly reduced penetrance, or is it essentially

a neutral or near-neutral variant that occasionally finds

itself in cis to other variants that are responsible for con-

ferring the disease phenotype upon the individual con-

cerned, or is it a variant with small effect that is sometimes

present in affected individuals whose major causative

lesions remain unknown?

Incomplete penetrance in dominant and recessive

conditions

A considerable number of autosomal dominant disorders are

characterized by incomplete penetrance. Well-studied

examples include the hair disease monilethrix (KRT86; De

Cruz et al. 2012), congenital cataract (GJA3; Burdon et al.

2004), different types of retinitis pigmentosa (PRPF8 and

PRPF31; Maubaret et al. 2011; Saini et al. 2012), LMNA

mutation-associated muscular phenotypes (Rankin et al.

2008) and long QT syndrome (Giudicessi and Ackerman

2013; Mathias et al. 2013).

One rather well-understood example of incomplete pene-

trance of a dominantly inherited mutation is factor V Leiden

(F5, Arg534Gln; Arg506Gln in legacy nomenclature; rs6025)

which occurs at polymorphic frequencies (2–5 %) in European

populations, but is associated with a sixfold increased risk of

venous thrombosis and a two- to threefold increased risk of

pregnancy loss (Kujovich 2011). Despite these very evident

disease associations, the vast majority of factor V Leiden car-

riers appear to be clinically unaffected. This could help to

account for the high frequency of this variant in the general

population, together perhaps with the survival advantage con-

ferred by factor V Leiden carriership in various other clinical

contexts including severe sepsis (Kerlin et al. 2003; van Mens

et al. 2013). In similar vein, the asymptomatic (clinically

covert) state is much more common than the clinically overt

state in several other dominant disorders of haemostasis,

including protein C deficiency (Tait et al. 1995; McColl et al.

1996), protein S deficiency (Dykes et al. 2001), antithrombin

deficiency (Tait et al. 1994; McColl et al. 1996) and von

Willebrand disease (Rodeghiero et al. 1987; Castaman et al.

2003). Thus, in disorders of haemostasis and thrombosis, even

with well-characterized variants that are known to confer a

significantly increased disease risk, the clinical penetrance is

often so low that more healthy individuals carry the variant than

those who actually manifest disease.

Reduced or incomplete penetrance has also been described

for autosomal recessive disorders. Probably the best charac-

terized example of incomplete penetrance in a recessive

disorder is provided by the Cys282Tyr (rs1800562) mutation

in the haemochromatosis (HFE) gene (Beutler 2003). The

Tyr282 homozygous genotype is present in approximately 1 in

200 people of Northern European origin and is responsible for

80–90 % of hereditary haemochromatosis (Weiss 2010;

Rochette et al. 2010). Although Tyr282 homozygosity displays

a relatively high biochemical penetrance (i.e. iron accumula-

tion), its clinical penetrance is low (McCune et al. 2006).

Available data suggest that 38–50 % of Tyr282 homozygotes

develop iron overload and 10–25 % develop some type of

haemochromatosis-associated morbidity (Whitlock et al.

2006). However, these statistics conceal what appears to be a

gender effect: large-scale studies of newly diagnosed Tyr282

homozygotes, in whom liver disease had been specifically

assessed, revealed that disease manifested in 24–43 % of

males, but only 1–14 % of females (Rossi et al. 2008). Various

genetic modifiers have been identified as influencing the

clinical expression of haemochromatosis. These include

mutations in the HAMP, HFE2 and TFR2 genes and poly-

morphisms in the BMP2, BMP4, CYBRD1, HP, LTA, MPO,

TMPRSS6 and TNF genes (Milet et al. 2007; Rochette et al.

2010; Valenti et al. 2012; Pelucchi et al. 2012). In addition,

several environmental modifiers (e.g. diet, alcohol intake) are

also known to affect the penetrance of the HFE genotype.

In another recessive disorder, Gaucher disease, the most

common GBA mutation, Asn370Ser (Asn409Ser in HGVS

nomenclature; rs76763715), is also characterized by low

penetrance and exhibits extensive phenotype heterogeneity

even in the homozygous state (Sibille et al. 1993; Horowitz

et al. 1998; Fairley et al. 2008). However, close examina-

tion of asymptomatic Ser370 homozygotes, serendipitously

diagnosed by prenatal carrier screening, revealed a variety

of previously unidentified disease manifestations indicating

that the clinical penetrance of this disease genotype may be

greater than previously appreciated (Balwani et al. 2010).

Influence of mutation type on penetrance

Clinical penetrance is in part a function of the muta-

tion(s) in question. For a given disease, some causal

mutations may exhibit complete clinical penetrance,

whereas other mutations in the same gene show incomplete

or even very low penetrance. Thus, whereas the penetrance

of the most common CFTR gene lesion, DPhe508

(rs113993960), in cystic fibrosis is very high, the pene-

trance of the CFTR Arg117His (rs78655421) mutation (in

any allele combination) appears to be so low as to call into

question its putative role as a pathological mutation

(Thauvin-Robinet et al. 2009).

As yet, relatively few studies have been performed on

low-penetrance mutations with a view to identifying the

features responsible at the molecular level for their low
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penetrance. One exception is in retinoblastoma where it has

been found that low-penetrance RB1 mutations tend either

to lead to a reduction in the amount of Rb protein produced

(through promoter or splice site mutations) or yield a

partially functional Rb molecule through missense muta-

tion or in-frame deletion (Onadim et al. 1992; Kratzke

et al. 1994; Bremner et al. 1997; Otterson et al. 1997;

Scheffer et al. 2000; Genuardi et al. 2001; Harbour 2001;

Klutz et al. 2002; Lefévre et al. 2002; Valverde et al. 2005;

Sánchez-Sánchez et al. 2005; Sampieri et al. 2006; Gámez-

Pozo et al. 2007; Park et al. 2008; Hung et al. 2011). Of

particular interest is the category of temperature-sensitive

mutations in the Rb pocket domain (DAsn480, Arg661Trp,

Cys712Arg) whose ‘reversible fluctuations’ in a threshold

level of Rb pocket-binding activity could be responsible for

their characteristic low penetrance (Otterson et al. 1999).

On the basis of studies performed to date, it would appear

that a high proportion of RB1 mutations with reduced

penetrance are splice site mutations, although not all splice

site mutations display low penetrance.

Some mutations are associated with specifically reduced

penetrance as compared to other mutations of the same

type in the same gene. For example, BRCA1 Arg1699Gln is

characterized by a cumulative risk of breast or ovarian

cancer by the age of 70 years of only 24 % (Spurdle et al.

2012), much lower than for the average pathogenic BRCA1

mutation (*71 %; van der Kolk et al. 2010). Individuals

with GJB2-associated deafness who harbour two nonsense/

truncating mutations exhibit a much more severe clinical

phenotype, and hence are more likely to come to clinical

attention, than those harbouring two missense mutations

(Azaiez et al. 2004). This serves to illustrate that, in

recessive disorders, the clinical penetrance of one mutation

may be strongly influenced by the nature of the other

mutation in trans. In Ehlers–Danlos syndrome type IV,

however, null COL3A1 mutations tend to exhibit lower

penetrance than missense and splicing mutations (Leistritz

et al. 2011); this is presumably because a faulty gene

product can disrupt the entire triple helical collagen mol-

ecule, whereas a null mutation merely reduces the amount

of normal collagen produced (Arnold and Fertala 2013). In

the same vein, patients with heritable pulmonary arterial

hypertension, due to missense mutations in the BMPR2

gene, present earlier and with more severe disease than

patients harbouring truncating mutations (Austin et al.

2009a). It is thought that the missense mutations are

associated with stable BMPR2 transcripts encoding

BMPR2 protein which exerts a dominant negative effect on

BMP signalling, thereby rendering missense mutations

more detrimental than truncating mutations. The majority

of BMPR2 missense mutations were penetrant prior to the

age of 36 years, whereas the majority of truncating muta-

tions became penetrant only after the age of 36 years

(Austin et al. 2009a). With mutations of the TNFRSF1A

gene causing TNF receptor-associated periodic syndrome,

missense mutations in cysteine residues have been reported

to be more penetrant than missense mutations in non-cys-

teine residues (Aksentijevich et al. 2001; Aganna et al.

2001). Intriguingly, a SOD1 Leu117Val missense mutation

which yields a mutant protein indistinguishable from wild-

type SOD1 (in terms of its activity, stability and folding)

causes amyotrophic lateral sclerosis, but with unusually

low penetrance and slow progression (Synofzik et al. 2012).

Finally, clinical penetrance may vary not only with the

mutation type, but also with the location of the mutation in the

gene/protein (Jackson et al. 1999; Risch et al. 2001; Yatsenko

et al. 2001; van der Werf et al. 2012; Ho et al. 2012).

In autosomal dominant hereditary pancreatitis, the pene-

trance of the PRSS1 Arg122His mutation has been calculated

to be 86 %, whereas that of PRSS1 Ala16Val is of the order of

55–65 % (Grocock et al. 2010; Joergensen et al. 2010). It is

thought that the comparatively low penetrance of this latter

mutation may be related to its particularly mild biochemical

phenotype. The Ala16Val substitution alters the N-terminal

residue of the trypsinogen activation peptide, thereby

increasing the rate of N-terminal processing by chymotrypsin

C by *5.8-fold (Szabó and Sahin-Tóth 2012). Since the

activation peptide is released during the activation process, the

Ala16Val mutation is absent from active trypsin and hence

cannot influence trypsin function.

Missense mutations in the MEFV gene responsible for

familial Mediterranean fever can differ quite dramatically

in terms of their clinical penetrance. For example,

Met694Val is generally characterized by high penetrance,

whereas both Glu148Gln and Val726Ala exhibit reduced

penetrance (Shohat and Halpern 2011). In this disorder, the

carrier frequency is higher than would be expected from

the prevalence of the disease, suggesting that the pene-

trance of pathogenic MEFV mutations may often be

incomplete in the compound heterozygous state (Gershoni-

Baruch et al. 2002; Zaks et al. 2003; Caglayan et al. 2010;

Camus et al. 2012; Soriano and Manna 2012).

Double missense mutations in cis are not infrequently

encountered in patients with an inherited disease. One of

the two mutations may represent a hypomorphic (i.e. less

functional) allele, as for example with the GLA Asp313Tyr

occurring in cis to the pathogenic Gly411Asp in patients

with Fabry disease (Yasuda et al. 2003). Double missense

mutations in cis may however be associated with a highly

variable clinical phenotype (e.g. MEFV, Pro369Ser/

Arg408Gln as a cause of familial Mediterranean fever;

Ryan et al. 2010). A low-penetrance missense mutation

may be associated with a particularly severe clinical phe-

notype when it occurs in cis with a second known patho-

genic mutation, e.g. MYH7 Val606Met and Ala728Val in

hypertrophic cardiomyopathy (Blair et al. 2001). Similarly,
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two missense mutations in cis, each individually exerting a

comparatively mild or no effect on the clinical phenotype,

can act in concert leading to a more severe effect on the

phenotype than either acting alone (e.g. CFTR Arg347His

and Asp979Ala in cystic fibrosis; Clain et al. 2001 or RET

Cys634Tyr and Tyr791Phe resulting in pheochromocytoma

with high penetrance; Toledo et al. 2010). By contrast,

Brugnoni et al. (2013) have intriguingly claimed that two

different CLCN1 mutations do not give rise to myotonia

congenita when they occur in cis on the same allele,

although both lesions cause the disease when inherited on

their own.

In diseases that exhibit locus heterogeneity, clinical

penetrance may vary between mutations in different genes.

For example, in pancreatitis, penetrance may vary from

virtually 100 % in the case of the most common mutations

in the cationic trypsinogen gene (PRSS1) gene, via an

intermediate level for SPINK1 and CFTR mutations, to the

much more subtle risk conferred by the disease modifiers,

namely variants in the chymotrypsin C (CTRC), calcium-

sensing receptor (CASR) and anionic trypsin (PRSS2)

genes, which can only be identified through large cohort

studies (Lerch et al. 2010). It should, however, be noted

that in cases where mutations in the SPINK1 and CASR

genes (Felderbauer et al. 2003) or SPINK1 and CFTR genes

(Masson et al. 2007) are co-inherited, chronic pancreatitis

can ensue. Other such examples of digenic inheritance are

discussed below (see digenic mutations and disease

penetrance).

Reduced penetrance alleles are also characteristic of

many triplet repeat expansion disorders. For example, in

Huntington disease, the possession of intragenic (HTT)

CAG repeats of 36–39 copies (in 0.01 % of controls and

*5 % of consultands) is often associated with reduced

penetrance manifesting as a later onset of clinical symp-

toms (McNeil et al. 1997; Quarrell et al. 2007; Sequeiros

et al. 2010; Panegyres and Goh 2011; Huntington Study

Group COHORT Investigators 2012). Contractions of the

expanded CAG repeat length below a certain threshold can

occasionally be responsible even for the non-occurrence of

Huntington disease in a given at-risk individual (Nahhas

et al. 2009). However, it should be appreciated that a

substantial proportion of the variance in age of onset in

Huntington disease is due either to variation in genes other

than HTT or in the environment (Wexler et al. 2004). Other

repeat expansion disorders characterized by reduced pen-

etrance of alleles of intermediate size include fragile

X-associated tremor/ataxia syndrome (Jacquemont et al.

2004; Sévin et al. 2009), spinocerebellar ataxia types 10

(Alonso et al. 2006; Rankin et al. 2008) and 17 (Oda et al.

2004; Nolte et al. 2010), inherited prion disease (Kaski

et al. 2011) and amyotrophic lateral sclerosis (Boeve et al.

2012; Ogaki et al. 2012).

Modulating influence of additional allelic variants

in cis or in trans

Some allelic variants may influence the expression of their

host gene so as to alter the penetrance of a potentially

pathological mutation in the same gene. Such modulatory

variants may reside within exons, introns or regulatory

regions. For example, the common Arg413Gln F7 poly-

morphism (Arg353Gln in legacy nomenclature; rs6046),

which serves to reduce the level of secreted coagulation

factor VII by *25 % (Arbini et al. 1994; Hunault et al.

1997), is over-represented among individuals with clini-

cally symptomatic factor VII deficiency (Millar et al.

2000). This is consistent with the view that Arg413Gln is a

functional polymorphism and that the presence of Gln413

increases the likelihood that an individual, whose haemo-

static potential is already compromised by a heterozygous

F7 mutation, will come to clinical attention due to a

bleeding diathesis. The same principle applies to the

functional Arg202Gln MEFV polymorphism (rs224222)

where the Gln202 allele occurs in the homozygous state at

a disproportionately higher frequency (15 %) in familial

Mediterranean fever patients than in normal controls

(2.7 %) (Yigit et al. 2012). In similar vein, the T allele of a

functional C/T polymorphism (rs11024595) in the pro-

moter region of the SAA1 gene is significantly over-rep-

resented in familial Mediterranean fever patients as

compared with normal controls (Migita et al. 2013). The

MLH1 Lys618Ala mutation (AAG[GCG; rs35502531),

initially supposed to be a benign polymorphism, has been

found to be significantly over-represented in sporadic

cancers associated with Lynch syndrome; MLH1 Ala618

appears to have a reduced ability to bind PMS2, one of the

MLH1 protein’s mismatch repair partners (Medeiros et al.

2012). Finally, the functional KCNE1 Asp85Asn poly-

morphism (rs1805128), which occurs in the general pop-

ulation with a frequency of 0.8 %, occurs at a frequency of

3.9 % in long QT syndrome patients (Nishio et al. 2009).

Various reported examples of the modulation of the

impact of pathogenic missense mutations by allelic single

nucleotide polymorphisms (SNPs) are given in Table 2.

Thus, the missense polymorphism Asp216His (rs1801968)

in the TOR1A (DYT1) gene serves to moderate the clinical

impact, in both cis and in trans, of the TOR1A c.904-906

del GAG mutation, the major mutation underlying early-

onset dystonia (Kock et al. 2006; Risch et al. 2007; Martino

et al. 2013). Similarly, in long QT syndrome, the genotype

of a missense polymorphism (Lys897Thr; rs1805123) in

the KCNH2 gene appears to distinguish symptomatic from

asymptomatic individuals carrying a low-penetrance

Ala1116Val pathogenic mutation (Crotti et al. 2005).

Another example of the modulatory effect of a missense

polymorphism on disease allele penetrance is provided by
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the His558Arg substitution (rs1805124) in the SCN5A gene

in a case of Brugada syndrome type 1 caused by compound

heterozygous mutations (Asp1690Asn and Gly1748Asp) in

SCN5A. Both mutations reduced the peak Na? current

density due to limited trafficking of the SCN5A protein

towards the membrane, but Gly1748Asp also profoundly

Table 2 Examples of pathogenic microlesions whose penetrance has been found to be modulated by allelic SNPs

Disease Gene Pathological mutation Modifying SNP Reference

Factor VII deficiency F7 Various NM_000131.3: c.1238G[A Arg413Gln

(rs6046)

Millar et al. (2000)

Brugada syndrome SCN5A NM_198056.2: c.5243G[A Gly1748Asp NM_198056.2: c.1673A[G His558Arg

(rs1805124)

Núñez et al. (2013)

Familial sick sinus syndrome SCN5A Various NM_198056.2: c.1673A[G His558Arg

(rs1805124)

Gui et al. (2010)

Early-onset dystonia TOR1A NM_000113.2: c.907-909delGAG NM_000113.2: c.646G[C Asp216His

(rs1801968)

Kock et al. (2006) and

Risch et al. (2007)

Familial Mediterranean fever MEFV Various NM_000243.2: c.605G[A Arg202Gln

(rs224222)

Yigit et al. (2012)

Lynch syndrome MLH1 Various NM_000249.3:

c.1852_1853delAAinsGC Lys618Ala

(rs35502531)

Medeiros et al. (2012)

Long QT syndrome KCNH2 NM_000238.3: c.3347C[T Ala1116Val NM_000238.3: c.2690A[C Lys897Thr

(rs1805123)

Crotti et al. (2005)

Long QT syndrome KCNH2 NM_000238.3: c.1468G[A Ala490Thr NM_000238.3: c.2690A[C Lys897Thr

(rs1805123)

Zhang et al. (2008)

Creutzfeld–Jakob disease/

fatal familial insomnia

PRNP NM_000311.3: c.532G[A Asp178Asn NM_000311.3: c.385A[G Met129Val

(rs1799990)

Goldfarb et al. (1992) and

Apetri et al. (2005)

Cardiac conduction

abnormalities/sudden death

SCN5A NM_198056.2: c.4262G[A

Trp1421Term

NM_198056.2: c.3578G[A Arg1193Gln

(rs41261344)

Niu et al. (2006)

Sudden unexplained death SCN5A NM_198056.2: c.2039G[A Arg680His NM_198056.2: c.3308C[A Ser1103Tyr

(rs7626962)

Cheng et al. (2011)

Syncope SCN5A NM_198056.2: c.5851G[T Val1951Leu NM_198056.2: c.1673A[G His558Arg

(rs1805124)

Shinlapawittayatorn et al.

(2011)

Medullary thyroid carcinoma RET NM_020975.4: c.1996A[G Lys666Glu NM_020975.4: c.2071G[A Gly691Ser

(rs1799939)

Borrello et al. (2011)

Medullary thyroid carcinoma RET NM_020975.4: c.1597G[T Gly533Cys NM_020975.4: c.74-126G[T

(rs2565206)

Tamanaha et al. (2009)

Homocystinuria MTRR NM_002454.2: c.166G[A Val56Met NM_002454.2: c.66G[A Ile22Met

(rs1801394)

Gherasim et al. (2007)

Childhood absence epilepsy CACNA1H NM_021098.2: c.2318G[A Gly773Asp NM_021098.2: c.2362C[T Arg788Cys

(rs3751664)

Vitko et al. (2005)

Primary hyperoxaluria type 1 AGXT NM_000030.2: c.731T[C Ile244Thr NM_000030.2: c.32C[T Pro11Leu

(rs34116584)

Santana et al. (2003)

Hereditary spherocytosis SPTA1 NM_003126.2: c.7134G[A Gln2377Gln,

alters splicing of exon 51

c.4339-99C[T (rs200830867) Delaunay et al. (2004)

Erythropoietic

protoporphyria

FECH Various NM_000140.3: c.315-48T[C

(rs2272783)

Gouya et al. (2006)

Autosomal dominant

osteopetrosis type II

CLCN7 Various NM_001287.4: c.1252G[A Val418Met

(rs12926089)

Chu et al. (2005)

Haemolytic uraemic

syndrome

CFH Various NM_000186.3: c.2808G[T Glu936Asp

(rs1065489)

Caprioli et al. (2003)

Hereditary spastic paraplegia SPAST NM_014946.3: c.1687G[A, (alters

splicing of exon 15)

NM_014946.3: c.131C[T Ser44Leu

(rs121908515)

Pantakani et al. (2008)

GM1 gangliosidosis GLB1 NM_000404.2: c.601C[T Arg201Cys NM_000404.2: c.1306C[T Leu436Phe

(rs34421970)

Caciotti et al. (2003)

Primary cortisol resistance NR3C1 NM_001018077.1: c.2035G[A

Gly679Ser

NM_001018077.1: c.68G[A Arg23Lys

(rs6190)

Raef et al. (2008)

Atopic dermatitis SPINK5 NM_006846.3: c.2468dupA NM_006846.3: c.1258G[A Glu420Lys

(rs2303067)

Di et al. (2009)

Hyperinsulinism HADH NM_005327.4: c.636?471G[T NM_005327.4: c.636?385A[G

(rs732941)

Flanagan et al. (2013)
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affected channel gating. The His558Arg polymorphism

was found to be capable of rescuing the defective traf-

ficking of SCN5A Asn1690 towards the membrane when

present in cis to the pathological lesion (Núñez et al. 2013).

Intriguingly, cotransfection with Asn1690, either alone or

together with the modulatory His558Arg polymorphism,

completely restored the gating defect associated with the

pathogenic Gly1748Asp mutation in trans, although it only

slightly rescued its trafficking.

In passing, it is perhaps pertinent to note that interplay

between functional SNPs may, depending upon the precise

combination of alleles involved, also be sufficient to bring

about disease in the absence of a pathogenic mutation sensu

stricto. Thus, a particular allele of one SNP may contribute to

pathogenesis, but only in the presence of specific allele of

another SNP. These SNPs may be neighbouring, as in the case

of Glu918Asp (rs16022) and Glu993Val (rs16023) in the

CACNA1A gene, which appear to contribute to migraine

susceptibility (D’Onofrio et al. 2009). In the same way, when

they occur together in cis, two otherwise neutral missense

polymorphisms in the FMO3 gene [Glu158Lys (rs2266782)

and Glu308Gly (rs2266780)] result in a decrease in FMO3

enzymatic activity that is sufficient to give rise to a mild form

of trimethylaminuria (Akerman et al. 1999; Zschocke et al.

1999; D’Angelo et al. 2013). However, the interacting SNPs

can also be located within different genes as in the case of

Pro589Ser (rs1049296) in the transferrin (TF) gene and

Cys282Tyr (rs1800562) in the haemochromatosis (HFE) gene

which interact so as to increase the risk of Alzheimer disease

(Robson et al. 2004; Kauwe et al. 2010). A further example of

the combined effect of two unlinked SNPs is provided by an

intronic SNP in the thrombospondin 2 (THBS2) gene (c.1478-

8C[T; rs 9406328) and a missense SNP in the metallopro-

teinase 9 (MMP9) gene (Gln279Arg; rs17576), which toge-

ther increase the risk of lumbar disc herniation (Hirose et al.

2008). This type of situation may occupy the middle ground

between monogenic and complex disorders.

The modifying SNP may also be regulatory in nature

and can serve to render the pathogenic coding mutation

more or less deleterious (and hence more or less penetrant)

depending upon whether the allele harbouring it is more or

less expressed than the wild-type allele. An example of this

is provided by the -30C[T variant (rs17249141) in the

LDLR gene promoter that has been shown to act in concert

with a low-penetrant missense mutation in cis so as to give

rise to an unusually severe form of familial hypercho-

lesterolaemia (Snozek et al. 2009). The modulating influ-

ence of regulatory SNPs on the penetrance of coding

mutations located in cis appears to be a widespread phe-

nomenon in medical genetics, with the high expressing

SNP allele usually increasing the clinical penetrance of the

linked coding mutation (Lappalainen et al. 2011). One

regulatory SNP is thought to act as a low-penetrance cancer

susceptibility factor in its own right: homozygosity for the

intronic 309T[G MDM2 variant (rs2279744), which leads

to enhanced binding of the Sp1 transcription factor and

MDM2 up-regulation, appears to increase the risk for many

types of tumour, presumably in concert with other lesions

(Hu et al. 2007).

Introns may also harbour SNPs that are capable of

modulating the clinical penetrance of a given pathogenic

mutation. Thus, a short tract of five thymidines (5T) in

intron 8 of the CFTR gene, found in *10 % of individuals

from the general population, can give rise to either con-

genital absence of the vas deferens (CAVD), non-classical

cystic fibrosis or a normal phenotype when found in trans

to a severe CFTR mutation (Kiesewetter et al. 1993;

Cuppens et al. 1998). The number of TG repeats immedi-

ately adjacent to 5T is not only significantly associated

with the level of alternative splicing of exon 9 of the CFTR

gene (Cuppens et al. 1998; Niksic et al. 1999), but also

influences clinical penetrance both in the context of cystic

fibrosis and CAVD (Groman et al. 2004; Buratti et al.

2004; Lebo and Grody 2007). Another intronic modifying

polymorphism is found in the FECH gene responsible for

erythropoietic protoporphyria, an autosomal dominant

disorder characterized by incomplete penetrance. This

polymorphism (c.315-48T[C; rs2272783) modulates the

use of a cryptic acceptor splice site, yielding an aberrantly

spliced FECH mRNA which is degraded via nonsense-

mediated mRNA decay (Gouya et al. 1999, 2002). The

hypomorphic C allele increases the penetrance of erythro-

poietic protoporphyria when it occurs in trans to a patho-

genic FECH mutation (Gouya et al. 2002, 2006). Finally,

in a family with hyperinsulinism, a c.636?385A[G SNP

(rs732941) in intron 5 of the HADH gene, which creates a

cryptic acceptor splice site, acts in concert with a patho-

genic HADH mutation (c.636?471G[T) in the same

intron, which creates a cryptic donor splice site, to generate

a 141-bp pseudoexon that leads to premature termination of

translation (Flanagan et al. 2013).

A common C[T variant within an enhancer in intron 1 of

the RET gene (rs2435357) serves to increase the clinical

penetrance of RET coding sequence mutations (Emison et al.

2005). The T allele disrupts a SOX10-binding site, thereby

reducing RET transactivation (Emison et al. 2010). A com-

parable example is provided by an intronic enhancer SNP

(rs2596623) in the thyroid hormone receptor b (THRB) gene,

which was found to be responsible for the pituitary cell-spe-

cific over-expression of a mutant thyroid hormone receptor b2

(Arg338Trp) in a case of pituitary cell-specific resistance to

thyroid hormone (Alberobello et al. 2011).

Variants in the 30 untranslated region (30UTR) of the

KCNQ1 gene reportedly modify disease severity in indi-

viduals with type 1 long QT syndrome resulting from

KCNQ1 gene mutations (Amin et al. 2012). These variants
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serve to reduce KCNQ1 gene expression, such that patients

with one or more variants on their mutated KCNQ1 alleles

have a shorter QT interval and a milder clinical phenotype,

whereas patients with the variants on their normal KCNQ1

alleles exhibit significantly longer QT intervals and a more

severe clinical phenotype. Another example of a modifying

30UTR variant is provided by the G[A polymorphism

(rs1799963) at position 20210 in the prothrombin (F2)

gene, which increases the risk of venous thrombosis by

enhancing F2 mRNA 30 end formation efficiency, thereby

boosting thrombin formation (Gehring et al. 2001). This F2

20210G[A polymorphism has been claimed to interact

with a common F13A1 Val34Leu (rs5985) variant to

confer a greatly increased risk of myocardial infarction

(Butt et al. 2003). Some 30UTR variants are located within

microRNA-binding sites and may constitute low-pene-

trance risk factors for disease in their own right (Ahluwalia

et al. 2009; Kontorovich et al. 2010; Qiu et al. 2011;

Arnold et al. 2012). Finally, various SNPs in other non-

coding RNAs (e.g. lincRNAs; Jendrzejewski et al. 2012;

Kumar et al. 2013) appear to be disease associated and may

therefore also influence disease penetrance.

Influence of the gene expression level on mutation

penetrance

Humans are characterized by marked inter-individual dif-

ferences in the expression levels of their genes (Stranger

et al. 2007; Skelly et al. 2009; Cowley et al. 2009; Cheng

et al. 2012). Since gene expression is controlled by a

combination of cis- and trans-acting regulatory factors, one

means by which heritable differences in gene expression

may be mediated is through polymorphism either of trans-

acting regulatory (transcription) factors or of the cis-acting

target sequences to which they bind. In the case of disease

genes, such inter-individual variation in gene expression

levels and patterns can influence the penetrance of patho-

logical mutations. However, it should be appreciated that

there are also substantial environmental and stochastic

(non-genetic) components to gene expression that are

likely to contribute to variable penetrance, even between

monozygotic twins (Grundberg et al. 2012).

Differential allelic expression is a widespread phenom-

enon and is thought to be relevant to as many as 50 % of all

human genes (Williams et al. 2007; Cheung and Spielman

2009; Palacios et al. 2009). In autosomal dominant condi-

tions where the two alleles of the disease gene are expressed

at different levels, this discrepancy can favour either the

mutant or the wild-type allele and hence may influence

clinical penetrance in either direction (de la Chapelle 2009).

Thus, in pulmonary arterial hypertension, a disease caused

by mutations in the bone morphogenetic protein receptor

type 2 (BMPR2) gene, the penetrance of the BMPR2 disease

allele is dependent upon the level of expression of the wild-

type BMPR2 allele (Hamid et al. 2009a). Similarly, in

erythropoietic protoporphyria, an autosomal dominant

condition caused by mutations in the ferrochelatase (FECH)

gene, the penetrance of the pathogenic FECH allele is

influenced by the level of expression of the wild-type FECH

allele (Gouya et al. 1999; 2002; Di Pierro et al. 2007). Other

examples of autosomal dominant conditions where the

degree of clinical penetrance is modulated by differential

expression of the wild-type and mutant alleles include

hereditary elliptocytosis (SPTA1, Wilmotte et al. 1993),

Marfan syndrome (FBN1, Hutchinson et al. 2003), retino-

blastoma (RB1, Taylor et al. 2007), colorectal cancer (APC,

Yan et al. 2002; TGFBR1, Valle et al. 2008) and breast and

ovarian cancer (BRCA1, Ginolhac et al. 2003).

Perhaps, the best understood example of penetrance

depending upon the level of expression of the wild-type

allele is retinitis pigmentosa type 11 (Utz et al. 2013). This

autosomal dominant condition is caused by mutations in

the pre-mRNA processing factor 31 (PRPF31) gene loca-

ted on chromosome 19q13.42. The clinical penetrance of

the underlying mutations has been shown to depend upon

the level of wild-type PRPF31 mRNA expression dis-

played by the patient (Vithana et al. 2003; Rivolta et al.

2006; Liu et al. 2008). Cells from asymptomatic carriers of

PRPF31 mutations express a higher level of the wild-type

allele than cells from affected patients: high enough for the

wild-type PRPF31 mRNA level to lie within the range of

the unaffected general population (Rivolta et al. 2006; Liu

et al. 2008). The penetrance of PRPF31 mutations is

reduced by transcriptional repression mediated by the

product of the CCR4-NOT transcription complex, subunit

3 (CNOT3) gene which is linked to PRPF31 (McGee et al.

1997; Venturini et al. 2012). PRPF31 expression has also

been found to be strongly influenced by an unlinked eQTL

on chromosome 14q21-q23 (Rio Frio et al. 2008). The

penetrance of PRPF31 mutations is therefore determined at

least in part by a trans-acting modifier located on a dif-

ferent chromosome. The trans-acting alleles are inherited

from the parent lacking the PRPF31 mutation; these alleles

are presumably present in the general population, but

appear only to be relevant to disease when they modulate

the penetrance of PRPF31 mutations.

A slightly different scenario is exemplified by Schimke

immune-osseus dysplasia (SIOD), a recessive condition,

which appears to result from biallelic mutations in the

SMARCAL1 gene. Several examples of SIOD families with

incomplete penetrance have been reported (Bökenkamp

et al. 2005; Dekel et al. 2008; Elizondo et al. 2009). It has

recently been shown that SMARCAL1, a protein involved

in chromatin remodelling, influences the transcription level

of many genes (Baradaran-Heravi et al. 2012). Although
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SMARCAL1 deficiency is insufficient in itself to cause

SIOD in Drosophila and mouse models, the addition of

environmental (viz. heat shock) and genetic insults

affecting transcription can successfully recapitulate the

pathophysiology of SIOD (Baradaran-Heravi et al. 2012).

The penetrance of SIOD therefore appears to be dependent

upon the magnitude of the alteration of gene expression

consequent to SMARCAL1 deficiency.

In the case of a splicing mutation (c.291?1 G[A;

rs71640277) in intron 3 of the GH1 gene causing growth

hormone deficiency type II, the expression levels of the

mutant and wild-type alleles were found to correlate with

the penetrance and expressivity of the deficiency state in

different members of the same family (Hamid et al. 2009b).

Some splicing mutations associated with low penetrance

affect splicing in such a way that both normal-length and

truncated transcripts are expressed from the same mutant

allele, but presumably to different extents in different

individuals (e.g. RB1, c.2211G[A; Schubert et al. 1997).

Other such examples of reduced penetrance due to ‘leaky

splicing’ involve splicing mutations in the SPAST gene

causing hereditary spastic paraplegia (Svenson et al. 2001)

and in the BTK gene causing X-linked agammaglobulina-

emia (Kaneko et al. 2005). The reduced penetrance char-

acteristic of some splicing mutations may also result from

alternative splicing (Rave-Harel et al. 1997; Chiba-Falek

et al. 1998; Nissim-Rafinia and Kerem 2005; Zinman et al.

2009; Szymanski et al. 2011; Cogan et al. 2012; Lee et al.

2012b) or internal translational start site initiation (Sán-

chez-Sánchez et al. 2007).

Special cases of differential allelic expression are of

course provided by X-inactivation (Dobyns et al. 2004) and

imprinting (Lo et al. 2003), both of which are discussed

below.

Allele dosage and its influence on penetrance

Formally, use of the term ‘autosomal dominant’ implies

that the homozygotes exhibit the same or a similar clinical

phenotype to the heterozygotes, as is the case in Hun-

tington disease where the length of the expanded HTT

CAG triplet repeat appears to be predictive of the age of

onset irrespective of the presence or absence of a second

expanded HTT allele (Lee et al. 2012a). However, in

practice, for most ‘dominant’ human disorders in which

homozygotes have been reported, their clinical symptoms

tend to be significantly more severe than in the heterozy-

gotes (Vogel and Motulsky 1997). This would seem to be

especially true in the context of low-penetrance mutations

such as those identified in the SCN4A and CLCN1 genes,

causing muscle channelopathies, conditions which are

usually held to be transmitted in an autosomal dominant

fashion. Patients homozygous for sodium channel mutations

causing paramyotonia congenita (SCN4A, Ile1393Thr),

hypokalemic periodic paralysis (SCN4A, Arg1132Gln) and

myotonia congenita (CLCN1, Gly190Ser, Ile556Asn,

Ala313Thr, Ile556Asn) display much more severe clinical

features than patients heterozygous for these mutations

(Plassart-Schiess et al. 1998; Arzel-Hézode et al. 2010; Sha-

lata et al. 2010). The aforementioned mutations were also

found to exhibit reduced penetrance in heterozygotes.

Mutations in the RET gene, associated with isolated Hir-

schsprung disease, are dominant loss-of-function mutations

with incomplete penetrance and variable expressivity. Basel-

Vanagaite et al. (2007) reported a c.1263?5G[A splicing

mutation in the homozygous state in three females with

severe Hirschsprung disease and in the heterozygous state in a

male patient with short-segment Hirschsprung disease. In

addition, a hypomorphic RET-predisposing allele, rs2435357,

located in the first intron of the RET gene, was found in the

heterozygous state in the male patient but not in the three

affected females. Whilst the heterozygous c.1263?5G[A

mutation is known to be low penetrance for short-segment

Hirschsprung disease, the homozygous state is fully penetrant

for total aganglionosis or long-segment Hirschsprung disease.

Thus, the penetrance of RET gene mutations in Hirschsprung

disease depends not only on the nature of the mutation but

also on the allele dosage.

Influence of copy number variation on mutation

penetrance

Estimates of the clinical penetrance of recurrent pathogenic

copy number variants (CNVs) vary quite widely, depending

upon CNV size, genomic location and the disorder in question

(Ben-Shachar et al. 2009; Vassos et al. 2010; Breckpot et al.

2011; Čiuladaitè et al. 2011; Hosak et al. 2012; Klopocki et al.

2012; Rosenfeld et al. 2013; Vaags et al. 2012; Weischenfeldt

et al. 2013; Dabell et al. 2013; Carvill and Mefford 2013;

Tropeano et al. 2013). In their study of children known to carry

a CNV associated with intellectual disability and congenital

abnormalities, Girirajan et al. (2012) reported synergy

between multiple large CNVs leading to a particularly severe

clinical presentation. Such a two-hit model, or ‘oligogenic

heterozygosity’ as it has been termed, also appears to be

characteristic of autism (Pinto et al. 2010; Schaaf et al. 2011b;

Klei et al. 2012; Gau et al. 2012).

The penetrance of a given CNV may also be influenced

by genetic variants in the vicinity. Thus, a submicroscopic

deletion of 1q21.1 (encompassing the RBM8A gene) has

been reported to interact with a low-frequency functional

SNP in the regulatory region of the wild-type RBM8A

allele to cause thrombocytopaenia with absent radii (Albers

et al. 2012).
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Several papers have now suggested that CNVs can also act

as genetic modifiers of phenotype severity in a variety of

different disease contexts (Beckmann et al. 2007; Chaudru

et al. 2009; El-Hattab et al. 2010; Mulley et al. 2011; Jiang

et al. 2011; Carvalho et al. 2012; Shen et al. 2013b). CNVs

may influence the penetrance of a clinical phenotype indi-

rectly as well as directly. For example, a mutant gene might

be ‘covered’ by a CNV in a given individual, so that the

expected clinical phenotype would be masked by the pres-

ence of an additional wild-type copy in cis to the gene in

question. Consistent with this postulate, Ng et al. (2008)

reported that *30 % of nonsense SNPs occur in genes

residing within segmental duplications, a proportion some

threefold larger than that noted for synonymous SNPs. Genes

harbouring nonsense SNPs were also found to belong to

larger gene families (Ng et al. 2008) suggesting that some

functional redundancy could also exist between paralogous

human genes. In support of this idea, Hsiao and Vitkup

(2008) reported that those human genes which have a

homologue with [90 % sequence similarity are *3 times

less likely to harbour disease-causing mutations than genes

with less closely related homologues. Hsiao and Vitkup

(2008) interpreted their findings in terms of ‘genetic

robustness’ against null mutations, with the duplicated

sequences providing ‘backup’ by potentiating the functional

compensation/complementation of homologous genes in the

event that the latter acquired deleterious mutations. The

capacity to be functionally compensated appears to vary, in

the order non-disease genes [ monogenic disease genes

[ polygenic disease genes (Podder and Ghosh 2011). One

example of how a CNV can ameliorate the clinical phenotype

is spinal muscular atrophy where an increased copy number

of the SMN2 gene can greatly reduce the severity of the

disease caused by the homozygous deletion of the SMN1

gene, because the SMN2 gene, which lacks a splicing

enhancer, can nevertheless generate some functional product

thereby compensating functionally in a copy number-

dependent fashion for the loss of the SMN1 gene (Vitali et al.

1999; Harada et al. 2002; Wirth et al. 2006). Another

example of how the clinical and/or phenotypic impact of a

mutant gene can be nullified by a CNV is provided by a

foetus that possessed paternal (Gln318Term) and maternal

(Arg356Term) nonsense mutations of the CYP21A2 gene but

lacked the normal clinical sequelae of congenital adrenal

hyperplasia; this was found to be due to a duplication of the

CYP21A2 gene on the paternal allele (Kleinle et al. 2009;

Lekarev et al. 2013).

Influence of modifier genes on disease penetrance

‘‘For a so-called single gene disorder, there is one

gene that may be primarily responsible for the

pathogenesis with one or more independently inher-

ited modifier genes that influence the phenotype. On

the other hand, for a complex trait, the primacy of any

individual gene is not perceptible, and the interaction

of two or more independently inherited pairs of

alleles, most likely influenced by additional modifier

genes, results in the disease. The consequence of this

conceptual framework is that there is no such thing as

a ‘single’ gene disorder. In other words, there is no

obvious clear distinction between simple Mendelian

and complex traits: genetic diseases represent a

continuum with diminishing influence from a single

primary gene influenced by modifier genes, to

increasingly shared influence by multiple genes’’.

Dipple and McCabe (2000)

It is sometimes claimed that sickle cell anaemia is the

simplest of all Mendelian disorders in that it is caused by

one specific mutation (Glu7Val) in the b-globin (HBB)

gene. However, this single-mutation monogenic disorder is

not as simple as it might at first appear; indeed, it is

characterized by marked clinical heterogeneity and

incomplete penetrance of subphenotypes which is due in

part to allelic variation and in part to variants in unlinked

modifier genes (Steinberg and Sebastiani 2012). If we

extrapolate from the archetypal example of sickle cell

disease to other Mendelian disorders, it is not unreasonable

to expect the action of modifier genes to be the rule rather

than the exception. Indeed, variants in unlinked modifier

genes have been reported to influence penetrance in a

variety of different inherited diseases including pancreatitis

(Khalid et al. 2006), breast cancer (Wolf et al. 2010; Wang

et al. 2010a; Walker et al. 2010; Antoniou and Chenevix-

Trench 2010; Esteban Cardeñosa et al. 2012; Harlid et al.

2012), Gaucher disease (Taddei et al. 2009; Zhang et al.

2012), retinitis pigmentosa (Rio Frio et al. 2008; Venturini

et al. 2012), haemochromatosis (Krayenbuehl et al. 2010),

hypertrophic cardiomyopathy (Daw et al. 2007), fronto-

temporal lobar degeneration (Finch et al. 2011) and amy-

loid polyneuropathy (Soares et al. 2005) among others. In

familial late-onset Alzheimer disease, modifying loci may

either influence the risk (Sleegers et al. 2009; Cruchaga

et al. 2012) or the age of onset of disease (Wijsman et al.

2005; Marchani et al. 2010). Importantly, a significant

excess of rare coding APP, PSEN1 and PSEN2 variants

was noted in probands from late-onset Alzheimer disease

families even though these variants did not actually co-

segregate with the disease; this suggests that the variants in

question may nevertheless serve to modulate the risk of

disease (Cruchaga et al. 2012). An excess of rare variants

as compared to controls has also been noted in patients

with various other disorders including hypertriglycerida-

emia (Johansen et al. 2012; Talmud 2007), hypertrophic
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cardiomyopathy (Lopes et al. 2013) and autism spectrum

disorder (Mondal et al. 2012).

A typical example of a modifier gene in action is pro-

vided by long QT syndrome. The clinical penetrance of

KCNQ1 (potassium voltage-gated channel, KQT-like sub-

family, member 1) mutations in this disorder is influenced

by two coding sequence polymorphisms [Ser49Gly

(rs1801252) and Arg389Gly (rs1801253)] in the ADRB1

gene. Individuals homozygous for the Arg389 allele tend to

have shorter QT intervals, whereas individuals homozy-

gous for Ser49 tend to have longer QT intervals than those

with other genotypes (Paavonen et al. 2007). Interestingly,

those individuals doubly homozygous for Arg389 and

Ser49 were found to be indistinguishable from the

remainder of the patient cohort, both in terms of their QT

intervals and in terms of clinical penetrance.

The minor allele of a variant in the complement receptor 1

(CR1) gene, Ser1610Thr (rs4844609), which has a population

frequency of 0.02, is associated with episodic memory decline

and susceptibility to Alzheimer disease (Keenan et al. 2012).

However, this effect appears largely dependent upon an

interaction with APOE-e4, itself an important risk factor for

Alzheimer disease (Mayeux et al. 1993).

Hirschsprung disease is one of the most complex genetic

disorders in terms of the number of modifier genes (Garcia-

Barcelo et al. 2009; Tang et al. 2010) known to influence

the penetrance of its causative mutations, which has been

estimated to be of the order of 50–70 % (Bolk et al. 2000).

The best characterized of these modifier genes is the neu-

regulin 1 gene (NRG1; Tang et al. 2011, 2012a); however,

most probably still remain to be identified. Some Bardet–

Biedl syndrome patients also present with Hirschsprung

disease. It appears that RET, the major gene involved in the

aetiology of Hirschsprung disease, acts as a modifier of the

Hirschsprung disease phenotype in Bardet–Biedl syndrome

(de Pontual et al. 2007). Some families with Hirschsprung

disease and Bardet–Biedl syndrome harbour mutations in

their BBS4, BBS5, BBS7 and RET genes (de Pontual et al.

2009). Sánchez-Mejı́as et al. (2009) reported a Hirsch-

sprung disease family in which mutations in three different

genes (RET, NTRK3 and EDN3) contributed to the disease

phenotype; the RET and NTRK3 mutations were both

necessary and sufficient to give rise to the clinical pheno-

type, whereas the EDN3 mutation appeared to act as a

modifier. More recently, copy number variations in various

neurodevelopmental genes (MAPK10, ZFHX1B, SOX2 and

NRG2) have been shown to modify the penetrance of

Hirschsprung disease (Jiang et al. 2011; Tang et al. 2012b).

Taken together, these findings are consistent with an

impact of both common and rare variants on the inheritance

(and hence penetrance) of this highly complex disorder

(Sánchez-Mejı́as et al. 2009; Núñez-Torres et al. 2011;

Alves et al. 2013).

Table 3 lists a number of well-characterized examples

of specific variants in modifier genes that serve to modulate

the clinical penetrance of diseases caused by mutation(s) at

unlinked loci.

The plastin 3 (PLS3) gene acts as a modifier of the

clinical penetrance of autosomal recessive spinal muscular

atrophy, caused by the homozygous deletion of the SMN1

gene. Oprea et al. (2008) studied spinal muscular atrophy-

discordant families with affected and unaffected SMN1-

deleted siblings and found that all unaffected SMN1-

deleted siblings were characterized by a high PLS3

expression level in blood cells, considerably higher than in

their affected counterparts (and despite high PLS expres-

sion being evident in only 5 % of healthy controls).

Although it is still unclear whether PLS3 expression is

regulated by cis- or trans-acting factors, it would appear

that high PLS3 expression serves to rescue the spinal

muscular atrophy patient from the detrimental effects of

SMN1 deletion by promoting axonogenesis through ele-

vation of the level of F-actin (Oprea et al. 2008) and ulti-

mately by improving neuromuscular transmission

(Ackermann et al. 2013).

A unique kind of modifying effect is exemplified by a-

thalassaemia/mental retardation syndrome, caused by

mutations of the ATRX gene. The ATRX protein binds to

variable number tandem repeat sequences (VNTRs) in the

human genome, and genes associated with these VNTRs

are dysregulated when ATRX is mutated (Law et al. 2010).

Law et al. (2010) identified 917 ATRX targets in primary

human erythroid cells, including one in the a-globin (HBA)

locus. This wd VNTR was found to be highly polymorphic

in terms of its length and acted as a length-dependent

negative regulator of gene expression, its length serving to

influence the degree of a-thalassaemia observed in an a-

thalassaemia/mental retardation syndrome patient. Thus,

the length of the wd VNTR could explain the incomplete

penetrance of a-thalassaemia noted in individuals with

identical ATRX mutations. A similar mechanism could

underlie other genetic traits characterized by reduced

penetrance.

Digenic mutations and disease penetrance

In a typical autosomal Mendelian condition, a single

mutation (dominant) or two mutations (recessive) at a

specific locus give rise to a clinical phenotype. By contrast,

digenic inheritance occurs in cases where the interaction of

mutations in two different genes is required for the

expression of the clinical phenotype. In this situation, a

mutation in one copy of each gene is required for the full

clinical phenotype to manifest. In the absence of one of the

component mutations, the other mutation may be non-
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Table 3 A selection of well-characterized examples of polymorphic variants in modifier genes that serve to modulate the clinical penetrance

and/or severity of an inherited disease caused by mutation(s) at an unlinked locus

Disease Primary disease gene Modifier gene/variant Reference

X-linked retinitis

pigmentosa

RPGR IQCB1/NM_001023570.2:c.1178T[A Ile393Asn

(rs1141528)

Fahim et al. (2011)

X-linked retinitis

pigmentosa

RPGR RPGRIP1L/NM_015272.2:c.2231G[A Arg744Gln

(rs2302677)

Fahim et al. (2011)

Retinal generation in

ciliopathies

RPGR or NPHP5 RPGRIP1L/NM_015272.2:c.685G[A Ala229Thr

(rs61747071)

Khanna et al. (2009)

Retinoblastoma RB1 MDM2/NM_002392.4:c.14?309T[G (rs2279744) Castéra et al. (2010)

Familial

hypercholesterolaemia

LDLR PCSK9/NM_174936.3:c.63_65dupGCT (rs35574083) Abifadel et al. (2009)

Familial

hypercholesterolaemia

LDLR APOB/NM_000384.2:c.10580G[A Arg3527Gln

(rs5742904)

Benlian et al. (1996)

and Taylor et al. (2010)

Familial

hypercholesterolaemia

LDLR CFH/NM_000186.3:c.1204T[C Tyr402His (rs1061170) Koeijvoets et al. (2009)

Familial

hypercholesterolaemia

LDLR APOH/NM_000042.2:c.1204T[C Leu266Val (rs4581) Takada et al. (2003a)

Familial

hypercholesterolaemia

LDLR GHR/NM_000163.4:c.1630A[C Ile544Leu (rs6180) Takada et al. (2003b)

Familial

hypercholesterolaemia

LDLR EPHX2/NM_001979.4:c.860G[A Arg287Gln (rs751141) Sato et al. (2004)

Breast cancer BRCA2 RAD51/NM_002875.4:c.-98G[C (rs1801320) Antoniou et al. (2007)

Ovarian cancer BRCA1 or BRCA2 IRS1/NM_005544.2:c.2911G[A Gly971Arg (rs801278) Ding et al. (2012)

Lynch syndrome MSH2 or MLH1 RNASEL/NM_021133.3:c.1385G[A Arg462Gln

(rs486907)

Krüger et al. (2007)

Prostate cancer MSH2 or MLH1 RNASEL/NM_021133.3:c.1385G[A Arg462Gln

(rs486907)

Krüger et al. (2005)

Lynch syndrome MSH2 or MLH1 TP53/NM_000546.3:c.215G[C Arg72Pro (rs1042522) Krüger et al. (2007)

Cystic fibrosis CFTR TGFB1/NM_000660.4:c.29C[T Pro10Leu (rs1800470) Drumm et al. (2005)

Familial pulmonary

arterial hypertension

BMPR2 TGFB1/NM_000660.4:c.-1347C[T (rs1800469) &

NM_000660.4:c.29C[T Leu10Pro (rs1800470)

Phillips et al. (2008)

Paget’s disease SQSTM1 TNFRSF11A/NM_003839.2:c.575T[C Val192Ala

(rs1805034)

Gianfrancesco et al. (2012)

X-linked variable

immunodeficiency

XIAP CD40LG/NM_000074.2:c.655G[A Gly219Arg

(rs148594123)

Rigaud et al. (2011)

Haemochromatosis HFE CYBRD1/NM_024843.3:c.-399T[G (rs884409) Constantine et al. (2009)

Parkinson’s disease GBA MTX1/NM_002455.3:c.187T[A Ser63Thr (rs760077) Gan-Or et al. (2011)

Recessive dystrophic

epidermolysis bullosa

COL7A1 MMP1/NM_002421.3:c.-1673delG (rs1799750) Titeux et al. (2008)

Amyotrophic lateral

sclerosis

SOD1 CHGB/NM_001819.2:c.1238C[T Pro413Leu (rs742710) Gros-Louis et al. (2009)

Huntington disease HTT HAP1/NM_177977.2:c.1322C[T Thr441Met (rs4523977) Metzger et al. (2008)

Fatal kernicterus G6PD UGT1A1/(TA)6/(TA)7 (rs8175347), HGVS nomenclature

not available

Zangen et al. (2009)

Atypical haemolytic

uraemic syndrome

MCP or CFH C4BPA/NM_000715.3:c.719G[A Arg240His

(rs45574833)

Blom et al. (2008)

Spinal muscular atrophy SMN1 SMN2/NM_017411.3:c.859G[C Gly287Arg

(rs121909192)

Prior et al. (2009)

Long QT syndrome KCNQ1 KCNH2/NM_000238.3:c.2690A[C Lys897Thr

(rs1805123)

Cordeiro et al. (2010)

Long QT syndrome KCNQ1 ADRB1/NM_000684.2:c.145A[G Ser49Gly (rs1801252) &

NM_000684.2:c.1165G[C Arg389Gly (rs1801253)

Paavonen et al. (2007)

Long QT syndrome KCNQ1 NOS1AP/NC_000001.10:g.162029907A[T (rs4657139) Crotti et al. (2009)

Hum Genet (2013) 132:1077–1130 1091

123



penetrant (digenic inheritance sensu stricto) or could be

responsible for a less severe clinical phenotype (digenic

inheritance sensu lato). At least 100 cases of probable and

possible examples of digenic inheritance causing human

inherited disease have been reported to date (Table 4).

Digenic inheritance may occur as a result of mutations

in genes encoding different subunits of the same multi-

meric protein (e.g. PRPH2 and ROM1), an oligomeric

protein complex (e.g. KCNJ10 and SLC26A4; KRT14 and

KRT5) or simply two proteins that interact functionally

with each other (CDH23 and PCDH15; DSG2 and DSC2;

PARK7 and PINK1). However, mutations in receptor/

ligand pairs can also give rise to digenic inheritance (e.g.

PROK2 and PROKR2). Alternatively, digenic inheritance

can involve mutations located in different genes, but

compromising the same regulatory (e.g. HFE and HAMP),

biosynthetic (e.g. ZMPSTE24 and LMNA; CPOX and

PPOX; MYOC and CYP1B1) or degradative (e.g. PCSK9

and LDLR) pathway. Finally, the combination of a mutation in

a transcription factor with a mutation in a target gene of that

transcription factor can also serve to reduce the amount of the

protein in question to a level sufficient to cause a disease

phenotype (e.g. MITF and TYR; FOXC1 and PITX2).

In practice, it is not always clear if a given situation

constitutes true digenic inheritance (e.g. Kajiwara et al.

1994) or whether it is simply the coinheritance of two

mutations in different genes (e.g. Gruber et al. 2009; Ser-

rano-Fernández et al. 2009; Ekvall et al. 2011). In the

former case, the expression of the disease phenotype

actually requires the presence of both gene lesions. In the

latter case, coinheritance of the two gene lesions may serve

to aggravate the clinical phenotype, but each lesion is

independently associated with its own characteristic clini-

cal sequelae. In true digenic inheritance, mutations in both

genes must be present for the genetic disorder to be man-

ifest. Since many of the disorders reported (in Table 4) to

be characterized by digenic inheritance also have mono-

genic forms in which just one of the two genes has been

mutated (whether in the heterozygous or homozygous/

compound heterozygous state), it is unclear how many of

the examples listed really represent digenic inheritance

sensu stricto. However, in many of the listed examples, the

doubly heterozygous probands exhibit earlier onset or a

more severe clinical phenotype than their singly hetero-

zygous relatives (although this is not invariably so; Marras

et al. 2010). Further, whereas the truly ‘digenic’ patients

tend to be characterized by complete penetrance, the

monogenic disease genotypes often exhibit reduced pene-

trance as in e.g. normosmic idiopathic hypogonadotrophic

hypogonadism (see Table 4).

In some of the cases listed in Table 4, the digenic

inheritance may be confined to a single proband and hence

it is not always straightforward to distinguish true digenic

inheritance from the chance coinheritance of two mutations

in unlinked genes. This notwithstanding, the requirement

for the involvement of a second mutated gene may depend

upon the specific mutations that are segregating in the

pedigrees. If digenic inheritance eventually turns out to be

more frequent than previously appreciated, it could provide

yet another reason why some potentially pathogenic alleles

are present in the general population in the absence of overt

disease. At the very least, in many cases the clinical pen-

etrance of the condition in question is likely to be greater

when two relevant genes have been functionally compro-

mised by mutation than if only one had been mutated.

Oligogenic inheritance and its implications for disease

penetrance

Triallelic inheritance has been described as being ‘‘a bridge

between Mendelian and multifactorial traits’’ (Eichers et al.

2004). There are a burgeoning number of reported exam-

ples of digenic triallelic inheritance including nephron-

ophthisis (Hoefele et al. 2007), venous thrombosis

(Formstone et al. 1996; Brenner et al. 1996) and cortisone

Table 3 continued

Disease Primary disease gene Modifier gene/variant Reference

Familial venous

thrombosis

PROC F5/NM_000130.4:c.1601G[A Arg534Gln (rs6025;

Factor V Leiden)

Koeleman et al. (1994);

Gandrille et al. (1995)

and Cafolla et al. (2012)

Familial venous

thrombosis

PROS1 F5/NM_000130.4:c.1601G[A Arg534Gln (rs6025;

Factor V Leiden)

Koeleman et al. (1995)

Familial venous

thrombosis

SERPINC1 F5/NM_000130.4:c.1601G[A Arg534Gln (rs6025;

Factor V Leiden)

Van Boven et al. (1996)

Hypertrophic

cardiomyopathy

MYBPC3 or MYH7 CALM3/NM_005184.2:c.-157T[A (rs150954567) Friedrich et al. (2009)

Familial Mediterranean

fever

MEFV SAA1/NM_000331.4:c.-197C[T (rs11024595) Migita et al. (2013)
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Table 4 Examples of digenic mutations causing human inherited disease

Disease Gene 1 Gene 2 Reference

Waardenburg syndrome type 2* MITF PAX3 or OCA3 or TYR or

GJB2

Morell et al. (1997); Chiang et al. (2009); Yan

et al. (2011) and Yang et al. (2013)

Retinitis pigmentosa* PRPH2 ROM1 or RHO or PDE6B Kajiwara et al. (1994); Loewen et al. (2001);

Sullivan et al. (2006) and Jin et al. (2008)

Retinitis pigmentosa RHO PRPF31 Lim et al. (2009)

Retinitis pigmentosa* PDE6B GPR98 Hmani-Aifa et al. (2009)

Progressive cone dystrophy CNGA3 CNGB3 Thiadens et al. (2010)

Frontotemporal dementia* PSEN1 PRNP Bernardi et al. (2011)

Leber congenital amaurosis* RPE65 GUCY2D Silva et al. (2004)

Idiopathic hypogonadotropic hypogonadism* FGFR1 GNRHR or NELF Pitteloud et al. (2007)

Bilateral cystic renal dysplasia DACH1 BMP4 Schild et al. (2013)

Glaucoma, early onset* MYOC CYP1B1 or LTBP2 Vincent et al. (2002), Geyer et al. (2011) and

Azmanov et al. (2011)

Severe insulin resistance PPARG PPP1R3A Savage et al. (2002)

Usher syndrome type 2* PDZD7 GPR98 Ebermann et al. (2010)

Usher syndrome type 1-associated deafness CDH23 PCDH15 Zheng et al. (2005)

Hidrotic ectodermal dysplasia GJB2 GJA1 Kellermayer et al. (2005)

Non-syndromic deafness* GJB2 GJB3 Liu et al. (2009)

Hearing loss GJB2 SLC26A4 Sagong et al. (2013)

Non-syndromic hearing loss associated with an

enlarged vestibular aqueduct/Pendred

syndrome

KCNJ10 SLC26A4 Yang et al. (2009)

Porphyria* CPOX PPOX van Tuyll van Serooskerken et al. (2011)

Atypical haemolytic uremic syndrome CFI CD46 or C3 or CFB or

CFHR1

Esparza-Gordillo et al. (2006), Westra et al.

(2010) and Bresin et al. (2013)

Atypical haemolytic uraemic syndrome CFH CD46 or CFI or C3 or

THBD

Sullivan et al. (2011), Bresin et al. (2013) and

Fan et al. (2013)

Epidermolysis bullosa simplex* KRT14 KRT5 Padalon-Brauch et al. (2012)

Junctional epidermolysis bullosa COL17A1 LAMB3 Floeth and Bruckner-Tuderman (1999)

Long QT syndrome* KCNQ1 KCNH2 or KCNE1 or

SCN5A

Schwartz et al. (2003), Westenskow et al. (2004),

Tester et al. (2005) and Itoh et al. (2010)

Long QT syndrome* KCNH2 SCN5A or KCNE1 Schwartz et al. (2003), Westenskow et al. (2004)

and Tester et al. (2005)

Long QT syndrome* SCN5A SNTA1 or KCNE1 Westenskow et al. (2004) and Hu et al. (2013)

Haemochromatosis* HFE HAMP or TFR2 Merryweather-Clarke et al. (2003), Jacolot et al.

(2004), Island et al. (2009), Altès et al. (2009)

and Del-Castillo-Rueda et al. (2012)

Kallmann syndrome* PROK2 PROKR2 Cole et al. (2008), Sarfati et al. (2010) and Shaw

et al. (2011)

Kallmann syndrome NELF KAL1 or TACR3 Xu et al. (2011) and Quaynor et al. (2011)

Kallmann syndrome PROKR2 KAL1 Dodé et al. (2006), Canto et al. (2009) and Shaw

et al. (2011)

Kallmann syndrome KAL1 TACR3 or WDR11 or

CHD7

Quaynor et al. (2011) and Shaw et al. (2011)

Normosmic idiopathic hypogonadotrophic

hypogonadism

GNRH KAL1 Quaynor et al. (2011)

Normosmic idiopathic hypogonadotrophic

hypogonadism

WDR11 GNRHR Quaynor et al. (2011)

Normosmic idiopathic hypogonadotrophic

hypogonadism

FGFR1 GNRHR or PROKR2 or

FGF8 or KAL1 or GPR54

Raivio et al. (2009), Sykiotis et al. (2010) and

Shaw et al. (2011)

Systemic amyloid A amyloidosis TNFRSF1A MEFV Cigni et al. (2006) and Mereuta et al. (2013)
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Table 4 continued

Disease Gene 1 Gene 2 Reference

Familial hypercholesterolaemia* LDLR PCSK9 Pisciotta et al. (2006), Noguchi et al. (2010) and

Bertolini et al. (2013)

Familial hypercholesterolaemia LDLR APOB Bertolini et al. (2013)

Familial hypercholesterolaemia LDLR LDLRAP1 Tada et al. (2011)

Severe congenital neutropenia ELANE G6PC3 or HAX1 Germeshausen et al. (2010)

McArdle’s disease* PYGM CPT2 Vockley et al. (2000)

Parkinson’s disease, early onset PINK1 PARK2 or PARK7 Tang et al. (2006) and Funayama et al. (2008)

Parkinson’s disease LRRK2 PRKN Dächsel et al. (2006)

Emery–Dreifuss muscular dystrophy* LMNA DES Muntoni et al. (2006)

Joubert syndrome and nephronophthisis* NPHP1 NPHP6 Tory et al. (2007)

Axenfeld–Rieger syndrome FOXC1 PITX2 Kelberman et al. (2011)

Cortisone reductase deficiency HSD11B1 H6PD Draper et al. (2003) and San Millán et al. (2005)

Hypertrophic cardiomyopathy* MYBPC3 TNNT2 or TNNI3 or MYH7

or TPM1

Richard et al. (2003), Van Driest et al. (2004)

Ingles et al. (2005), Millat et al. (2010), Kubo

et al. (2011) and Zou et al. (2013)

Hypertrophic cardiomyopathy* MYH7 TNNT2 or MYL2 or TNNI3

or ACTC1

Millat et al. (2010) and Zou et al. (2013)

Restrictive cardiomyopathy* MYL2 MYL3 Caleshu et al. (2011)

Rasopathy phenotype with severe hypertrophic

cardiomyopathy

PTPN11 SOS1 Fahrner et al. (2012)

Arrhythmogenic right ventricular

cardiomyopathy

DES PKP2 Lorenzon et al. (2013)

Arrhythmogenic right ventricular

cardiomyopathy*

DES DSG2 Rasmussen et al. (2013)

Arrhythmogenic right ventricular

cardiomyopathy

PKP2 DSP or DSG2 or PKP4 or

DSC2

Xu et al. (2010)

Arrhythmogenic right ventricular dysplasia/

cardiomyopathy

DSG2 DSC or PKP2 Bhuiyan et al. (2009) and Nakajima et al. (2012)

Familial dilated cardiomyopathy* LMNA TTN Roncarati et al. (2013)

Dent’s disease CLCN5 OCRL Addis et al. (2013)

Amyotrophic lateral sclerosis SOD1 CNTF Giess et al. (2002)

Amyotrophic lateral sclerosis VAPB C9orf72 van Blitterswijk et al. (2012b)

Dravet syndrome PCDH19 TSPYL4 Kwong et al. (2012)

Dravet syndrome* SCN9A SCN1A Singh et al. (2009)

Dravet syndrome* CACNA1A SCN1A Ohmori et al. (2013)

Severe myoclonic epilepsy CACNB4 SCN1A Ohmori et al. (2008)

Severe myoclonic epilepsy POLG SCN1A Bolszak et al. (2009)

Progressive external ophthalmoplegia POLG SLC25A4 Galassi et al. (2008)

Bartter syndrome CLCNKA CLCNKB Nozu et al. (2008)

Chronic pancreatitis SPINK1 CASR or CFTR or CTRC or

PRSS1

Felderbauer et al. (2003), Masson et al. (2007),

Tzetis et al. (2007), Schneider et al. (2011),

LaRusch et al. (2012) and Rosendahl et al.

(2013)

Oculocutaneous albinsim OCA2 TYRP1 or SLC45A2 or TYR Chiang et al. (2008) and Wei et al. (2013)

Oculocutaneous albinsim TYR SLC45A2 Wei et al. (2013)

Cystinuria SLC3A1 SLC7A9 Font-Llitjós et al. (2005)

Transposition of the great arteries ZIC3 FOXH1 or NKX2-5 De Luca et al. (2010)

Congenital heart disease MYH6 NKX2-5 or GATA4 Granados-Riveron et al. (2012)

Charcot–Marie–Tooth disease* PMP22 ABCD1 or LITAF Meggouh et al. (2005), Hodapp et al. (2006)

Charcot–Marie–Tooth disease GJB1 EGR2 Chung et al. (2005)

Charcot–Marie–Tooth disease* GDAP1 MFN2 Vital et al. (2012)
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reductase deficiency (Draper et al. 2003). It would not be

altogether surprising, in conditions where digenic or even

trigenic inheritance has been reported, if the individual

component mutations were found to exhibit a reduced

clinical penetrance as compared to mutations underlying

the monogenic forms of the disease.

In some disorders, incomplete penetrance of a particular

mutation can be due to the oligogenic nature of the disease

and hence to the requirement for multiple genes to be

mutated for the condition in question to manifest. An

inherited predisposition to cancer can be monogenic, but is

also very likely to have an oligogenic aetiology in many

instances (Fearnhead et al. 2004; Koren-Michowitz et al.

2005; Okkels et al. 2006; Küry et al. 2008; Wasielewski

et al. 2010; Martinez and Kolodner 2010; Plon et al. 2011;

Morak et al. 2011; Gracia-Aznarez et al. 2013). In

Table 4 continued

Disease Gene 1 Gene 2 Reference

Refractory auto-inflammatory syndrome TNFRSF1A CIAS1 Touitou et al. (2006)

Short-rib polydactyly syndrome type 2 NEK1 DYNC2H1 Thiel et al. (2011)

Maturity-onset diabetes of the young HNF1A HNF1B Karges et al. (2007)

Maturity-onset diabetes of the young HNF1A HNF4A Forlani et al. (2010) and Shankar et al. (2013)

Polycystic kidney disease* PKD1 PKD2 Pei et al. (2001) and Dedoussis et al. (2008)

Hyperimmunoglobulinaemia D and periodic

fever syndrome

MVK TNFRSF1A Hoffmann et al. (2005)

Obesity, hyperinsulinaemia and insulin

resistance

TCF1 NROB2 Tonooka et al. (2002)

Progressive external ophthalmoplegia POLG C10orf2 Van Goethem et al. (2003)

Neuronal ceroid lipofuscinosis POLG CLN5 Staropoli et al. (2012)

Chronic lung disease SFTPC ABCA3 Bullard and Nogee (2007)

Lafora disease EPM2B PPP1R3C Guerrero et al. (2011)

Congenital erythropoietic porphyria UROS ALAS2 To-Figueras et al. (2011)

Familial venous thrombosis* PROC PROS1 Formstone et al. (1996), Brenner et al. (1996),

Boinot et al. (2003), Knoll et al. (2001) and

Hayashida et al. (2003)

Familial venous thrombosis* PROC SERPIND1 Bernardi et al. (1996)

Breast cancer* BRCA1 BRCA2 Leegte et al. (2005), Lavie et al. (2011) and

Heidemann et al. (2012)

Breast cancer BRCA1 PALB2 Pern et al. (2012)

Multiple tumours of different types BRCA1 MLH1 Pedroni et al. (2013)

Familial pulmonary arterial hypertension BMPR2 THBS1 Maloney et al. (2012)

Hereditary nonpolyposis colorectal cancer MUTYH MSH6 Van Puijenbroek et al. (2007) and Giráldez et al.

(2009)

Colorectal cancer EPCAM MSH2 Li-Chang et al. (2013)

Colorectal cancer, juvenile onset* APC MSH2 Uhrhammer and Bignon (2008)

Autoimmune lymphoproliferative syndrome FAS CASP10 Cerutti et al. (2007)

Autoimmune lymphoproliferative syndrome* FAS PRF1 Clementi et al. (2004)

Steroid-resistant focal segmental

glomerulosclerosis

NPHS2 NPHS1 or CD2AP Löwik et al. (2008)

Severe infantile liver disease AKR1D1 SKIV2L Morgan et al. (2013)

Ataxia, dementia and hypogonadotropism RNF216 OTUD4 Margolin et al. (2013)

Paediatric inflammatory bowel disease NOD2 GSDMB or ZNF365 or

ERAP2 or SEC16A or

GMPBB

Christodoulou et al. (2013)

Paediatric inflammatory bowel disease BACH2 IL10 Christodoulou et al. (2013)

Hutchinson-Gilford progeria syndrome ZMPSTE24 LMNA Denecke et al. (2006)

In this table, we considered only those examples of digenic mutations that are unlikely to be merely coincidental and which are predicted to affect

genes that are both functionally associated with the disease in question

* Patients, with heterozygous mutations affecting two different genes, exhibiting earlier disease onset or a more severe clinical phenotype than

either of their singly heterozygous parents or their siblings
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amyotrophic lateral sclerosis, van Blitterswijk et al.

(2012a) detected FUS and TARDBP mutations in combi-

nation with ANG mutations, and C9orf72 repeat expansions

with TARDBP, SOD1 and FUS mutations. At least five

relatively common polymorphisms in four different genes,

CFB (Arg32Gln, rs641153), C2 (Glu318Asp, rs9332739),

CFH [Tyr402His (rs1061170) and non-coding variant

rs1410996] and ARMS2 (Ala69Ser, rs10490924), interact

so as to confer increased risk of age-related macular

degeneration (Maller et al. 2006). Common polymorphisms

in the LEPR (Gln223Arg, rs1137101) and ADRB2

[Arg16Gly (rs1042713) and Gln27Glu (rs1042714)] genes

jointly confer increased risk of obesity even though none of

these polymorphisms exhibits a significant influence on

their own (Pereira et al. 2011). Other examples of oligo-

genic inheritance, involving the mutation or polymorphism

of multiple unlinked genes in the same individual, include

isolated gonadotropin-releasing hormone deficiency

(KAL1, PROK2 and NELF; Sykiotis et al. 2010), hypertrophic

cardiomyopathy (MYH7, MYBPC3, TNNI3 and TNNT2;

Girolami et al. 2010; Lopes et al. 2013), iminoglycinuria

(SLC36A2, SLC6A20, SLC6A18, SLC6A19; Bröer et al. 2008),

long QT syndrome (KCNH2, SCN5A and KCNE1; Yoshikane

et al. 2013), chronic pancreatitis (SPINK1, CFTR and CTRC;

Rosendahl et al. 2013), atypical haemolytic uraemic syndrome

(CFH, CD46 and CFI; Roumenina et al. 2012; Bresin et al.

2013), Parkinson disease (LRRK2, SNCA, MAPT, GBA, BST1,

PARK16; Wang et al. 2012), acrocallosal syndrome (KIF7,

AHI1, BBS2 and BBS4; Walsh et al. 2013), autism spectrum

disorders (Neale et al. 2012) and a low plasma level of HDL

cholesterol, a major risk factor for atherosclerosis (Cohen et al.

2004; Wang et al. 2008; Johansen and Hegele 2012).

One of the best characterized oligogenic disorders is

Bardet–Biedl syndrome (BBS) where at least 17 genes are

known to contribute to the clinical phenotype, and the

severity of the disease phenotype may vary as a result of

the interaction of mutations in different BBS genes.

Although mutations at more than one locus have often been

found to segregate with the disease, thereby modulating

both its penetrance and expressivity (Badano et al. 2006;

Zaghloul and Katsanis 2009; Cardenas-Rodriguez et al.

2013), the jury is still out in relation to claims of digenic

triallelic inheritance in BBS (Katsanis et al. 2001; Beales et al.

2003; Badano et al. 2003; Fauser et al. 2003; Smaoui et al.

2006; Chen et al. 2011; Abu-Safieh et al. 2012). This not-

withstanding, some common BBS gene variants appear to be

detrimental to protein function and may well interact with the

much rarer pathogenic BBS mutations so as to influence the

severity of the BBS phenotype (Zaghloul et al. 2010).

Some idea of the likely complexity of genotype–phe-

notype relationships in complex disease has come from the

comparative exome sequencing of 237 ion channel genes

performed in sporadic idiopathic epilepsy patients and

unaffected controls (Klassen et al. 2011). Both rare and

common variants were identified in the two groups.

Although these variants were more numerous in the patient

group, they were not found to be predictive of disease: as

the authors opined, ‘‘absolute numerical counts of SNP

burden hold little predictive value as a global pathogenic

measure’’. However, 51 % of cases and 14 % of controls

had C2 non-synonymous variants in their sodium channel

genes. In similar vein, 24 % of cases and 6 % of controls

had C2 non-synonymous variants in their GABA receptor

alpha genes (Klassen et al. 2011). Such findings are quite

consistent with an oligogenic model of sporadic epilepsy

(Dibbens et al. 2007). What is required here, however, is

not a simple variant number count, but rather an assess-

ment, on an individual basis, of the net effect of an oli-

gogenic variant profile (requiring ascertainment of the

various gains or losses of function associated with specific

variants and computed with an eye to the nature of

potential joint effects) on a clinically or phenotypically

relevant output measure such as the electrical signature of a

cell type or brain region.

Perhaps, the best characterized oligogenic disorder to

date is familial venous thrombosis. The risk of venous

thromboembolism is known to be increased in patients who

carry more than one genetic variant disrupting the 100?

genes of the ‘hemostaseome’ (Fechtel et al. 2011). Thus,

19 % of symptomatic individuals harbouring a protein C

(PROC) gene mutation were also found to be heterozygous

for factor V Leiden (F5 Arg534Gln; Koeleman et al. 1994),

a functional polymorphism which occurs at a frequency of

2–5 % in European populations. In a replication study,

9.5 % of venous thrombosis patients were found to carry

both mutations (Gandrille et al. 1995) suggesting that their

co-occurrence increases the likelihood of their coming to

clinical attention. Similar findings have been noted in

families with protein S (PROS1) deficiency; among

symptomatic individuals, 38 % also carried the factor V

Leiden mutation (Koeleman et al. 1995). Likewise, coin-

heritance of antithrombin (SERPINC1) deficiency and

factor V Leiden not only increases clinical penetrance, but

also reduces the age of clinical presentation (van Boven

et al. 1996). In a larger-scale study involving 132

thrombophilic families, the risk of thrombosis was

increased and the age of onset lowered in cases of double

heterozygosity for two gene variants (combinations of

variants in PROC, PROS1, F5 and F2) as compared to

individuals carrying single variants of these genes (Tirado

et al. 2001). ABO blood group is also known to modify the

risk of venous thrombosis in individuals with hereditary

thrombophilia through an influence on the plasma levels of

factor VIII and the factor VIII carrier protein, von Wille-

brand factor (Tirado et al. 2005; Nossent et al. 2006; Cohen

et al. 2012). Such studies provide strong circumstantial
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support for the joint impact of multiple mutations in

thrombotic disease (Martinelli et al. 2008). The elevation

of risk for each individual variant is, however, low, and

incomplete penetrance is evident for all prothrombotic

variants. This means that the vast majority of individuals

bearing these variants do not suffer from thrombotic dis-

ease. It is nevertheless reasonable to suppose that patients

with recurrent venous thrombosis will tend to have a

greater number of prothrombotic variants than those who

have experienced a single thrombotic event, with those

individuals who never experienced thrombosis harbouring

even fewer prothrombotic variants (Fechtel et al. 2011).

Since the number of genes known to influence haemostasis

is large and the number of variants with potential impact

larger still, we may expect that a substantial number of

different variant combinations will be capable of confer-

ring an increased risk. This genetic risk will accompany

each prothrombotic challenge (such as pregnancy, long

haul air travel, contraceptive pill usage and immobilization

after surgery), with the greatest risk of venous thrombosis

accruing to those possessing the largest number of pro-

thrombotic variants in their genomes (Fechtel et al. 2011).

Our task is to come to understand how specific DNA

sequence changes in the large number of genes known to

play a role in haemostasis and thrombosis act either syn-

ergistically or antagonistically so as to confer disease

predisposition upon the individual, thereby influencing the

clinical penetrance, by shifting their haemostatic balance

towards either a prothrombotic or anticoagulant phenotype

(Franchini and Mannucci 2009; Westrick and Ginsburg

2009; Fechtel et al. 2011).

Influence of sex on penetrance

The sex dependence of the penetrance of inherited mutations

has been reported in a variety of different heritable disorders

including haemochromatosis (HFE; Rossi et al. 2008),

hypertrophic cardiomyopathy (MYBPC3, MYH7; Michels

et al. 2009; Page et al. 2012), arrhythmogenic right ventricular

dysplasia/cardiomyopathy (PKP2; Dalal et al. 2006), long QT

syndrome (KCNQ1, KCNH2, SCN5A; Zareba et al. 2003),

hypokalaemic periodic paralysis (CACNA1S; Kawamura et al.

2004; Li et al. 2012; SCN4A; Ke et al. 2013), familial pul-

monary arterial hypertension (BMPR2; Austin et al. 2009b),

hereditary spastic paraplegia (SPAST; Mitne-Neto et al.

2007), hereditary dystonia/dopa-responsive dystonia (GCH1;

Furukawa et al. 1998), cardiac disease (LMNA; van Rijsingen

et al. 2013), Hirschsprung disease (RET; Emison et al. 2005),

autism spectrum disorder (SHANK1; Sato et al. 2012),

amyotrophic lateral sclerosis (C9ORF72; Le Ber et al. 2013;

Williams et al. 2013) and familial obesity (SHP; Yang et al.

2010). A male-biased effect on the penetrance of duplications

and deletions at 16p13.11 is evident in a range of neorode-

velopmental conditions including autism, attention deficit

hyperactivity disorder, intellectual disability and schizophre-

nia (Tropeano et al. 2013). In the case of familial pulmonary

arterial hypertension, both genetic and metabolic marker data

were consistent with a modifying role for variation in oes-

trogens and/or oestrogen metabolism upon disease risk

(Austin et al. 2009b). The low penetrance of hypokalaemic

periodic paralysis due to SCN4A mutations in females is also

likely to be due to the effect of oestrogens (Ke et al. 2013).

Allelic variation may also influence the clinical phenotype

in a sex-specific fashion. Thus, Lahtinen et al. (2011) reported

that the common KCNE1 Asp85Asn (rs1805128) polymor-

phism was associated with a QT-interval prolongation in male

but not female type 1 long QT syndrome patients harbouring

the KCNQ1 Gly589Asp mutation. KCNE1 Asp85Asn may

thus be a sex-specific QT-interval modifier in type 1 LQTS.

Similarly, the Ile148Met (rs738409) PNPLA3 polymorphism

is a disease modifier in primary sclerosing cholangitis with bile

duct stenosis, but only in male patients (Friedrich et al. 2013).

Finally, a Val89Leu polymorphism (rs523349) in the steroid

5a-reductase type 2 (SRD5A2) gene, which serves to reduce

the conversion of testosterone to dihydrotestosterone, has been

claimed to influence the severity of post-traumatic stress

symptoms but in a male-specific fashion (Gillespie et al. 2013).

An intriguing parent-of-origin effect has been noted in

two apparently unrelated retinoblastoma families with a

heterozygous, low-penetrance splice site mutation

(c.607?1G[T) in the RB1 gene which causes skipping of

exon 6 (Klutz et al. 2002). The abundance of the resulting

nonsense (frameshifted) RB1 mRNA relative to the wild-

type was found to vary between members of one and the

same family. Those individuals in family #1 who inherited

the mutant RB1 allele from their mother displayed a similar

level of nonsense and wild-type RB1 transcripts, and only

one of eight carriers developed retinoblastoma. By contrast,

those individuals in family #2 who inherited the mutant RB1

allele from their fathers displayed a reduced abundance of

the nonsense transcript with six of eight carriers developing

retinoblastoma, indicating that the mutant transcript has

residual function. Assuming that this is not a chance result

(Fisher’s exact test; p = 0.04), it may be that the gender of

the transmitting parent can influence the penetrance of the

pathogenic mutation.

There is good evidence to suggest that sex-specific

genomic architecture can influence the expression of

human phenotypes, including disease traits (Ober et al.

2008). It is likely that the underlying mechanism is dif-

ferential gene regulation in males and females, particularly

in relation to sex steroid-responsive genes (Zhang et al.

2007; Dimas et al. 2012).

Another mechanism by which sex influences penetrance

is via genomic imprinting. Genomic imprinting results
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from the epigenetic modification of a gene or gene region

that leads to the mutually exclusive expression of either the

maternal or the paternal allele. Imprinted alleles are

silenced (by DNA methylation or histone modification), so

that the corresponding genes are expressed only from the

non-imprinted allele inherited from the other parent. In the

case of disease genes, imprinting can influence the pene-

trance of pathological mutations depending upon whether

the wild-type or the mutant allele is imprinted. Genomic

imprinting can give rise to markedly different levels of

clinical penetrance depending upon the parental origin of

the disease allele. Examples include SGCE mutations in

myoclonus dystonia (Zimprich et al. 2001; Müller et al.

2002; Grabowski et al. 2003) and SDHD mutations in

paraganglioma (Badenhop et al. 2001; Simi et al. 2005;

Baysal et al. 2011). In both cases, maternal imprinting

ensures that the pathologically effective mutations are

almost invariably inherited from the father. Intriguingly, in

one family with pseudohypoparathyroidism type 1b, Jan de

Beur et al. (2003) reported a case of the incomplete pene-

trance of an imprinting mutation. These authors found that

both the clinically affected and unaffected siblings had

inherited the same GNAS1 allele from their affected mother,

indicating that some dissociation must have occurred

between the genetic GNAS1 defect responsible for the disease

and its epigenetic mark. The inconsistent acquisition of a

paternal epigenotype on a maternal GNAS1 allele would

appear to provide evidence for the incomplete expression of a

reprogramming defect that affects imprinting.

Age-dependent penetrance

Age-dependent penetrance is present if the clinical symp-

toms of a given disease are increasingly likely to manifest

themselves with increasing age of the at-risk individual.

Age-dependent penetrance has been reported for mutations

in a wide variety of different human disease genes, e.g.

MYBPC3 in hypertrophic cardiomyopathy (Michels et al.

2009; Page et al. 2012), LMNA in Emery–Dreifuss mus-

cular dystrophy (Vytopil et al. 2002), MC4R in familial

obesity due to melanocortin-4 receptor deficiency (Stutz-

mann et al. 2008), GBA in Parkinson disease (Anheim et al.

2012; Rana et al. 2013), BRCA1 and BRCA2 in breast

cancer susceptibility (Chen and Parmigiani 2007; Al-Mulla

et al. 2009; Mavaddat et al. 2013), MEN1 in multiple

endocrine neoplasia type 1 (Machens et al. 2007), RET in

multiple endocrine neoplasia type 2A (Frank-Raue et al.

2011) and SDHD and SDHB in predisposition to paragan-

gliomas (Hensen et al. 2010; Hes et al. 2010). The APOE

e4 allele (comprising the T allele of rs429358 and the C

allele of rs7412 in cis) serves to reduce the age of onset of

Alzheimer disease from 78.4 years in patients lacking the

allele, to 75.3 in heterozygous carriers to 72.9 in carriers of

two APOE e4 alleles (Sando et al. 2008).

Age-dependent penetrance is particularly evident where

large numbers of heterozygous carriers harbouring specific

gene mutations have been identified by cascade screening,

e.g. LRRK2 Gly2019Ser (rs34637584) in Parkinson disease

(Latourelle et al. 2008; Healy et al. 2008; Sierra et al.

2011), GLUT1 Arg232Cys in familial idiopathic general-

ized epilepsy (Striano et al. 2012), RET Cys634Trp

(rs77709286) in multiple endocrine neoplasia type 2A

(Milos et al. 2008), ACADM Lys329Glu (rs77931234) in

medium-chain acyl-CoA dehydrogenase deficiency (And-

resen et al. 2012), PKP2 Gln59Leu in arrhythmogenic right

ventricular cardiomyopathy (Lahtinen et al. 2008) and

MYBPC3 c.2308?1G[A (rs112738974) in hypertrophic

cardiomyopathy (Oliva-Sandoval et al. 2010). However,

there are always anomalous cases; thus, in a family seg-

regating a pathogenic missense mutation (Arg1205His) in

the vacuolar protein sorting 35 (VPS35) gene, six family

members between the ages of 54 and 73 years exhibited

signs of Parkinson disease, but one individual was still

asymptomatic at age 86 (Nuytemans et al. 2013).

Specific mutations may sometimes differ from each

other in terms of the average age of onset of clinical

symptoms. Thus, for example, patients with maturity-onset

diabetes of the young (MODY) who harbour mutations in

exons 9 or 10 of the HNF4A gene have been found to

develop disease much later (average 40 vs. 24 years) than

MODY patients with mutations in exons 2-8 (Harries et al.

2008). This difference in age-related penetrance is thought

to be a consequence of the exon 9 and 10 mutations being

absent from three of the nine HNF4A isoforms encoded by

the HNF4A gene, whereas the mutations located in exons

2–8 affect all nine isoforms.

In some cases, the clinical penetrance of a particular

mutation can change quite dramatically with age. For

example, the cumulative incidence among carriers of the

Arg1441Gly mutation in the LRRK2 gene causing Parkin-

son disease was found to be 12.5 % until the age of

65 years, but 83 % until age 80 (Ruiz-Martı́nez et al.

2010). However, the penetrance of the common TTR

Val30Met mutation causing autosomal dominant familial

amyloid polyneuropathy has been estimated to be 1.7 %

until the age of 30 years, 22 % until the age of 60, but still

only 69 % until age 90 (Hellman et al. 2008). Majounie

et al. (2011) showed that the pathogenic GGGGCC hexa-

nucleotide expansion in the C9orf72 gene associated with a

high proportion of cases of amyotrophic lateral sclerosis

and frontotemporal dementia was non-penetrant in indi-

viduals younger than 35 years, 50 % penetrant by age 58

but almost fully penetrant by age 80. Age-dependent pen-

etrance could thus provide another explanation for why

some putatively pathological mutations listed in HGMD
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are present in apparently healthy individuals from the 1000

Genomes Project.

A glimpse of the way ahead is provided by a recent

study of symptomatic and asymptomatic carriers of a

specific granulin (GRN) mutation (Thr272Ser) responsible

for autosomal dominant frontotemporal lobar degeneration

(FTLD), a disease whose onset typically occurs in the sixth

decade of life (Milanesi et al. 2013). Unsurprisingly, both the

symptomatic and asymptomatic GRN mutation carriers had

lower serum levels of progranulin than non-carriers. However,

using whole-genome microarray analysis, the leukocyte

expression of the TMEM40 and LY6G6F genes was found to

be significantly higher in FTLD patients harbouring GRN

mutations as compared to asymptomatic carriers. Further,

elevated expression of the genes was correlated with increased

brain damage and could therefore be directly related to the

pathology of the disease (Milanesi et al. 2013).

Epigenetic influences on disease penetrance

As briefly discussed above in the context of the influence of

gender upon penetrance, epigenetic modifications may also

account for incomplete penetrance. Thus, when monozy-

gotic twins are discordant for disease phenotypes, epige-

netic differences should be considered (Wong et al. 2005;

Kaminsky et al. 2009; Gordon et al. 2011; 2012). Indeed,

monozygotic twins have been reported who differ both in

relation to a specific clinical phenotype and in terms of an

epigenotype. For example, monozygotic twins discordant

for childhood leukaemia have been found to have discor-

dant BRCA1 methylation status (Galetzka et al. 2012).

Similarly, hypermethylation of SLC6A4, encoding the

serotonin transporter, has been reported in one member of a

monozygotic twin pair discordant for bipolar disorder

(Sugawara et al. 2011).

Epigenetic differences may also contribute to incom-

plete penetrance in other conditions such as asthma, where

DNA methylation has been reported to modulate the risk of

disease conferred by genetic variants at the zona pellucida

binding protein 2 (ZPBP2; Berlivet et al. 2012), forkhead

box P3 (FOXP3; Runyon et al. 2012), interferon-c (IFNG;

Runyon et al. 2012) and interleukin-4 receptor (IL4R; Soto-

Ramı́rez et al. 2013) gene loci.

A special case of imprinting is provided by X-inacti-

vation (Dobyns et al. 2004). When a disease gene is

X-linked, skewed X-inactivation can cause variable pene-

trance of pathogenic mutations in female carriers (Van den

Veyver 2001). Examples of this phenomenon involve

mutations in the TIMM8A gene (Xq22.1) in dystonia-

deafness syndrome (Plenge et al. 1999), the EBP gene

(Xp11.23) in X-linked dominant chondrodysplasia punctata

(Shirahama et al. 2003), the FLNA gene (Xq28) in

otopalatodigital type 1 syndrome (Hidalgo-Bravo et al.

2005), the ABCD1 gene (Xq28) in a family with X-linked

adrenoleukodystrophy (Wang et al. 2013b) and the ZIC3

gene (Xq26.3) in a family with complex heart defects

(Chhin et al. 2007). It should, however, be pointed out that

some ZIC3 mutations are characterized by reduced pene-

trance in males, a finding that cannot be explained by

skewed X-inactivation (Mégarbané et al. 2000).

Gene–environment interactions and penetrance

The environment, in its broadest sense, will often influence

clinical penetrance, either ameliorating or exacerbating the

impact of heritable genetic variants (Hunter 2005). Indeed,

environmental modifiers of disease penetrance (e.g. diet,

alcohol intake, drugs, metabolic syndrome) have long been

known to influence the penetrance of HFE C282Y homo-

zygosity in haemochromatosis (Beutler 2003; Rossi et al.

2008; Deugnier and Mosser 2008).

One way to explore the relative contribution of genes

and environment is by studying monozygotic twins har-

bouring the same pathogenic mutation(s) and sharing the

same genetic background. Although the vast majority of

such monozygotic twin pairs have been found to be con-

cordant in terms of their clinical phenotypes (e.g. Miesfeldt

et al. 1998; Munhoz et al. 2008; McDade et al. 2012),

others are quite discordant (Matsuo et al. 2000; Amann

et al. 2001; Martin et al. 2003; Holmgren et al. 2004;

Lachmann et al. 2004; Czlonkowska et al. 2009; Bieg-

straaten et al. 2011; Fencl et al. 2012; Iatropoulos et al.

2012), suggesting that the environment can often play an

important role in determining both the penetrance and

expressivity of pathological mutations. [It should be borne

in mind that there are various alternative genetic explana-

tions for discordant phenotypes in monozygotic twins,

including de novo post-zygotic mutation (Kentsis et al.

2009; Vogt et al. 2011), compensatory mutations (Mankad

et al. 2006) and somatic copy number variation (Bruder

et al. 2008) that obviate the need for a major contribution

from the environment, as well as acquired epigenetic dif-

ferences (Galetzka et al. 2012; Bennett et al. 2008)].

An environmental influence on penetrance is perhaps at

its most evident in cancer susceptibility (Houlston and Peto

2004; Shen 2009). Indeed, an environmental component is

very important in colorectal cancer where inherited genetic

variants at a number of different loci interact primarily

with dietary variables and overweight to confer risk (Hutter

et al. 2012; Siegert et al. 2013). In similar vein, inherited

differences in skin pigmentation influence the risk of

melanoma, but this risk is further modified both by latitude

of habitation and lifestyle choices (van der Velden et al.

2001; Bishop et al. 2002; Begg et al. 2005; Meyle and
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Guldberg 2009; Scherer and Kumar 2010). Parity and

breast feeding are both known to be modifiers of risk of

breast/ovarian cancer in BRCA1 mutation carriers

(McLaughlin et al. 2007; Jernström et al. 2004; Cullinane

et al. 2005; Antoniou et al. 2006). Another example of a

gene–environment interaction in the context of cancer is

provided by cytochrome P450 gene variants that may

influence cancer risk by virtue of their roles in xenobiotic

metabolism, detoxification of carcinogens, and to a lesser

extent the bioactivation of procarcinogens (Rodriguez-

Antona et al. 2010). Lung cancer provides an excellent

example of the interaction of genes and environment.

Three different GWAS, published virtually simultaneously,

provided the first convincing evidence for an association

between heritable genetic variation at the nicotinic ace-

tylcholine receptor CHRNA5/CHRNA3/CHRNB4 locus on

chromosome 15q25.1 and lung cancer (Amos et al. 2008;

Hung et al. 2008; Thorgeirsson et al. 2008). Although allele

T of SNP rs1051730, a synonymous variant located within

exon 5 of the CHRNA3 gene, was found to be strongly

associated with smoking quantity, the issue of whether the

association with lung cancer was direct or indirect (i.e.

mediated through cigarette smoking and nicotine depen-

dence) remained unclear. Galvan and Dragan (2009) per-

formed a meta-analysis of reported studies of the 15q25

region and found that this locus was not associated with

lung cancer risk in never-smokers. This lack of effect

argued for an indirect effect of genetic variation at the

15q25 locus on lung cancer risk via an association between

these variants and smoking/nicotine dependence. However,

Wang et al. (2010b) subsequently examined the relation-

ship between rs1051730 and lung cancer and concluded

that, in addition to its indirect influence on disease risk

(through smoking behaviour), this variant also exerted a

rather larger (and direct) effect. Kaur-Knudsen et al. (2011)

concurred, demonstrating that homozygosity for rs1051730

was associated with a smoking behaviour-adjusted relative

risk of lung cancer of 1.6, indicating that rs1051730 is

associated with an additional risk of lung cancer over and

above that derived from its effect on smoking behaviour.

Finally, in a lung cancer case–control study, VanderWeele et al.

(2012) employed two 15q25.1 SNPs, rs8034191 and

rs1051730, to show that the proportion of increased risk due to

smoking was only 3.2 % and that the association of the 15q25

variants with lung cancer operates primarily through pathways

other than smoking behaviour. All of the above notwithstand-

ing, the risk of lung cancer conferred directly or indirectly by

genetic variants on 15q25 would be small if the individual

concerned simply opted not to smoke (Brennan et al. 2011).

The penetrance of genetic variants conferring suscepti-

bility to infectious disease is clearly contingent upon

exposure to the specific pathogens concerned (Vannberg

et al. 2011; Chapman and Hill 2012). One example is the

CCR5 32-bp (c.554del32) deletion which is associated with

a lower rate of HIV infection and a delay in the onset of

AIDS (Smith et al. 1997). Sex may also play a role in some

conditions; thus, in multiple sclerosis, women appear to be

more responsive to the environmental risk factors that

cause the disease (Goodin 2012; O’Gorman et al. 2012).

Diet is also an important modifier of clinical penetrance.

Thus, an inherited predisposition to obesity (exemplified by

the association between dietary fat intake and obesity in

carriers of the PPARG2 Pro12Ala allele; Memisoglu et al.

2003) is in principle modifiable by diet (Walters et al.

2010; Ramachandrappa and Farooqi 2011). Similarly, the

impact of genetic variants at the FTO locus on risk of

obesity can be attenuated by physical activity (Kilpeläinen

et al. 2011). Diet is also an important modifier of clinical

penetrance in phenylketonuria, as mentioned in the

‘‘Introduction’’ to this review, where the penetrance of the

condition can be very substantially reduced by restricting

dietary phenylalanine (van Spronsen 2010).

Heavy coffee drinkers have been known for some time

to have a reduced risk of developing Parkinson disease.

However, the risk of developing Parkinson disease has

been found to be reduced even further for heavy coffee

drinkers by a specific variant in the GRIN2A gene; com-

pared to light coffee drinkers with an rs4998386_CC

genotype, heavy coffee drinkers with the same genotype

have an 18 % lower risk, whereas heavy coffee drinkers

with an rs4998386_TC genotype have a 59 % lower risk

(Hamza et al. 2011).

More unusually, altitude has been reported to act as a

modifier of the phenotypic severity of hereditary paragan-

glioma type 1 caused by mutations in the succinate dehy-

drogenase D (SDHD) gene (Astrom et al. 2003). Since

chronic hypoxic stimulation at high altitude causes spo-

radic carotid body paragangliomas, Astrom et al. (2003)

proposed that SDHD might be involved in oxygen sensing.

Thus, whilst SDHD mutations could impair oxygen sens-

ing, low altitude may serve to reduce the penetrance of

these mutations.

The clinical penetrance of psychological disorders and

traits has long been known to be strongly influenced by

gene–environment interactions (Dick 2011). For example,

a 44-bp deletion/insertion polymorphism in the promoter

region of the serotonin transporter gene SLC6A4 was

reported to be associated with depression after stressful life

events (Caspi et al. 2003). Recently, Klengel et al. (2013)

gave us a glimpse of the likely complexity of the mecha-

nisms underlying gene–environment interactions in the

context of psychological disorders. These authors demon-

strated that a risk variant for post-traumatic stress disorder

and major depression in the FK506-binding protein 5 gene

(FKBP5) is demethylated in several cell types in children

exposed to trauma. This demethylation persists into
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adulthood and confers an increased risk of developing

disease. In FKBP5 risk allele carriers, excessive cortisol

release during early life stress leads to demethylation

within the glucocorticoid-responsive elements of FKBP5 in

intron 7 with the consequence of long-lasting disruption of

the ultra-short feedback loop that balances FKBP5 and

glucocorticoid receptor activity, causing dysregulation of

the stress hormone system. The FKBP5 risk allele corre-

sponds to a functional polymorphism located in intron 2 of

the FKBP5 gene that alters the chromatin interaction

between the transcriptional start site and long-range

enhancers, thereby increasing the transcriptional activity of

FKBP5 over and above that of the wild-type allele. Only

the risk allele is able to form a three-dimensional complex

which includes RNA polymerase II and a glucocorticoid-

responsive element located within intron 7 of FKBP5.

Enhanced transcription of the risk allele facilitates the

PolII-dependent demethylation in intron 7 in response to

elevated glucocorticoids under early life stressful condi-

tions. The reduced methylation of intron 7 CpGs leads to

increased induction of FKBP5 by glucocorticoid receptor

activation, especially in risk allele carriers, representing an

enhancement of the ultra-short feedback loop leading to

increased glucocorticoid receptor resistance. If this occurs

during developmentally critical periods, then the methyla-

tion patterns will remain stable over time (Klengel et al.

2013). Hence, the demethylation in FKBP5 intron 7

depends upon both childhood trauma and the sequence

variant in intron 2, in a tripartite gene–environment inter-

action (Szyf 2012).

The above examples represent the tip of the iceberg

because the clinical penetrance of most monogenic con-

ditions and all complex disease is likely to be influenced by

the environment in some way or another. A further glimpse

of this complexity is perhaps provided by Kallberg et al.

(2007) who reported interactions between HLA-DRB1 SE

alleles, the A allele of the PTPN22 Arg620Trp (rs2476601)

polymorphism and smoking in conferring risk of rheuma-

toid arthritis. Gene–environment interactions are also evi-

dent in asthma (Custovic et al. 2012; Chang et al. 2012)

and eczema (Bisgaard et al. 2008) and will become

increasingly apparent in other disorders as new techniques

are developed to identify them (Aschard et al. 2012). To

this end, mouse models are beginning to come into their

own as a means to study the role of gene–environment

interactions in the aetiology of human disorders; by these

means, short-term gestational hypoxia has been found to

increase the penetrance of vertebral defects in congenital

scoliosis (Sparrow et al. 2012).

Conclusions

A holy grail of human medical genetics is to be able to

deduce the likely clinical phenotype of an individual from

their genotype or genomic sequence. It was once perhaps

naively assumed that, at least for ‘‘monogenic’’ disorders,

genotype–phenotype relationships would be that simple,

and also fairly straightforward to discern. However, it has

been clear for some time that it is inappropriate to regard

such disorders as either simple or monogenic in any strict

sense. Further, in many cases, the reality is that we cannot

readily draw straight lines of causation from known

genotypes to specific clinical phenotypes. This is because

instances abound of individuals who harbour a disease-

associated mutation/genotype, but who do not express

certain features of the disease or who may even be asymp-

tomatic. This phenomenon of reduced penetrance may or may

not be the norm, but it is far from being a rare exception. Our

appreciation of its full extent is still emerging, although some

of the different mechanisms underlying reduced penetrance

are now becoming apparent (Fig. 1).

It has become clear from large-scale sequencing studies

that many individuals in the general population harbour

Fig. 1 Some of the different

mechanisms underlying the

phenomenon of reduced

penetrance in human inherited

disease
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large numbers of potentially disadvantageous variants

without suffering any obvious ill effects (The 1000 Gen-

omes Project Consortium 2010; MacArthur et al. 2012;

Xue et al. 2012; Shen et al. 2013a). Thus, it would appear

that many mutations are, on their own, insufficient to cause

disease and need to occur in the presence of other genetic

variants, either allelic or non-allelic, as well as facultative

environmental factor(s), for a disease state to ensue. Indeed,

many pathological mutations may only be conditionally

pathogenic, exerting a detrimental effect only if and when the

genetic and external environments interact to push the phe-

notype over some notional threshold into pathology.

Penetrance is best thought of as being a genotype-spe-

cific rather than a gene-specific or disease-specific phe-

nomenon. Thus, in any given disease gene, some mutations

may exhibit complete penetrance, whereas others may

show incomplete or even quite low penetrance. Generally

speaking, mutations that display low penetrance also tend

to exert milder effects on the clinical phenotype and/or

protein function, while the more highly penetrant a muta-

tion is, the less frequent it is likely to be in the general

population (Coventry et al. 2010; Marth et al. 2011; Gorlov

et al. 2011; Tennessen et al. 2012; Nelson et al. 2012;

Subramanian 2012; Fu et al. 2013). Whereas highly

penetrant mutations may exert their pathogenic effects with

relatively little interaction with other genetic or environ-

mental factors, low-penetrance mutations are generally

characterized by significant gene–gene and gene–environ-

ment interactions (Cordell 2009). Different combinations

of such variants may contribute to the variable penetrance

characteristic of both monogenic and complex disease.

Whatever the molecular basis may be in the case of a

given mutation, reduced penetrance is in general likely to

present a serious impediment to the implementation of any

scheme designed to classify the pathological significance

of human genetic variants (e.g. Plon et al. 2008; Tavtigian

et al. 2008). Reduced penetrance is also likely to present

problems in identifying pathological mutations in whole-

genome/exome sequencing programmes unless it is

explicitly built into the disease models being considered

(Varga et al. 2013). Despite the complexities it introduces,

it also offers hope in the sense that if we are able to identify

environmental factors, drugs or other types of intervention that

serve to reduce the penetrance of a given pathological variant,

or alternatively delay the onset of its pathological sequelae

beyond the natural lifespan of its carrier, we shall have a whole

new range of therapeutic approaches at our disposal.

Human genetic variation occurs as a continuum ranging

from neutral polymorphisms, through functional polymor-

phisms and disease susceptibility variants to true patho-

logical mutations with high penetrance. However, in

addition and as discussed above, it has become increasingly

clear that our genomes contain many ‘putatively

disadvantageous variants’ that are probably insufficient on

their own to cause disease, but nevertheless still have the

potential to contribute to pathogenesis. Since it has also

become clear that many genetic disorders are not mono-

genic as originally supposed, but may instead involve

mutations in two or more genes, we speculate that different

combinations of pathological mutations with low pene-

trance, functional polymorphisms, disease susceptibility

variants and ‘putatively disadvantageous variants’ may

vary quite considerably in terms of their net functional and

hence clinical effect. Such combinations are likely to exert

an influence on the age of onset and/or clinical severity of

the disease in question.

The rationale of genetic studies of complex phenotypes

has generally relied upon either the ‘common disease,

common variant (CDCV)’ hypothesis or the ‘common

disease, rare variant (CDRV)’ hypothesis. The former

postulates that complex phenotypes result from the cumu-

lative effects of a number of common variants, each with a

modest effect size and relatively low penetrance. The latter

proposes that complex phenotypes result from multiple rare

variants, each with relatively high penetrance and large

effect sizes (Schork et al. 2009). It is highly likely that both

rare and common alleles will contribute to complex phe-

notypes and so effect sizes may be expected to differ quite

widely, with rare variants with large effects complemented

by a large number of frequent variants with small effects.

The clinical phenotypes of complex phenotypes are there-

fore likely to be due to individual effects of, and interaction

between, multiple causative or contributory alleles, as well

as non-genetic determinants.

The full relevance of digenic and oligogenic inheritance

to the phenomenon of incomplete or variable penetrance

remains to be elucidated. If, however, it turns out that di-

genic and oligogenic conditions are more common than

originally anticipated, then many disease contributory

variants will have evaded purifying selection, and hence

those variants that in combination (but not individually)

have significant pathogenic potential will not be as infre-

quent as might be expected under the CDRV hypothesis.

Since both multiple common and rare variants may be

involved in conferring disease susceptibility, we are not

obliged to favour either the CDCV hypothesis or the CDRV

hypothesis. Moreover, in view of the likely complexity of the

gene–gene interactions involved, we concur with Lupski et al.

(2011) that ‘‘for a given individual, what is important to know

is not only the number and location of pathogenic variants

taken one at a time, but also the unique composition of his or

her genome-wide mutational burden’’.

Lupski et al. (2011) charted progress on the road to a

unified genetic model for human disease and opined that

such a model should unite categories of diseases, previ-

ously held to be distinct entities, as part of a continuum
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which would include chromosomal syndromes, genomic

disorders, Mendelian traits and common diseases or com-

plex traits. Concurring with this view, we envisage an

integrated concept of genetic aetiology in which different

types of mutation (from single base substitutions to copy

number variants), different combinations of mutations in

multiple genes (whether in homozygosity or heterozygos-

ity), cis-acting or trans-acting modifiers, common variants,

rare variants, de novo variants and even somatic variants,

jointly serve to exacerbate or ameliorate a given clinical

phenotype. Further, to explain the scale of reduced pene-

trance, we need to conceptualize clinical phenotypes as

being derived, potentially at least, from the expression of

different genetic variants in two or more genes. On the

basis of the data collated for this review, it seems reason-

able to conclude that digenic, oligogenic and polygenic

influences are much more frequent than has perhaps hith-

erto been realized. Unravelling such influences will

undoubtedly be key to understanding the molecular basis of

reduced penetrance. The impact of disease genotypes may

also be modified by epigenetic and environmental factors,

allowing both for synergistic and antagonistic interactions

resulting in highly individualized contributions to the

phenotype (whether deleterious or protective) that will

variously perturb the balance of specific biological path-

ways so as to give rise to disease.

With the advent of next-generation sequencing, very

large numbers of genetic variants are being detected in

individual genomes and it has been necessary to develop

new algorithms to identify those variants which are of key

functional/clinical importance. However, if in using these

tools, we focus exclusively on single infrequent variants

under the assumption that they will invariably exert their

effects in splendid isolation, then there is a very real danger

that we shall inadvertently exclude from consideration

those more frequent variants with modest effects, blithely

ignoring their potential for interaction with the rare vari-

ants. The irony would then be that, despite having the

requisite mutation and polymorphism data available, the

molecular basis of genotype–phenotype relationships in

many inherited diseases (including, of course, the phe-

nomenon of reduced penetrance) could still remain unin-

telligible. The alternative, anticipating multigenic

influences on the clinical phenotypes associated with dis-

orders traditionally regarded as being monogenic, should

not only to lead to new insights into the nature of reduced

penetrance, but is also likely to improve our understanding

of the nature of complex disease.
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Bröer S, Bailey CG, Kowalczuk S, Ng C, Vanslambrouck JM,

Rodgers H, Auray-Blais C, Cavanaugh JA, Bröer A, Rasko JE
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M, Morán-Jiménez MJ (2012) Mutations in the HFE, TFR2, and

SLC40A1 genes in patients with hemochromatosis. Gene

508:15–20

Denecke J, Brune T, Feldhaus T, Robenek H, Kranz C, Auchus RJ,

Agarwal AK, Marquardt T (2006) A homozygous ZMPSTE24

null mutation in combination with a heterozygous mutation in

the LMNA gene causes Hutchinson-Gilford progeria syndrome

(HGPS): insights into the pathophysiology of HGPS. Hum Mutat

27:524–531

Deugnier Y, Mosser J (2008) Modifying factors of the HFE

hemochromatosis phenotype. Expert Rev Gastroenterol Hepatol

2:531–540

Di Pierro E, Brancaleoni V, Moriondo V, Besana V, Cappellini MD

(2007) Co-existence of two functional mutations on the same

allele of the human ferrochelatase gene in erythropoietic

protoporphyria. Clin Genet 71:84–88

Di WL, Hennekam RC, Callard RE, Harper JI (2009) A heterozygous

null mutation combined with the G1258A polymorphism of

SPINK5 causes impaired LEKTI function and abnormal expres-

sion of skin barrier proteins. Br J Dermatol 161:404–412

Dibbens LM, Heron SE, Mulley JC (2007) A polygenic heterogeneity

model for common epilepsies with complex genetics. Genes

Brain Behav 6:593–597

Dick DM (2011) Gene–environment interaction in psychological

traits and disorders. Annu Rev Clin Psychol 7:383–409

Dimas AS, Nica AC, Montgomery SB, Stranger BE, Raj T, Buil A,

Giger T, Lappalainen T, Gutierrez-Arcelus M, MuTHER Con-

sortium, McCarthy MI, Dermitzakis ET (2012) Sex-biased

genetic effects on gene regulation in humans. Genome Res

22:2368–2375

Ding YC, McGuffog L, Healey S, Friedman E, Laitman Y, Paluch-

Shimon S, Kaufman B; SWE-BRCA, Liljegren A, Lindblom A,

Olsson H, Kristoffersson U, Stenmark-Askmalm M, Melin B,

Domchek SM, Nathanson KL, Rebbeck TR, Jakubowska A,

Lubinski J, Jaworska K, Durda K, Gronwald J, Huzarski T,

Cybulski C, Byrski T, Osorio A, Cajal TR, Stavropoulou AV,

Benı́tez J, Hamann U; HEBON, Rookus M, Aalfs CM, de Lange

JL, Meijers-Heijboer HE, Oosterwijk JC, van Asperen CJ,
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Ghorbel A, Rebaı̈ A, Söderkvist P, Riazuddin S, Kimberling WJ,

Ayadi H (2009) Identification of two new mutations in the

GPR98 and the PDE6B genes segregating in a Tunisian family.

Eur J Hum Genet 17:474–482

Ho YY, Ionita-Laza I, Ottman R (2012) Domain-dependent clustering

and genotype-phenotype analysis of LGI1 mutations in AD-

PEAF. Neurology 78:563–568

Hodapp JA, Carter GT, Lipe HP, Michelson SJ, Kraft GH, Bird TD

(2006) Double trouble in hereditary neuropathy: concomitant

mutations in the PMP-22 gene and another gene produce novel

phenotypes. Arch Neurol 63:112–117

Hoefele J, Wolf MT, O’Toole JF, Otto EA, Schultheiss U, Dêschenes
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Küry S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Le Neel

T, Le Houérou C, Faroux R, Ollivry J, Lafraise B, Chupin LD,
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Lefévre SH, Chauveinc L, Stoppa-Lyonnet D, Michon J, Lumbroso L,

Berthet P, Frappaz D, Dutrillaux B, Chevillard S, Malfoy B

(2002) A T to C mutation in the polypyrimidine tract of the exon

9 splicing site of the RB1 gene responsible for low penetrance

hereditary retinoblastoma. J Med Genet 39:E21

Leistritz DF, Pepin MG, Schwarze U, Byers PH (2011) COL3A1

haploinsufficiency results in a variety of Ehlers-Danlos syn-

drome type IV with delayed onset of complications and longer

life expectancy. Genet Med 13:717–722

Lekarev O, Tafuri K, Lane AH, Zhu G, Nakamoto JM, Buller-Burckle

AM, Wilson TA, New MI (2013) Erroneous prenatal diagnosis

of congenital adrenal hyperplasia owing to a duplication of the

CYP21A2 gene. J Perinatol 33:76–78

Lerch MM, Mayerle J, Aghdassi AA, Budde C, Nitsche C, Sauter G,

Persike M, Günther A, Simon P, Weiss FU (2010) Advances in

the etiology of chronic pancreatitis. Dig Dis 28:324–329

Li FF, Li QQ, Tan ZX, Zhang SY, Liu J, Zhao EY, Yu GC, Zhou J,

Zhang LM, Liu SL (2012) A novel mutation in CACNA1S gene

associated with hypokalemic periodic paralysis which has a

genderdifference in the penetrance. J Mol Neurosci 46:378–383

Li-Chang HH, Driman DK, Levin H, Siu VM, Scanlan NL, Buckley

K, Cairney AE, Ainsworth PJ (2013) Colorectal cancer in a

9-year-old due to combined EPCAM and MSH2 germline

mutations: case report of a unique genotype and immunopheno-

type. J Clin Pathol (in press)

Lim KP, Yip SP, Cheung SC, Leung KW, Lam ST, To CH (2009)

Novel PRPF31 and PRPH2 mutations and co-occurrence of

PRPF31 and RHO mutations in Chinese patients with retinitis

pigmentosa. Arch Ophthalmol 127:784–790

Liu JY, Dai X, Sheng J, Cui X, Wang X, Jiang X, Tu X, Tang Z, Bai

Y, Liu M, Wang QK (2008) Identification and functional

characterization of a novel splicing mutation in RP gene

PRPF31. Biochem Biophys Res Commun 367:420–426

Liu XZ, Yuan Y, Yan D, Ding EH, Ouyang XM, Fei Y, Tang W,

Yuan H, Chang Q, Du LL, Zhang X, Wang G, Ahmad S, Kang

DY, Lin X, Dai P (2009) Digenic inheritance of non-syndromic

deafness caused by mutations at the gap junction proteins Cx26

and Cx31. Hum Genet 125:53–62

Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP

(2003) Allelic variation in gene expression is common in the

human genome. Genome Res 13:1855–1862

Loewen CJ, Moritz OL, Molday RS (2001) Molecular characteriza-

tion of peripherin-2 and rom-1 mutants responsible for digenic

retinitis pigmentosa. J Biol Chem 276:22388–22396

Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD,

Hubisz MJ, Sninsky JJ, White TJ, Sunyaev SR, Nielsen R, Clark

AG, Bustamante CD (2008) Proportionally more deleterious

genetic variation in European than in African populations.

Nature 451:994–997

Lopes LR, Zekavati A, Syrris P, Hubank M, Giambartolomei C,

Dalageorgou C, Jenkins S, McKenna W, Uk10k Consortium

Consortium, Plagnol V, Elliott PM (2013) Genetic complexity in

hypertrophic cardiomyopathy revealed by high-throughput

sequencing. J Med Genet 50:228–239

Lorenzon A, Beffagna G, Bauce B, De Bortoli M, Li Mura IE, Calore

M, Dazzo E, Basso C, Nava A, Thiene G, Rampazzo A (2013)

Desmin mutations and arrhythmogenic right ventricular cardio-

myopathy. Am J Cardiol 111:400–405
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Factors influencing disease phenotype and penetrance in HFE

haemochromatosis. Hum Genet 128:233–248

Rodeghiero F, Castaman G, Dini E (1987) Epidemiological investi-

gation of the prevalence of von Willebrand’s disease. Blood

69:454–459

Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-

Sundberg M (2010) Molecular genetics and epigenetics of the

cytochrome P450 gene family and its relevance for cancer risk

and treatment. Hum Genet 127:1–17

Rohlfs EM, Zhou Z, Heim RA, Nagan N, Rosenblum LS, Flynn K,

Scholl T, Akmaev VR, Sirko-Osadsa DA, Allitto BA, Sugarman

EA (2011) Cystic fibrosis carrier testing in an ethnically diverse

US population. Clin Chem 57:841–848

Roncarati R, Viviani Anselmi C, Krawitz P, Lattanzi G, von

Kodolitsch Y, Perrot A, di Pasquale E, Papa L, Portararo P,

Columbaro M, Forni A, Faggian G, Condorelli G, Robinson PN

(2013) Doubly heterozygous LMNA and TTN mutations revealed

1122 Hum Genet (2013) 132:1077–1130

123



by exome sequencing in a severe form of dilated cardiomyop-

athy. Eur J Hum Genet (in press)

Rosendahl J, Landt O, Bernadova J, Kovacs P, Teich N, Bodeker H,

Keim V, Ruffert C, Mossner J, Kage A, Stumvoll M, Groneberg

D, Kruger R, Luck W, Treiber M, Becker M, Witt H (2013)

CFTR, SPINK1, CTRC and PRSS1 variants in chronic pancre-

atitis: is the role of mutated CFTR overestimated? Gut

62:582–592

Rosenfeld JA, Coe BP, Eichler EE, Cuckle H, Shaffer LG (2013)

Estimates of penetrance for recurrent pathogenic copy-number

variations. Genet Med 15:478–481

Rossetti S, Kubly VJ, Consugar MB, Hopp K, Roy S, Horsley SW,

Chauveau D, Rees L, Barratt TM, van’t Hoff WG, Niaudet P,

Torres VE, Harris PC (2009) Incompletely penetrant PKD1

alleles suggest a role for gene dosage in cyst initiation in

polycystic kidney disease. Kidney Int 75:848–855

Rossi E, Olynyk JK, Jeffrey GP (2008) Clinical penetrance of C282Y

homozygous HFE hemochromatosis. Expert Rev Hematol

1:205–216

Roumenina LT, Frimat M, Miller EC, Provot F, Dragon-Durey MA,

Bordereau P, Bigot S, Hue C, Satchell SC, Mathieson PW,

Mousson C, Noel C, Sautes-Fridman C, Halbwachs-Mecarelli L,

Atkinson JP, Lionet A, Fremeaux-Bacchi V (2012) A prevalent

C3 mutation in aHUS patients causes a direct C3 convertase gain

of function. Blood 119:4182–4191

Roxburgh RH, Marquis-Nicholson R, Ashton F, George AM, Lea RA,

Eccles D, Mossman S, Bird T, van Gassen KL, Kamsteeg EJ,

Love DR (2013) The p.Ala510Val mutation in the SPG7

(paraplegin) gene is the most common mutation causing adult

onset neurogenetic disease in patients of British ancestry.

J Neurol 260:1286–1294

Ruiz-Martı́nez J, Gorostidi A, Ibañez B, Alzualde A, Otaegui D,
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Zenker M, Zahnleiter D, Stöss H, Beinder E, Abou Jamra R,
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Vogelzangs N, Döring A, Dahmen N, Nitz B, Pergadia ML, Saez

B, De Diego V, Lezcano V, Garcia-Prats MD, Ripatti S, Perola

M, Kettunen J, Hartikainen AL, Pouta A, Laitinen J, Isohanni M,

Huei-Yi S, Allen M, Krestyaninova M, Hall AS, Jones GT, van

Rij AM, Mueller T, Dieplinger B, Haltmayer M, Jonsson S,

Matthiasson SE, Oskarsson H, Tyrfingsson T, Kiemeney LA,

Mayordomo JI, Lindholt JS, Pedersen JH, Franklin WA, Wolf H,

Montgomery GW, Heath AC, Martin NG, Madden PA, Giegling

I, Rujescu D, Järvelin MR, Salomaa V, Stumvoll M, Spector TD,

Wichmann HE, Metspalu A, Samani NJ, Penninx BW, Oostra

BA, Boomsma DI, Tiemeier H, van Duijn CM, Kaprio J,

Gulcher JR, ENGAGE Consortium, McCarthy MI, Peltonen L,

Thorsteinsdottir U, Stefansson K (2008) Sequence variants at

CHRNB3-CHRNA6 and CYP2A6 affect smoking behavior. Nat

Genet 42:448–453

Tirado I, Mateo J, Soria JM, Oliver A, Borrell M, Coll I, Vallvé C,
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Deissler H, Meindl A, Hogervorst FB, Verheus M, Hooning MJ,

van den Ouweland AM, Nelen MR, Ausems MG, Aalfs CM, van

Asperen CJ, Devilee P, Gerrits MM, Waisfisz Q; HEBON, Szabo

CI; ModSQuaD, Easton DF, Peock S, Cook M, Oliver CT, Frost

D, Harrington P, Evans DG, Lalloo F, Eeles R, Izatt L, Chu C,

Davidson R, Eccles D, Ong KR, Cook J; EMBRACE, Rebbeck

T, Nathanson KL, Domchek SM, Singer CF, Gschwantler-

Kaulich D, Dressler AC, Pfeiler G, Godwin AK, Heikkinen T,

Nevanlinna H, Agnarsson BA, Caligo MA, Olsson H, Kristof-

fersson U, Liljegren A, Arver B, Karlsson P, Melin B; SWE-

BRCA, Sinilnikova OM, McGuffog L, Antoniou AC, Chenevix-

Trench G, Spurdle AB, Couch FJ (2010) Evidence for SMAD3 as

a modifier of breast cancer risk in BRCA2 mutation carriers.

Breast Cancer Res 12:R102

Walsh DM, Shalev SA, Simpson MA, Morgan NV, Gelman-Kohan Z,

Chemke J, Trembath RC, Maher ER (2013) Acrocallosal

syndrome: identification of a novel KIF7 mutation and evidence

for oligogenic inheritance. Eur J Med Genet 56:39–42

Walters RG, Jacquemont S, Valsesia A, de Smith AJ, Martinet D,

Andersson J, Falchi M, Chen F, Andrieux J, Lobbens S, Delobel

B, Stutzmann F, El-Sayed Moustafa JS, Chèvre JC, Lecoeur C,
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