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α-PD-1, α-CD137) or interleukin-2 (IL-2) alone or in 
combination with SBRT. None of our immunothera-
peutic approaches (alone or in combination) had any 
anti-tumor efficacy, while SBRT alone delayed mela-
noma outgrowth. However, α-CD137 combined with 
α-PD-1 antibodies significantly enhanced the anti-tumor 
effect of SBRT, while the anti-tumor effect of SBRT 
was not enhanced by interleukin-2, or the combination 
of α-CTLA-4 and α-PD-1. We conclude that α-CD137 
and α-PD-1 antibodies were most effective in enhancing 
SBRT-induced tumor growth delay in this mouse mela-
noma model, outperforming the ability of IL-2, or the 
combination of α-CTLA-4 and α-PD-1 to synergize with 
SBRT. Given the high mutational load and increased 
immunogenicity of human melanoma with the same 
genotype, our findings encourage testing α-CD137 and 
α-PD-1 alone or in combination with SBRT clinically, 
particularly in patients refractory to α-CTLA-4 and/or 
α-PD-1 therapy.
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Abbreviations
AEC  3-Amino-9-ethylcarbazole
APC  Allophycocyanin
CT  Computed tomography
DAB  Diaminobenzidine
FOV  Field of view
Gy  Gray
kVp  Peak kilo voltage
OCT  Optimal cutting temperature compound
SBRT  Stereotactic body radiation therapy
SEM  Standard error of the mean
TDT  Tumor doubling time

Abstract  T cell checkpoint blockade with antibod-
ies targeting programmed cell death (ligand)-1 (PD-1/
PD-L1) and/or cytotoxic T lymphocyte-antigen 4 
(CTLA-4) has improved therapy outcome in melanoma 
patients. However, a considerable proportion of patients 
does not benefit even from combined α-CTLA-4 and 
α-PD-1 therapy. We therefore examined to which extent 
T cell (co)stimulation and/or stereotactic body radiation 
therapy (SBRT) could further enhance the therapeu-
tic efficacy of T cell checkpoint blockade in a geneti-
cally engineered mouse melanoma model that is driven 
by PTEN-deficiency, and BRAFV600 mutation, as in 
human, but lacks the sporadic UV-induced mutations. 
Tumor-bearing mice were treated with different combi-
nations of immunomodulatory antibodies (α-CTLA-4, 
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Introduction

Cancer immunotherapy, aimed at stimulating tumor-
reactive T cells to eliminate (disseminated) tumors, is a 
promising new treatment approach in various cancers, 
including melanoma, a cancer with a high (UV-induced) 
mutational load and potential immunogenicity [1]. Inter-
leukin-2 (IL-2), an immunomodulatory cytokine that pro-
motes T cell and natural killer (NK) cell activity has been 
tested extensively in the clinic in the 1980s and 1990s and 
induced long-term responses in a small group of mela-
noma patients, but also caused severe toxicities [2, 3]. 
More promising data were generated in randomized trials 
using T cell response modulation by monoclonal antibod-
ies (mAbs) targeting the coinhibitory receptors CTLA-4 
(ipilimumab) and PD-1 (nivolumab, pembrolizumab) alone 
or in combination [4–8]. However, still 40–50 % of late-
stage melanoma patients does not benefit long term from 
these monotreatments [9, 10]. Recent studies indicate that 
pembrolizumab or nivolumab are more effective than ipili-
mumab in advanced melanoma [5, 8], yet ipilimumab could 
further improve anti-tumor immune responses induced by 
nivolumab [8], indicating α-PD-1 and α-CTLA-4 antibod-
ies have (partially) distinct mechanisms of action and we 
are currently awaiting long-term benefits of these (com-
bined) treatment modalities.

A possible reason for failure to respond to checkpoint 
inhibitors is the insufficient presence, recruitment and/or 
functionality of T cells into the tumor microenvironment 
[11]. Therefore, a strategy to induce effective anti-tumor 
immunity should combine induction of tumor-reactive 
T cells with interventions to overcome tumor-associated 
immunosuppression.

One way to enhance tumor-specific T cell responses 
is to use agonistic antibodies that engage T cell costimu-
latory receptors, including cluster of differentiation pro-
teins (CD)137 (4-1BB), CD27 and CD134 (OX40). These 
antibodies have been shown to improve anti-tumor T cell 
responses in preclinical and early clinical studies (reviewed 
in [12]) and can enhance the efficacy of α-PD-1 and 
α-CTLA-4 therapy (e.g., [13, 14]).

Another way to potentially enhance tumor-specific 
T cell responses is tumor irradiation. Radiotherapy kills 
tumor cells locally, but can also modulate anti-tumor 
immune responses by converting the irradiated tumor into 
an in situ vaccine and by broadening the intratumoral T 
cell repertoire [15–17]. In addition, high-dose radiother-
apy may enhance tumor cell visibility to the immune sys-
tem by up-regulating MHC class I, CD80 and CD95/Fas 
[17–20]. It can also increase tumor infiltration by activated 
CD8+ T cells (e.g., [21]). Several preclinical studies indi-
cate that the anti-tumor efficacy of various T cell activat-
ing immunotherapies, such as mAbs to CTLA-4, PD-1, 

CD137, or CD40, vaccines and adoptive T cell transfer, 
can be enhanced by radiotherapy (e.g., [14, 16, 17, 22–24]. 
However, these studies were mostly carried out in models 
using transplantable tumor cell lines expressing model anti-
gens, which do not represent tumors that have spontane-
ously arisen in patients. The efficacy of immunotherapeutic 
approaches in combination with radiotherapy in de novo 
arisen tumors has not been addressed so far.

Therefore, in this study, we aimed to identify which T 
cell modulating antibody combinations (α-CTLA-4, α-PD-
1, α-CD137) could enhance the anti-tumor effect of SBRT 
in an inducible mouse model of human BRAFV600-mutant 
and PTEN-deficient melanoma [25, 26]. This mouse model 
faithfully resembles human metastatic melanoma in terms 
of these genetic driver mutations, but not in terms of UV-
induced lesions that contribute to tumor immunogenicity, 
resulting in low tumor immunogenicity as compared to 
human melanoma. We compared these immunotherapeutic 
combinations to the currently most promising combination 
in the clinic, namely SBRT with IL-2 [27]. We found that 
the combination of PD-1 blocking and CD137 agonism was 
most effective in enhancing the anti-tumor effect of SBRT, 
which was dependent on both CD4 and CD8 T cells. There-
fore, concomitant targeting of PD-1 and CD137 in combi-
nation with SBRT may be attractive for clinical testing.

Materials and methods

Mice, tumor induction and growth analysis

Tumors were induced on the skin of C57Bl/6J 
Tyr::CreERT2;PtenloxP/loxP;BrafCA/+ mice as previously 
described [25, 26, 28]. In these mice, the estrogen recep-
tor (ER) ligand tamoxifen induces expression of mutant 
Braf and loss of Pten in melanocytes. Briefly, 2 μl of 5-mM 
4-hydroxytamoxifen (4-OHT, Sigma-Aldrich, H6278) in 
pure DMSO (Sigma-Aldrich, 276855) was applied topi-
cally on the flank of 4- to 8-week-old mice. Tumor out-
growth was monitored twice weekly by digital photographs 
of the tumor with a size reference. Tumor size was subse-
quently analyzed in two dimensions using ImageJ software 
(developed by the National Institutes of Health, USA). 
Mice were maintained under specific pathogen-free condi-
tions. All mouse experiments were performed in accord-
ance with institutional and national guidelines and were 
approved by the Animal Experimental Committee of the 
Netherlands Cancer Institute.

Therapeutic antibodies and reagents

Rat α-mouse CD137 mAb (3H3, IgG2a) [29], derived from 
hybridoma culture supernatant, was protein-G purified. 
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Rat α-mouse PD-1 mAb (RMP1-14; IgG2a) [30] was pur-
chased from BioXCell. 2A3 mAb (BioXCell) was used 
as an isotype Control. Mouse α-mouse CTLA-4 mAb 
(9D9) was from BioXCell, and IL-2 (Proleukin) was from 
Novartis.

Tumor therapy

Therapy (5–10 mice per group) commenced when tumors 
reached ~20 mm2. Radiotherapy of melanomas was con-
ducted as described using the XRAD225-Cx system (Preci-
sion X-Ray Inc., CT, USA [22]). Briefly, mice were anes-
thetized with isoflurane after which a cone-beam CT scan 
of the mice was generated. Tumors were localized on the 
computed tomography (CT) scan and targeted for radio-
therapy with 0.1-mm accuracy using round collimators of 
1.0 or 1.5 cm in diameter. A single fraction of 14 Gy (225 
peak kilovoltage (kVp), filtered with 0.3 mm of copper, 
3 Gy/min) was delivered. Control mice were anesthetized 
and underwent a cone-beam CT scan, but were not exposed 
to radiotherapy.

Immunomodulatory α-PD-1, α-CD137, α-CTLA-4 or 
Control 2A3 mAbs diluted in PBS were administered at 
100 μg/mouse intraperitoneally twice weekly for 2 weeks 
with the first dose delivered immediately after radiotherapy. 
IL-2 (in PBS) was administered as a high dose (7.2 × 105 
IU) twice daily for three consecutive days starting 3 days 
following radiotherapy. This dosing schedule was chosen to 
mimic the dosing schedule used in clinical trials as closely 
as possible [27]. Mice were killed when tumors reached 
100–200 mm2. A tumor size of 100 mm2 was set as desig-
nated end point.

For the determination of tumor size at different time 
points post-treatment were the (interpolated) tumor sizes 
taken of all analyzable mice in each group. In case the 
tumor reached >100 mm2 at a time point analyzed, the 
value was set to 100 mm2. The survival curves generated 
represent the fraction of mice bearing tumors smaller than 
100 mm2. Censored events indicate mice that were killed 
before treated tumors reached 100 mm2.

Phenotyping of lymphocytes resident in tumor 
and peripheral lymphoid tissue

Mice bearing 2–3 established melanomas were subjected 
to 14 Gy localized radiotherapy to one of the tumors. One 
week later, single-cell suspensions were prepared from 
non-irradiated tumors, irradiated tumors or inguinal lymph 
nodes, stained with the fluorochrome-conjugated mAbs 
(from BD Pharmingen unless otherwise specified) indi-
cated below and analyzed by flow cytometry according 
to the following gating strategy: Single-cell suspensions 
were gated on live (DAPI negative) cells. α-CD45-PE-Cy7 

(104) was used to discriminate tumor (CD45−) and 
immune (CD45+) cells. NK cells, CD4 and CD8 T cells 
were identified using α-TCRβ-PE-Cy5 (H57-597), α-CD8-
PerCpCy5.5 (53.6.7; CD8+ T cells: TCRβ+CD8+), 
α-CD4-FITC (GK1.5; CD4+ T cells: TCRβ+ CD4+), 
α-NK1.1-allophycocyanin (APC)-Cy7 (PK136; NK cells: 
TCRβ-NK1.1+). On each of these immune cell popula-
tions, CD25 (PC61), CTLA-4 (UC10-4F10-11) and PD-1 
(J43; eBioscience) were detected using indicated PE-con-
jugated antibodies and CD137 was detected using a bioti-
nylated antibody (17B5; eBioscience) followed by APC-
conjugated streptavidin. This staining strategy allowed 
us to examine co-expression of CD137 and any of CD25, 
PD-1 and CTLA-4 in any of the CD4 T cell, CD8 T cell 
and NK cell subsets. Biotinylated or PE-conjugated iso-
type Controls were included for stainings to CD137, PD-1, 
CTLA-4 and CD25. The frequency of positive cells was 
determined by subtracting the % positive fraction in iso-
type Control staining from the % positive fraction in the 
staining specific for CD25, PD-1, CTLA-4 or CD137. This 
number is indicated in the graphs and was used for statis-
tical analyses. CD137 staining was analyzed in triplicate 
in each sample and was averaged for statistical analysis. 
Numbers in text represent mean ± SEM. Samples were 
analyzed on a BD Fortessa. Examples of gating strategies 
for lymph node and tumor are presented in Supplemental 
Figs. 1 (lymph node) and 2 (tumor).

Immunohistochemical analysis

For immunohistochemical analysis, tumors (three mice per 
group) were fixed for 24 h in ethanol (50 %), acetic acid 
(5 %), formalin (3.7 %), embedded in paraffin, randomly 
sectioned at 4 µm. Staining was performed as previously 
described [31]. Briefly, fixed sections were rehydrated 
and incubated with primary antibodies. Endogenous per-
oxidases were blocked with 3 % H2O2 and stained with 
biotin-conjugated secondary antibodies, followed by incu-
bation with HRP-conjugated streptavidin–biotin complex 
(DAKO). Substrate was developed with either 3-amino-
9-ethylcarbazole (AEC) or diaminobenzidine (DAB) 
(DAKO). Primary antibodies were α-CD3 (clone SP7, cat. 
RM-9107 Thermo Scientific), α-CD4 (cat. 14-9766 eBio-
science), α-FoxP3 (cat. 14-5773 eBioscience).

CD8 staining was performed on optimal cutting tem-
perature compound (OCT) embedded, cryopreserved tumor 
pieces using standard procedures. Briefly, tumor pieces 
were thawed to room temperature, rehydrated in PBS and 
blocked for avidin and biotin (Vector SP-2001). After sec-
tions were blocked in 5 % normal goat serum and 2.5 % 
BSA, sections were incubated for 1 h with primary α-CD8 
antibody (clone 2.43). After washing, sections were incu-
bated with biotinylated secondary antibodies, followed by 
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incubation with HRP-conjugated streptavidin–biotin com-
plex and substrate was developed with DAB.

Slides were counterstained with hematoxylin and slides 
scanned using the Aperio ScanScope (Leika) (20× objec-
tive). ImageJ software was used to quantify # positive cells 
(CD3, CD4, FoxP3) or % positive area (CD8) from 3 to 5 
random fields of view (FOV) per slide.

Statistics

Statistical differences between groups were analyzed with 
the Mann–Whitney U test using GraphPad Prism (Graph-
Pad Software) and considered significant when p < 0.05.

Results

Tumor‑infiltrating lymphocytes (TILs) express CD25, 
CTLA‑4, PD‑1 and CD137

First, we investigated whether relevant cell surface recep-
tors were available for targeting on melanoma tumor-infil-
trating lymphocytes (TILs) before and after radiotherapy. 
For this purpose, CD4+ and CD8+ T cells and natural 

killer (NK) cells were examined for expression of CD25 
(IL-2 receptor α-chain), CTLA-4, PD-1 and CD137. Exam-
ination of CD25 was chosen because of potent combined 
effects of SBRT and IL-2 in the clinic [27]; CTLA-4 and 
PD-1 because of potent (combined) efficacy of α-CTLA4 
and α-PD-1 mAbs in late-stage melanoma patients [32] and 
CD137 because of potent combined effects of α-CD137/
α-PD-1 mAbs and SBRT in mouse breast cancer models 
[14, 22].

In mice bearing 2–3 melanomas, one of these tumors 
was subjected to 14 Gy SBRT. Pilot experiments revealed 
that this radiotherapy dose induced tumor growth delay of 
irradiated tumors without inducing complete tumor regres-
sion. Therefore, this dose provided a window to read out 
the combined effect of immune-modulatory agents on radi-
otherapy-induced tumor growth delay.

One week after radiotherapy, single-cell suspensions 
were prepared from irradiated and non-irradiated tumors 
of the same mice, as well as from their (inguinal) lymph 
nodes and flow cytometric detection of receptors was per-
formed (See Supplemental Figures 1 and 2 for gating).

CD25 was expressed in non-irradiated tumors (Tu-
mock) on the majority of CD4+ T cells (60.8 ± 2.6 %), on 
small populations of CD8+ T cells (6.0 ± 2.7 %) and NK 

Fig. 1  TILs express surface 
CD25 and CTLA-4. Mice bear-
ing established melanomas were 
killed 1 week following 14 Gy 
SBRT. Single-cell suspensions 
were prepared from inguinal 
lymph nodes (LNs), non-irra-
diated tumors (Tu-Mock) and 
irradiated tumors (Tu-RT). Flow 
cytometric analysis of (a) CD25 
and (b) CTLA-4 expression on 
gated CD4+ (TCRβ+CD4+), 
CD8+ (TCRβ+CD8+) T cells 
and NK (TCRβ−NK1.1+) cells 
from tumor or lymph node (LN) 
as indicated. Solid histograms 
represent isotype-matched 
Control antibodies and open 
histograms CD25, or CTLA-
4-specific surface staining from 
an individual sample. Numbers 
indicate % of positive cells. 
Right panels indicate quantifica-
tion of 3–4 individual mice
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cells (6.1 ± 5.6 %). Radiotherapy did not significantly alter 
this expression. In lymph nodes, CD25 was expressed on a 
subset of CD4+ T cells (17.9 ± 2.4 %) and on a small pro-
portion of NK cells (4.8 ± 3.7 %) and was hardly found on 
CD8+ T cells (1.5 ± 1.4 %; Fig. 1a).

CTLA-4 was expressed in non-irradiated tumors on a 
proportion of CD4+ T cells (7.4 ± %1.5 %), a subset of 
NK cells (4.2 ± 3.1 %), but not on CD8+ T cells. In irradi-
ated tumors, CTLA-4 was occasionally detected on CD8+ 
T cells (2.5 ± 4.9 %). In lymph nodes, CTLA-4 was only 
expressed on a small percentage (1.2 ± 0.6 %) of CD4+ T 
cells (Fig. 1b).

PD-1 was expressed in non-irradiated tumors on the 
majority of both CD4+ and CD8+ T cells (means 53.0–
78.1 %) and on NK cells (25.6 ± 7.3 %). Radiotherapy 
did not significantly alter PD-1 expression. Expression of 
PD-1 in lymph nodes was found to a lesser extent as com-
pared to TILs (CD4+ T cells: 12.4 ± 4.6 %, CD8+ T cells: 
2.5 ± 1.5 %, NK cells: 2.6 ± 1.3 %, Fig. 2a).

CD137 was detected in non-irradiated tumors on 
CD4+ T cells (10.17 ± 2.2 %), a small fraction of CD8+ 
T cells (1.5 ± 0.8 %) and a sizable fraction of NK cells 
(26.5 ± 2.5 %). Radiotherapy slightly increased the 

frequency of CD137-expressing CD4+ and CD8+ T cells, 
but this did not reach statistical significance. In lymph 
nodes, CD137 expression was detected on a fraction of NK 
cells (5.9 ± 1.4 %), but expression on CD4+ and CD8+ T 
cells was negligible (Fig. 2b).

Similar data were obtained when TILs were analyzed 
2 days after radiotherapy (Supplemental Figure 3). Due to 
the small number of T cells recovered from these tumors, 
the variability within the groups is relatively large, leaving 
us unable to draw strong conclusions. However, we again 
observed no significant differences between TILs in irradi-
ated versus non-irradiated tumors.

Foxp3, the hallmark protein of regulatory T cells (Tregs) 
was detected in 30–75 % of the intratumoral CD4+ T cells. 
Their frequency was not significantly altered by radiother-
apy (Supplemental Figure 4a). In addition, radiotherapy 
did not alter the frequency of CD4+ T cells, CD8+ T cells 
and NK cells (Supplemental Figure 4b). CTLA-4, CD25 
and CD137 were expressed on a higher frequency of regu-
latory (Foxp3+) CD4 TILs cells than on ‘non-regulatory’ 
(Foxp3−) CD4 TILs cells, whereas PD-1 expression was 
similar between the two subsets. This was not significantly 
affected by radiotherapy (Supplemental Figure 5).

Fig. 2  TILs express surface 
PD-1 and CD137. Single-cell 
suspensions of inguinal lymph 
nodes (LNs), non-irradiated 
tumors (Tu-Mock) and irradi-
ated tumors (Tu-RT) as in 
Fig. 1 were also analyzed for 
expression of PD-1 and CD137. 
Flow cytometric analysis of (a) 
PD-1 and (b) CD137 expression 
on gated CD4+ (TCRβ+CD4+), 
CD8+ (TCRβ+CD8+) T cells 
and NK (TCRβ−NK1.1+) cells 
as indicated. Solid histograms 
represent isotype-matched 
Control antibodies and open 
histograms PD-1 or CD137-
specific surface staining from 
an individual sample. Numbers 
indicate % of positive cells. 
Right panels indicate quantifica-
tion of 3–4 individual mice
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The presence of CD25, CTLA-4, PD-1 and/or CD137 
on T cells and NK cells indicates that IL-2 or antibodies 
targeting these receptors may have an immune modulatory 
and potentially therapeutic effect. We therefore tested the 
effectiveness of IL-2 or mAbs targeting CTLA-4, PD-1 and 
CD137 alone and in combination with SBRT.

Concomitant targeting of CD137 and PD‑1 enhances 
the therapeutic efficacy of SBRT

Mice bearing established (>20 mm2) tumors were divided 
into the following treatment groups that consisted of 
immunotherapy alone or in combination with 14 Gray 
(Gy) SBRT: (1) Control Ig (Ctr), (2) IL-2, (3) α-PD-1 and 
α-CTLA-4, (4) α-PD-1, (5) α-CD137, (6) α-PD-1 and 
α-CD137, (7) SBRT, (8) SBRT + IL-2, (9) SBRT + α-PD-1 
and α-CTLA-4, (10) SBRT + α-PD-1 and α-CD137, (11) 
SBRT + α-PD-1 and (12) SBRT + α-CD137.

Treatment in all groups was well tolerated, and adverse 
events such as weight loss or diarrhea were not observed. 
None of the immunotherapeutic approaches exhibited 
any single-agent activity (Fig. 3). Tumor growth and 
mean tumor doubling times (TDTs) in these groups (IL-
2: 9.7 days, α-PD-1/α-CTLA-4: 6 days, α-PD-1: 8.7 days, 
α-CD137: 11.7 days, α-PD-1/α-CD137: 11 days) were sta-
tistically not significant from Control-treated mice that had 
a mean TDT of 9.2 days (Fig. 3). SBRT-induced significant 
tumor growth delay (Fig. 3, 4a) and TDT increased from 
9.2 days (Control) to 40.8 days (SBRT, p < 0.0001). IL-2 or 
α-PD-1/α-CTLA-4 treatment did not enhance the anti-tumor 
effect of SBRT (mean TDT of 40.7 (p = 0.71) and 36.8 days 
(p = 0.60), respectively). However, concomitant target-
ing of PD-1 and CD137 significantly enhanced the thera-
peutic effect of SBRT (mean TDT of 65.1 days compared 

to 40.8 days of SBRT, (p = 0.0006)). α-PD-1 or α-CD137 
mAbs alone did not significantly enhance the anti-tumor 
effect of SBRT (mean TDT: SBRT + α-PD-1: 32.3 days, 
SBRT + α-CD137: 43.1 days vs. SBRT: 40.8 days). 

Analysis of tumor sizes at different time points after 
initiation of therapy (day 9, day 35 and day 55) revealed 
an immediate effect of SBRT on tumor growth delay: At 
day 9, tumor sizes of all groups that received SBRT were 
significantly smaller compared to mock-treated mice, 
while immunotherapy again did not reveal any single-
agent activity. At day 35, when most of tumors of non-
irradiated mice had grown out, there was a statistically 
significant difference in tumor size between mice that 
received SBRT and mice that received SBRT + IL-2, 
SBRT + α-CTLA-4/α-CD137, SBRT + α-PD-1/α-CD137 
or SBRT + α-CD137. At day 55, a time point at which 
most tumors treated with SBRT had started to grow out; 
significant differences in tumor sizes were still observed 
between mice treated with SBRT and mice treated with 
SBRT + α-PD-1/α-CD137 or SBRT + α-CD137 (Fig. 4b).

Finally, survival curves that were generated from these 
data also corroborated our findings: None of the immu-
notherapeutic approaches alone significantly extended 
survival compared with mock-treated mice. SBRT signifi-
cantly extended survival compared to mock-treated mice 
(median survival SBRT: 54 days, mock treatment: 16 days, 
p < 0.0001). Concomitant targeting of PD-1 and CD137 
significantly extended survival of mice that were treated 
with radiotherapy only (median survival SBRT: 54 days, 
SBRT + α-PD-1/α-CD137: 72 days, p = 0.0005). In this 
analysis, α-CD137 treatment also slightly extended sur-
vival compared to mice that were treated with radiotherapy 
only (median survival SBRT: 54 days, SBRT + α-CD137: 
66 days, p = 0.02), while α-PD-1 treatment had no such 

Fig. 3  α-CD137 and α-PD-1 immunotherapy enhances the thera-
peutic efficacy of radiotherapy in melanoma. Tumor growth curves 
of mice (5–11 per group) bearing established (>20 mm2) melanomas 
that were treated with 14 Gy radiotherapy (bottom panels) or mock-
irradiated (top panels) in combination with IL-2, α-CTLA-4 and 

α-PD-1, α-CD137 and/or α-PD-1 or isotype-matched Control anti-
body (Ctr) as indicated. Individual tumor growth curves (gray lines) 
and mean tumor growth (black line) are shown. Results shown are 
accumulated data from five separate experiments
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effect (median survival SBRT + α-PD-1: 49 days, NS com-
pared with SBRT only; Fig. 4c).

CD4+ and CD8+ T cells are required for efficacy 
of SBRT + α‑CD137 and α‑PD‑1 mAbs

Next, we aimed to identify the immune cell subsets that 
contributed to the therapeutic effect of SBRT in combina-
tion with α-PD-1 and α-CD137 mAbs. We first analyzed 
tumors for immune cell infiltrates by immunohistochem-
istry at day 31 post-start treatment, a time point at which 
tumors were still in a stable phase (Fig. 3, bottom right 
panel). Radio-immunotherapy resulted in increased frequen-
cies of CD4+ and CD8+ T cells in the melanomas (88-fold 
for CD4+ T cells and 60-fold for CD8+ T cells, Fig. 5). This 
effect was specific to treatment by radio-immunotherapy, 

since mock treatment, radiotherapy or immunotherapy alone 
did not increase T cell frequencies at day 31 post-start treat-
ment. In addition, the frequency of cells expressing Gran-
zyme B (a cytolytic effector molecule found in the granules 
of cytotoxic T cells and NK cells) was also significantly 
increased in mice treated with radio-immunotherapy com-
pared to all other groups (Supplemental Figure 6). Finally, 
we observed a trend in that effector quality, on a per-T cell 
basis was increased in mice treated with α-CD137/α-PD-1 
therapy alone or in combination with radiotherapy. This was 
revealed by a higher frequency of T cells expressing CD43 
and producing TNF-α following PMA/ionomycin stimula-
tion following treatment with α-CD137/α-PD-1 therapy 
(Supplemental Figure 7). Together, these data suggest that 
CD4+ and/or CD8+ T cells may contribute to controlling 
melanoma outgrowth by radio-immunotherapy.

Fig. 4  α-CD137 and α-PD-1 immunotherapy combined with SBRT 
reduces tumor size, delays tumor doubling time and enhances sur-
vival, when compared to mice treated with SBRT alone. a Quan-
tification of tumor doubling time (from start of treatment) of all 
analyzable mice in Fig. 3; bars represent mean + SD. Statistical 
differences: ****p < 0.0001, ***p < 0.001, **p = 0.0011 between 
the indicated treatment groups. b Quantification of the mean tumor 
size of mice treated with (radio-)immunotherapy at day 9 (top), day 

35 (center) and day 55 (bottom) post-start treatment; bars represent 
mean + SEM. Statistical differences *p < 0.05 between indicated 
treatment groups. c Overall survival curves for the mice analyzed 
in Fig. 3 for tumor growth. Survival represents the time for tumors 
to reach 100 mm2. Statistical differences between mice treated with 
radiotherapy (median survival 54 days) and mice treated with radio-
therapy + α-CD137 and α-PD-1 mAbs (median survival 72 days) are 
significant (p = 0.005, according to log-rank Mantel–Cox test)
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To test this possibility, we depleted CD4+ and/or CD8+ T 
cells in melanoma-bearing mice just before initiating radio-
immunotherapy (Fig. 6a). Combined depletion of CD4+ and 
CD8+ T cells reduced the therapeutic effect of radio-immu-
notherapy when compared to mock depletion (50.7 mm2 
versus 34.7 mm2 for CD4/CD8 depletion, p = 0.01). In 
addition, despite not reaching statistical significance, the 
TDT of CD4+ and CD8+ T cell-depleted mice treated with 
radio-immunotherapy (32.3 days) was shorter compared 
to mock-depleted mice (43.6 days, p = 0.25 Fig. 6b–d). 
Depletion of NK cells did not alter the therapeutic effect of 
radio-immunotherapy (27.6 mm2 versus 34.7 mm2 for NK 
depletion versus mock depletion, p = 0.20).

Collectively, our data suggest that concomitant trig-
gering of CD137 and blocking of PD-1 signalling within 
irradiated melanomas enhance the intratumoral presence of 
both CD4+ and CD8+ T cells, which are in part required 
for melanoma Control.

Discussion

T cell checkpoint inhibitors like α-CTLA-4 and α-PD-1/
PD-L1 mAbs have revolutionized treatment of melanoma 
[33]. However, still a large proportion of late-stage mela-
noma patients do not observe long-term benefit from these 

Fig. 5  Radiotherapy + α-CD137/α-PD-1 treatment promotes pres-
ence of intratumoral T cells. Mice (three per group) bearing estab-
lished melanomas were mock-irradiated or exposed to 14 Gy radio-
therapy alone or in combination with α-CD137/α-PD-1 mAbs or 
isotype-matched Control antibody. At day 0 (D0, before treatment), 
or day 31 after initiation of treatment (D31), tumors were harvested, 
processed and stained for CD3, CD4, FoxP3 or CD8 (left panels; 
scale bar: 50 µM). Arrowheads point toward FoxP3-positive nuclei. 

For each tumor (represented with a separate color), five fields in the 
same section (data points) were analyzed. These data points repre-
sent number positive cells (CD3, CD4, FoxP3) or % area (CD8) per 
field of view (FOV), and line represents the mean. Average fold-
increase CD4+ T cells: 141 (day 31)/1.6 (day 0) = 88. Average fold-
increase CD8+ T cells: 6.0 % (day 31)/0.1 % (day 0) = 60. Differ-
ences between datasets were analyzed with Mann–Whitney U test, 
****p < 0.0001; ***p = 0.0002
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Fig. 6  Effect of CD4, CD8 T cells and NK cell depletion to the 
therapeutic response of radio-immunotherapy. Mice bearing estab-
lished melanomas were treated with rat IgG2a (2A3) + Rat IgG2b 
(LTF-2) Control Ig (Ctr), depleting antibodies to CD4 (GK1.5, rat 
IgG2a 250, µg twice weekly), CD8 (53.5.7, Rat IgG2b, 250 µg twice 
weekly) or asialoGM1 (NK cell depletion) before mock irradiation 
and Control Ig (Control) or radio-immunotherapy (14 Gy radiother-
apy + α-CD137/α-PD-1 mAbs). a Validation of CD4, CD8, NK cell 
depletion in peripheral blood at indicated time points. Each symbol 
represents one mouse (n = 2–7 mice per group), and line represents 
mean. b Individual (gray lines) and mean (black line, terminated 

when >3 mice are lost from the group) tumor growth curves in indi-
cated treatment groups are shown. c Quantification of the mean tumor 
size of mice treated with radio-immunotherapy at day 31; bars rep-
resent mean + SEM. Differences between mock-depleted mice and 
mice depleted for CD4, CD8, CD4/8, NK cells were analyzed with 
Mann–Whitney U test and considered significant for *p < 0.05. d 
Quantification of tumor doubling time (from start of treatment) of 
all analyzable mice in (a); bars represent mean + SEM. Differences 
between datasets were analyzed with Mann–Whitney U test and con-
sidered significant for *p < 0.05; NS not significant
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treatments [8–10]. In this work, we assessed how to further 
improve response rates by combining T cell checkpoint 
inhibitors with SBRT and/or T cell costimulatory molecules.

We demonstrate that combined targeting of the T cell 
costimulatory receptor CD137 and coinhibitory receptor PD-1 
enhances the therapeutic efficacy of SBRT in a mouse model 
of human BRAFV600-driven melanoma. While none of our 
immunotherapy approaches (including α-CTLA-4/α-PD-1, 
α-CD137/α-PD-1, IL-2) possessed any anti-tumor efficacy 
themselves, only α-CD137/α-PD-1 enhanced the anti-tumor 
effect of SBRT. Therefore, α-CD137/α-PD-1 therapy outper-
formed the capacity α-CTLA-4/α-PD-1 or IL-2 treatment to 
synergize with SBRT in this mouse model, even though IL-2 
in combination with SBRT-induced anti-tumor responses in 
human melanoma patients [27]. Our data therefore suggest that 
SBRT combined with α-CD137/α-PD-1 mAbs may be superior 
to the currently tested combinations of radiotherapy α-CTLA-4 
or α-PD-1 mAbs. In addition, this therapeutic strategy may even 
benefit α-CTLA-4/α-PD-1-unresponsive patients. In addition, 
α-CD137/α-PD-1 therapy may synergize with other (conven-
tional or targeted) therapeutics, such as cisplatin [34].

The enhanced anti-tumor effect of α-CD137/α-PD-1 mAbs 
when combined with radiotherapy was associated with accu-
mulation (>60-fold) of intratumoral CD4+ and CD8+ T cells 
with an effector phenotype, which contributed to the thera-
peutic effect of this radio-immunotherapy approach.

However, depletion of CD4 and CD8 T cells did not 
completely abrogate the therapeutic effect. Taking into con-
sideration that α-CTLA-4 or α-PD-1 mAbs did not enhance 
the therapeutic effect of radiotherapy, these findings indi-
cate that CD137 triggering may also mobilize other effector 
mechanisms of cell types other than T cells and NK cells, 
including dendritic cells, monocytes, B cells, neutrophils 
and mast cells (reviewed in [35]). Activation of CD137 on 
tumor endothelial cells can augment immune cell infiltra-
tion as a result of increased adhesion to endothelial walls 
[36]. Furthermore, ligation of CD137 on macrophages and 
DCs can result in the induction of IL-8 and IL-12, respec-
tively [35, 37]. Finally, the effect of T cell influx following 
our radio-immunotherapy approach may Control tumors 
indirectly by, for instance, reducing immunosuppressive 
immune cells (MDSCs) through T cell cytokines [38]. Of 
note, in addition to T cell infiltration in tumors following 
our radio-immunotherapy approach, we observed profound 
influx of macrophages (data not shown). We are currently 
functionally addressing these macrophages, as well as their 
importance in tumor development and therapy response.

Even though targeting CTLA-4 and PD-1 pathways with 
mAbs improved treatment outcomes for late-stage melanoma 
patients [33], we did not observe any therapeutic effect of these 
antibodies in our mouse model. Responses to T cell checkpoint 
blockade have recently been correlated to the mutational load of 
the tumor and its associated immunogenicity [39]. The mouse 

model we used lacks this mutational load as it is not induced by 
UV irradiation as human melanoma, but by the deliberate intro-
duction of two genetic alterations, namely loss of Pten and gain 
of mutant Braf. As a result, the tumors induced in this model 
are probably less immunogenic than tumors arising in mela-
noma patients, likely explaining the absence of responses upon 
treatment with CTLA-4, PD-1 mAbs, IL-2 alone (Fig. 3) or in 
combination with targeted agents [26]. Therefore, the enhanced 
effect of targeting CD137 and PD-1 in combination with radio-
therapy in this—poorly immunogenic—model likely underesti-
mates the potential of this therapy in melanoma patients.

In conclusion, we observed significant improved anti-
tumor efficacy by combining radiotherapy with α-CD137 and 
α-PD-1 mAbs. We observed this in a poorly immunogenic 
mouse model of human melanoma, which did not respond to 
α-PD-1 mAbs alone or in combination with α-CTLA-4 mAbs. 
This observation indicates that the combination of α-PD-1 and 
α-CD137 might be more powerful than currently used α-PD-1 
alone or in combination with α-CTLA-4 blockade in human 
melanoma. In addition, our study suggests that radiotherapy 
in combination with α-PD-1 and α-CD137 mAbs may be 
superior to the currently tested combinations of radiotherapy 
with α-CTLA-4 or α-PD-1 mAbs. In addition, this therapeu-
tic strategy may even benefit α-CTLA-4/α-PD-1-unresponsive 
patients, which should both be tested clinically.
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