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Resveratrol attenuates cortical neuron
activity: roles of large conductance
calcium-activated potassium channels
and voltage-gated sodium channels
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Abstract

Background: Resveratrol, a phytoalexin found in grapes and red wine, exhibits diverse pharmacological activities.
However, relatively little is known about whether resveratrol modulates the ion channels in cortical neurons. The
large-conductance calcium-activated potassium channels (BKCa) and voltage-gated sodium channels were expressed in
cortical neurons and play important roles in regulation of neuronal excitability. The present study aimed to determine
the effects of resveratrol on BKCa currents and voltage-gated sodium currents in cortical neurons.

Results: Resveratrol concentration-dependently increased the current amplitude and the opening activity of BKCa
channels, but suppressed the amplitude of voltage-gated sodium currents. Similar to the BKCa channel opener NS1619,
resveratrol decreased the firing rate of action potentials. In addition, the enhancing effects of BKCa channel blockers
tetraethylammonium (TEA) and paxilline on action potential firing were sensitive to resveratrol. Our results indicated
that the attenuation of action potential firing rate by resveratrol might be mediated through opening the BKCa
channels and closing the voltage-gated sodium channels.

Conclusions: As BKCa channels and sodium channels are critical molecular determinants for seizure generation, our
findings suggest that regulation of these two channels in cortical neurons probably makes a considerable contribution
to the antiseizure activity of resveratrol.
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Background
Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic
phytoalexin, is derived from some edible materials, includ-
ing grape skins, peanuts, red wine, and other berries. It has
been demonstrated that resveratrol displays diverse
pharmacological activities, including anti-platelet [2], anti-
carcinogenic [4], anti-viral [9, 18, 27] and cardio-protective
effects [32, 33, 37, 43, 47]. Moreover, there is accumulating
evidence indicating that resveratrol exhibits neuroprotec-
tive effects [8, 11, 23, 28]. For example, resveratrol attenu-
ates kainic acid-mediated convulsions and the associated

neurotoxicity [16, 42, 49, 54] and also protects against
pentylenetetrazole-induced seizures [31, 40]. Furthermore,
resveratrol has the ability to inhibit the electrical activity of
neurons [26, 30, 50], enabling this compound ideal as a
neuroprotective agent against excitatory effects on neu-
rons. This compound can inhibit neuronal discharges in
rat hippocampal CA1 area [25] and suppress epileptiform
discharges mediated by glutamate [25]. In addition, resver-
atrol has the ability to produce a dose-dependent inhibition
of field excitatory postsynaptic potentials [11]. These
effects are likely associated with the alterations in neuronal
cell membrane ion channel activities.
In fact, resveratrol has been reported to regulate ion

channel activities in a variety of cells. For example, res-
veratrol inhibits KATP currents [7], L- and T-type Ca2+

currents and swelling-dependent Cl− currents evoked by
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either hypotonicity or high extracellular glucose-ion con-
ductances in insulin secreting cells [20]. Voltage-gated so-
dium channels in cardiomyocytes [47] and rat dorsal root
ganglion neurons [21] are also blocked by resveratrol. In
contrast, resveratrol stimulates BKCa channels in vascular
endothelial cells [24] and human cardiac fibroblasts [51].
Despite this, the effects of resveratrol on the mem-

brane properties and the ion channels of neurons have
not yet been fully determined. Therefore, the present
study examined the effects of resveratrol on BKCa cur-
rents and voltage-gated sodium currents by a voltage
clamp setup in cortical neurons. Moreover, the effects of
resveratrol on action potential firing rate and the BKCa

channel inhibitor TEA (or paxilline)-induced hyperexcit-
ability were also evaluated. Our data demonstrated that
resveratrol activated BKCa channels, but inhibited
voltage-gated sodium currents. Moreover, the action po-
tential firing rates evoked by the depolarizing current
and BKCa channel blockers were remarkably decreased
by application of resveratrol. These results suggest that
alterations of BKCa channel activity and sodium currents
by resveratrol may contribute to its reducing effect on
action potential firing rates of cortical neurons.

Methods
Cells preparations
All experiments were performed in accordance with the
Laboratory Animal Center of National Tsing Hua Univer-
sity (NTHU) guidelines for the care and use of animals.
Animal use protocols were approved by the NTHU Insti-
tutional Animal Care and Use Committee (Approval
number 10126). The cerebral cortex was dissected from
embryonic day 18 (E18) embryos of Sprague-Dawley rats
(purchased from BioLASCO Co., Ltd.). Then, the cells
were treated with papain (10 U/mL). Dissociated cells
were washed with PBS three times and re-suspended in
minimal essential medium (MEM) supplemented with
5 % HS and 5 % FBS. Cells were seeded onto 30 μg/ml
poly-L-lysine-coated coverslips and then cultured in neu-
robasal medium with B27 (containing additional 25 μM
glutamate) on DIV (day in vitro) 1. On DIV 3, cells were
treated with 5 μM cytosine 1-β-D-arabinofuranoside. Half
of the neurobasal and glutamine media were replaced by
fresh media every 3 days. Glial contamination of neuronal
cultures was consistently less than 5 % on DIV7.
The clonal strain, HCN-1A cell line (CRL-10442), ori-

ginally derived from a cortical tissue removed from a
patient undergoing hemispherectomy for intractable sei-
zures, was obtained from the American Type Culture
Collection (ATCC). The cells were cultured at 37 °C in a
humidified atmosphere of 5 % CO2 and 95 % air. Culture
media (e.g., Dulbecco's Modified Eagle Medium (Life
Technologies), were supplemented with 20 % heat-

inactivated fetal bovine serum, 1 % P/S, and 2 mM L-
glutamine (Life Technologies) [52].

Chemicals and solutions
Resveratrol (purity ≥99 %), NS1619 (purity ≥ 99 %), tetrodo-
toxin (TTX) (purity ≥98 %), tetraethylammonium chloride
(TEA) (purity ≥98 %), paxilline, a mycotoxin of penicillium
origin (purity ≥98 %), and papain (purity ≥99 %) were pur-
chased from Sigma-Aldrich. Resveratrol and NS1619 were
dissolved in dimethylsulfoxide (DMSO). TTX was dissolved
in water. All culture media, FBS, HS, L-glutamate, trypsin/
EDTA, and penicillin-streptomycin were purchased from
Invitrogen. The composition of normal Tyrode's solution
was as follows (in mM): NaCl 136.5, KCl 5.4, CaCl2 1.8,
MgCl2 0.53, glucose 5.5, and HEPES 5.5 (pH 7.4). To rec-
ord BKCa currents and action potentials, the patch pipettes
were filled with a solution (in mM): KCl 145, MgCl2 1,
Na2ATP 3, EGTA 0.1, and HEPES 5.5 (pH 7.2). To measure
INa, potassium ions inside the pipette solution were re-
placed with equimolar Cs+ ions (pH 7.2). In single-channel
current recordings of BKCa channels, the high K+-bathing
solution contained (in mM): KCl 145, MgCl2 0.53, CaCl2
1.8, and HEPES 5 (pH 7.4). The pipette solution contained
(mM): KCl 145, MgCl2 2, and HEPES 5 (pH 7.2).

Electrophysiological recordings and data analysis
Membrane currents and action potentials of primary
embryonic rat cortical neurons were recorded in the
whole-cell configuration of the patch-clamp technique
using patch pipettes with a tip resistance of 3–6 MΩ,
unless mentioned otherwise. All analog signals were fil-
tered at 1 or 3 kHz before digitization at 10 or 50 kHz
and stored on a hard disk using a PC-compatible com-
puter. All data analysis was performed with Clampfit
software (Molecular Devices). The EPC-10 amplifier was
used for voltage-clamp recording and current-clamp re-
cording [36, 56]. The signals recorded from human cor-
tical (HCN-1A) neurons were stored in a Slimnote VX3

computer (Lemel) via a universal serial bus port at
10 kHz through a Digidata 1322A interface (Molecular
Devices). This device was controlled by the pCLAMP
9.0 software (Molecular Devices). The signals were low-
pass filtered at 1 to 3 kHz. Ion currents recorded during
cell-attached recordings were stored and analyzed using
the pCLAMP 9.0 software (Molecular Devices), the Origin
7.5 software (Microcal Software, Inc), the SigmaPlot 7.0
software (SPSS, Inc), or custom-made macros in Excel
2003 (Microsoft).
The PatchMaster-generated voltage-step protocols were

employed to investigate the current-voltage (I-V) relations
for ion currents in embryonic rat cortical neurons. To cal-
culate percentage inhibition of resveratrol on INa, the cells
were depolarized from a holding potential of −80 mV, and
a 50-msec depolarizing pulse to −20 mV. The amplitude
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of INa obtained at the level of −20 mV was then compared
after addition of the different concentrations (5–40 μM)
of resveratrol. The amplitude of INa in the presence of
0.1 % DMSO was taken as 100 %. Then, those exposed to
different concentrations of resveratrol were then com-
pared. In these experiments, the TTX was taken as a posi-
tive control. The BKCa channel currents in response to
resveratrol were examined in the condition of the extra-
cellular solution containing TEA (1 mM), a BKCa channel
blocker, to block BKCa channel currents. The net currents
subtracted before and after treatment with BKCa channel
blockers were defined as BKCa channel currents. For these
experiments, the cells were depolarized from −50 to
+70 mV. The amplitude of potassium outward current
was measured at the end of the depolarizing pulses. The
NS1619, a BKCa channel activator, was taken as a positive
control. In single-channel recordings, open probability
(N · Po) and single-channel conductance for BKCa channels
were determined by all-point amplitude histograms. Open
lifetime distributions were fitted with logarithmically
scaled bin width. In cell-attached configuration, the rela-
tionships between membrane potentials and the probabil-
ity of channel openings were fitted with a Boltzmann
function of the form: N · Po = nP/{1 + exp[−(V − V1/2)/k]}
where nP is the maximal open probability, V is the mem-
brane potential in mV, V1/2 is the voltage at which there is
half-maximal activation, k is the slope factor of the activa-
tion curve.

Statistical analysis
Results were expressed as mean ± standard error (n =
number of patches or cells). The significance of differ-
ences between means was tested with paired t-test and
differences were considered significant at P < 0.05.

Results and Discussion
The large conductance Ca2+-activated K+ (BKCa) channel
currents in response to resveratrol were examined in the
condition of the intracellular dialysis with solution con-
taining EGTA 0.15 mM and the extracellular solution
containing CaCl2 1.8 mM. The potassium outward cur-
rents were elicited by 300 ms depolarization of membrane
potential to +70 mV from holding potential −50 mV. To
evaluate whether resveratrol could affect the BKCa cur-
rents in cortical neurons, the effects of resveratrol on the
current amplitude were examined in the presence of TEA,
a BKCa channel blocker. The net response subtracted be-
fore and after treatment with TEA, was defined as BKCa

channel current. A putative BKCa channel activator
NS1619 was used as a positive control. The current differ-
ence between application of TEA, combination of NS1619
and TEA (Fig. 1a), or combination of resveratrol and TEA
(Fig. 1b–d) in the same cell was the component of acti-
vated BKCa currents. TEA-sensitive KCa currents recorded

at +70 mV were not significantly altered after exposure to
resveratrol at 10 μM (Fig. 1b), whereas higher concentra-
tions of resveratrol (20 and 40 μM) enhanced TEA-
sensitive KCa currents. The peak outward currents recorded
at +70 mV before and after exposure to resveratrol (20 μM)
were 139 ± 18 pA and 230 ± 6 pA (n = 3), respectively
(Fig. 1c). Resveratrol (40 μM) further enhanced TEA-
sensitive KCa currents. The peak outward currents recorded
at +70 mV were 254 ± 12 pA and 622 ± 13 pA (n = 3),
respectively (Fig. 1d).
The BKCa channels are both voltage-gated and intra-

cellular Ca2+ dependent [41], which are sensitive to TEA
or paxilline [38]. When activated by cell membrane
depolarization and elevation of intracellular Ca2+ con-
centration, BKCa channels allow the efflux of K+ out of
the cell, thus repolarizing and hyperpolarizing the mem-
brane potential. This turns off voltage-dependent Ca2+

channels and thus inhibits the influx of Ca2+ into the
cell. These negative feedback mechanisms allow BKCa

channels to play an important role in regulating firing
properties. BKCa channels are expressed in various brain
neurons where they play important roles in regulating
action potential duration, firing frequency and neuro-
transmitter release [34]. The present study revealed that
resveratrol enhanced TEA-sensitive potassium currents,
suggesting that it is capable of stimulating BKCa currents
in cortical neurons.
To further elucidate the effect of resveratrol on the ac-

tivity of BKCa channels, the single-channel recording
with a cell-attached configuration was performed in hu-
man cortical neurons. These studies were performed in
symmetrical K+ (145 mM) concentration and the bath
solution contained 1.8 mM Ca2+. The cells were held at
+60 mV. As shown in Fig. 2a, when resveratrol (10 μM)
was applied to the chamber, the activity of channel
openings was significantly increased. However, no
change in single-channel amplitude was demonstrated in
the presence of resveratrol. These findings suggested
that its binding site should not be located in the pore
region of the BKCa channels. In addition, resveratrol-
induced changes in the probability of channel openings
were reversed by a BKCa channel blocker paxilline
(1 μM) (Fig. 2b), revealing that the components affected
by resveratrol are mediated by its action on BKCa

channels.
Sodium currents were evoked by a depolarizing pulse

to −20 mV from a holding potential of −80 mV. Being a
positive control, TTX, a voltage-gated sodium channel
blocker, significantly reduced sodium current amplitude
(Fig. 3a). Resveratrol (10 and 20 μM) significantly de-
creased sodium current amplitude at the level of
−20 mV within 5 min, whereas resveratrol (5 μM) did
not affect the amplitude of sodium currents (Fig. 3b). To
calculate the percentage inhibition of resveratrol on
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sodium currents, the cells were depolarized from −80 to
−20 mV with a duration of 50 ms and the peak ampli-
tude of sodium inward currents was measured. The
amplitude of sodium currents in the control condition
was taken as 100 % and those exposed to different con-
centrations of resveratrol were then compared. Fig. 3c
illustrated that resveratrol (5–20 μM) reduced the ampli-
tude of sodium currents in a concentration-dependent
manner.
In fact, the TTX-S sodium currents and BKCa currents

are important in shaping the action potential of neurons
[3, 13]. The effects of resveratrol on cellular excitability
were examined in rat cortical neurons with repetitive fir-
ings evoked by positive current injection. For the meas-
urement of evoked action potential firings in current-
clamp, the membrane potentials were held at −60 mV.

During a 6 s injection of a positive current (ranging from
5 to 30 pA), repetitive firings could be evoked in these
cells. The frequency (Hz) of action potential firings was
determined by dividing the number of action potentials
by the duration of the recording period. Resveratrol
(20 μM) was applied into the chamber for 2 min and
reduced the action potential firing frequency from the
control value of 6.9 ± 0.3 Hz to 0.4 ± 0.2 Hz (n = 8)
(Fig. 4a). Similarly, when the cells were treated with
TTX, a specific sodium channel blocker, or BKCa chan-
nel activator NS1619 (5 μM), the frequency of action po-
tentials was significantly decreased in embryonic rat
cortical neurons (Fig. 4b, c).
The effects of resveratrol on action potential firings were

also examined in the presence of two BKCa channel
blockers, TEA or paxilline, to evaluate whether resveratrol

Fig. 1 Stimulatory effect of resveratrol on TEA-sensitive potassium currents in embryonic rat cortical neurons. The whole-cell recording was conducted
in these experiments. Because BKCa channels are typically blocked by externally applied tetraethylammonium (TEA, 1 mM), this compound is often
used to determine the contribution of BKCa channels to the whole-cell currents. All cells were held at -50 mV in Tyrode’s solution containing 1.8 mM
CaCl2. Then, cells were depolarized from −50 to +70 mV with a duration of 300 msec. a The currents were recorded in the presence of TEA (1 mM)
combined with NS1619 (5 μM) from the same cell. b, c, d Original current traces are representative of 3 experiments. The currents were recorded in
the presence of TEA (1 mM) or TEA (1 mM) combined with resveratrol (10, 20 and 40 μM) from the same cell. Resveratrol (20 and 40 μM, but not
10 μM) increased the TEA-sensitive current in these cells (n = 3). e Bar graph showing the effect of resveratrol on TEA-induced currents. Each bar
indicates the mean ± SEM. (n = 3) *Significantly different from control (P < 0.01)
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could suppress the increased excitability of cortical neu-
rons evoked by inhibition of BKCa channels. As shown in
Fig. 5a, application of TEA increased the action potential
firing rate from the control value of 3.5 ± 0.3 to 5.7 ±
0.7 Hz. In the presence of 20 μM resveratrol combined
with TEA, the increase in firing rate evoked by TEA was

reduced to 0.1 ± 0.1 Hz. In addition, when the cells were
treated with paxilline, the action potential firing rate was
also increased. After applications of resveratrol combined
with paxilline, the increase in firing rate evoked by paxil-
line was significantly reduced (Fig. 5b). These results sug-
gest that BKCa channel opening and sodium channel

Fig. 2 Resveratrol evoked the BKCa channel responses in human cortical (HCN-1A) neurons. In these experiments, cells were bathed in high-K+

solution and cell-attached current recordings were made. The holding potential was constantly set at +60 mV. a Original current trace obtained
in the absence (left) and presence (right) of 10 μM resveratrol. Resveratrol was applied to the bath solution. The upward deflection indicates the
opening events of the channels. b Bar graph showing the effect of resveratrol and resveratrol plus paxilline on the open probability of BKCa channels. Each
bar indicates the mean ± SEM (n= 7-9). Res: 10 μM resveratrol; Pax: 1 μM paxilline. *Significantly different from control (P< 0.05). #Significantly different from
resveratrol alone group (P< 0.01)
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inhibition by resveratrol could underlie, at least in part,
the inhibition of action potential firing in the cortical
neurons.
Resveratrol has been reported to stimulate BKCa currents

in human vascular endothelial cells and human cardiac
fibroblasts [24, 51], which might be associated with its car-
dioprotective effect. The present study demonstrated that
resveratrol could stimulate the activities of BKCa channels
in cortical neurons. In fact, BKCa channel is considered to
be one of the intrinsic molecular determinants for the con-
trol of neuronal excitability in the central nervous system

and play a role in the etiology of some neurological dis-
eases. Recent studies have demonstrated the implication of
BKCa channels in Fragile X Syndrome (FXS) pathology
[22]. In fact, a selective BKCa channel opener molecule
(BMS-204352) rescues a broad spectrum of behavioral im-
pairments (social, emotional and cognitive) in an animal
model of FXS [17]. Resveratrol might be also beneficial to
patients with FXS.
BKCa channels also play an important role in seizure

etiology. Loss-of-function BKCa channel mutations can
lead to temporal lobe epilepsy, tonic-clonic seizures and
alcohol withdrawal seizures [34, 35]. Paradoxically, some
mutations in BKCa channel subunit can give rise to
channel gain-of-function that leads to development of
idiopathic epilepsy (primarily absence epilepsy) [34].
Thus, both loss-of-function and gain-of-function BKCa

channels might serve as molecular targets for drugs to
suppress certain seizure phenotypes including temporal
lobe seizures and absence seizures, respectively. Actually,
resveratrol has been found to reduce the kainate-
induced temporal lobe epilepsy [16, 54], suggesting that
resveratrol might have potential for treatment of this
seizure type through activation of BKCa channels.
There are nine recognized members of the voltage-

gated sodium channel family (Nav1.1–Nav1.9). Of these,
Nav1.1, Nav1.2, Nav1.3 and Nav1.6 are highly expressed
in the central nervous system [10]. In particular, the
Nav1.1, Nav1.2 and Nav1.6 sodium channels are
expressed in cortical tissue [55], which are all TTX-
sensitive [5]. Consistently, we found that the sodium
currents recorded in the rat cortical neurons are totally
blocked by TTX. It appears that Nav1.1, Nav1.2 and
Nav1.6 sodium channels should be the targets for
resveratrol.
It has been shown that resveratrol suppresses the

TTX-S sodium currents in rat dorsal root ganglion neu-
rons [21] that plays an important role in pain transmis-
sion [1, 53]. Inhibition of sodium currents by resveratrol
may account for its analgesic effects [12, 14, 44]. The

Fig. 3 Concentration-dependent effect of resveratrol on voltage-gated
sodium currents. The cells were bathed in Ca2+-free, Tyrode's solution.
a Functional expression of the voltage-gated sodium current in embryonic
rat cortical neurons. Superimposed current traces in control (top panel)
and during exposure to 2 μM TTX (lower panel). Under the experimental
condition, depolarizing voltage command from a holding potential of
−80 mV elicited an inward current sensitive to TTX. This inward Na+

current was maximally activated by a test pulse at −20 mV (n= 8).
b Concentration dependent effects of resveratrol on inward Na+ currents.
The currents were evoked depolarizing the cells from a holding potential
of −80 mV to −20 mV. Representative traces showing the depression of
inward Na+ currents by resveratrol at different concentrations in these
cells. c The graph shows the concentration dependent effect of resveratrol
on the amplitudes of the inward currents measured at the peaks (n= 3-5).
*Significantly different from control group (P< 0.05)
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Fig. 4 Resveratrol reduced action potential firing in embryonic rat cortical neuron. Current-clamp configuration was made in these experiments.
All cells were bathed in Tyrode’s solution containing 1.8 mM CaCl2. Trains of action potentials were evoked by a depolarizing current step. a Original
potential traces obtained in control (upper) and in the presence (lower) of resveratrol (20 μM) by injecting a threshold current. b The potential traces
obtained in the absence and presence of TTX (2 μM). c The potential traces obtained in the absence and presence of NS1619 (5 μM). In the presence
of resveratrol, TTX, and NS1619, the action potential firing frequency was significantly decreased

Fig. 5 Resveratrol reduced TEA- or paxilline-evoked increases in action potential firing in embryonic rat cortical neuron. a Action potential firing
was measured in control, in the presence of TEA (1 mM), and TEA combined with resveratrol (20 μM). b Action potential firing was measured in
control, in the presence of paxilline (20 μM), and paxilline combined with resveratrol (20 μM). TEA and paxilline significantly increased the action
potential firing frequency. Upon application of 20 μM resveratrol in the presence of TEA and paxilline, the excitability was suppressed significantly
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present study demonstrated that resveratrol can inhibit
the TTX-S sodium currents in rat cortical neurons. Sev-
eral lines of evidence revealed that the pathophysiology of
both acquired and inherited epilepsy is associated with ab-
normal expression or function of voltage-gate sodium cur-
rents [29]. The Nav1.1 or Nav1.2 mutations are associated
with generalized epilepsy and inherited epilepsy [6, 19].
Together with the observations that the protective effects
of resveratrol against seizure activities caused by kainic
acid or pentylenetetrazole [16, 45, 46, 48], our findings
suggest that in addition to activation of BKCa channels,
blockade of voltage-gated sodium channels in the cortical
neurons might also contribute to the anti-seizure effects
of resveratrol.

Conclusions
In summary, our results suggested that the suppressing
effect of resveratrol on action potential firing rate may
be mediated by opening BKCa channels and closing
voltage-gated sodium channels. Current clinical available
anti-epileptics are mostly sodium channel blockers. The
sodium channel blockers were very effective for treating
generalized epilepsy with febrile seizures plus, while it
aggravates symptoms in patients with severe myoclonic
epilepsy of infancy [15, 39]. With dual effects on BKCa

and sodium channels, resveratrol might have the potential
as a broad-spectrum anti-seizure medication.
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