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Introduction

During the twentieth century, populations around the world experienced an
epidemiological transition, with morbidity and mortality increasingly being due
to non-communicable diseases such as coronary heart disease (CHD) as opposed
to communicable diseases such as influenza (Omran 1971). From a peak in the
1960s and 1970s rates of CHD have fallen in many of these countries, a fall
which reflects both reduced incidence of disease and better treatment resulting in
reduced case fatality rates (Beaglehole 1999). More recent analysis suggests that
in England, CHD mortality has continued to decrease, although with variations
by socioeconomic circumstances (Bajekal et al. 2013). Despite this fall, cardio-
metabolic disease such as CHD, stroke, and type two diabetes, remain the leading
cause of death in high income countries and are an increasing cause of morbidity
and mortality in low and middle income countries (Yusuf et al. 2001). These
diseases occur due to the impairment of an individual’s cardiovascular system
and/or metabolism and the risk of such diseases therefore reflects an individuals’
cardio-metabolic health and thus measures of blood pressure, lipid, and glucose
levels provide markers of cardio-metabolic health across the life course. The
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prevailing aetiological model for cardio-metabolic disease of the twentieth century
emphasised adulthood risk factors because the diseases normally manifest for the
first time in adulthood and are modifiable by lifestyle or environmental factors, such
as diet, physical activity, and smoking.

Despite the dominance of the adult lifestyle model, there were a few initial
reports suggesting that early life events might have long-term consequences for
cardio-metabolic health in adulthood (Forsdahl 1977; Dorner et al. 1973; Dorner
1973; Freinkel 1980; Kermack et al. 2001). The study of Forsdahl (1977), for
example, demonstrated a positive correlation between county level CHD mortality
in Norway, in people aged between 40 and 69 years of age, and infant mortality 70
years earlier. It was postulated that poverty and food insecurity in childhood and
adolescence were risk factors for CHD in adulthood. Finding a similar association
between area level infant mortality and CHD mortality in the United Kingdom
(UK), Professor David Barker from the University of Southampton hypothesised
that environmental factors acting in utero or infancy may have adverse effects
on CHD in later life (Barker and Osmond 1986). Direct evidence in support of
this hypothesis was provided when Barker et al. (1989), linking individual birth
records from the early decades of the twentieth century to subsequent mortality
information, observed that the risk of death from CHD was greatest in individuals
who were lightest at birth; birth weight being a conveniently available proxy marker
of growth and nutrition in utero. A series of epidemiological studies followed
seeking to confirm the initial birth weight-CHD association and extend it to
include measures of postnatal growth and other health outcomes. The initial foetal
origins of adult disease or programming hypothesis thus broadened, to become
what is now known as the developmental origins of health and disease (DOHaD)
model.

The importance of early life does not, however, mean that cardio-metabolic risk
is set at the end of infancy and neither does it invalidate other models of disease
causation. Indeed, at the same time that the DOHaD paradigm was developing,
the term life course epidemiology was coined by scientists who recognised that
disease development was more likely a lifelong process. They set out the key
principles of this holistic approach in a series of papers and a book (Kuh et al.
2003, 2013; Ben-Shlomo and Kuh 2002; Kuh and Ben-Shlomo 2004; Kuh and
Hardy 2002; Pickles et al. 2007; Lawlor and Mishra 2009; Koenen et al. 2013).
Perhaps unsurprisingly, the role of body size in cardio-metabolic health played a
central part in the development of the life course approach. The broad goal of this
chapter is to synthesis this literature to better understand the lifelong age-related
changes in body size that are indicative of poor cardio-metabolic health and the
key environmental exposures and biological pathways responsible. We start with an
overview of the life course approach in epidemiology to provide a framework for
the review.
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The Life Course Perspective

Definition

The life course approach to epidemiology focuses on investigation of the biological,
behavioural, and social pathways (that may operate across generations) that link
physical and social exposures and experiences during gestation, infancy, childhood,
adolescence, and adulthood with health and disease risk in an individual (and
possibly their descendants) (Ben-Shlomo and Kuh 2002; Kuh et al. 2003). Initially,
the focus was on chronic degenerative diseases, particularly those pertaining to
cardio-metabolic and respiratory systems, where the life course perspective was
used to extend the DOHaD paradigm and integrate it with apparently conflict-
ing theories of disease aetiology, namely adult lifestyle and social causation
(Marmot et al. 1984; Krieger 2013). The life course approach then widened
its gaze to a broader set of functional outcomes (e.g., grip strength and blood
pressure) and emphasised the importance of age-related changes in physical and
cognitive capability and the physiological systems on which they depend (Kuh
et al. 2013).

From Conceptual Models to Trajectories

Conceptual models are a useful way to think about how an exposure measured
across the life course may influence future health. The original conceptual life
course models in epidemiology were developed to test the importance of timing
and duration of exposures on disease risk (Ben-Shlomo and Kuh 2002; Kuh and
Ben-Shlomo 2004; Kuh et al. 2003). The critical or sensitive period model depicts
a scenario where some exposure has lifelong implications for disease risk, but only
if (in the case of a critical period) or most strongly when (in the case of a sensitive
period) that exposure occurs during some specific age window of development. The
accumulation of risk model depicts a scenario where there is cumulative damage
to biological systems due to multiple exposures over the life course, which may or
may not cluster together. Finally, the chain of risk model depicts a scenario where
an exposure at one age influences the likelihood of experiencing the same or a
different exposure at a second age, and so on until the outcome occurs. If only the
last exposure in the link influences disease risk, the model is said to include a trigger
effect. Alternatively, if the exposures also have direct effects on the outcome that do
not operate through subsequent exposures, the model is said to be additive. This can
be thought of as a hybrid model comprising a chain of risk with some accumulation
of risk.
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These three types of model clearly do not capture the complexity of real life
but they do provide a starting point for the conceptualisation of research questions,
encourage consideration of duration, timing and order of exposures and aid effective
communication of ideas. The initial emphasis in life course epidemiology had been
in exploiting birth cohort studies to test what exposures measured across different
periods of early life affected health and disease at a single time point in older
age, but this emphasis is now moving toward gaining a better understanding of
age-related disease processes and their life course determinants using the repeated
measurements of health and function now available in many maturing cohort studies
(Kuh et al. 2013). Such trajectories may themselves provide novel information
on the disease process (e.g., how does blood pressure change over age?), maybe
related to some future outcome (e.g., how are blood pressure trajectories related to
CHD risk?) or concurrent process (how are blood pressure trajectories related to
body weight trajectories?), or might themselves be the outcome (how is parental
education associated with offspring blood pressure trajectories?). The statistical
techniques needed to answer such questions are naturally becoming more and more
advanced, and the reader wanting to learn more about methodology is directed to the
following publications (De Stavola et al. 2006; Pickles et al. 2007; Tu et al. 2013;
Johnson 2014).

Deleterious Body Size Trajectories

This section is split into life course stages. The summary compiles this information
to discuss the lifelong age-related body size trajectories that are indicative of the
worst cardio-metabolic health.

Gestation

Measurement of a baby at birth is the easiest way to assess the total growth
experienced in gestation. In 1989, the first study to report on the relationship of
birth weight with CHD was carried out in Hertfordshire, UK in 5,654 males born
1911–1930 (Barker et al. 1989). Standardised mortality ratios fell from 1.1 in men
who weighed less than 2.5 kg to 0.8 in men who weighed more than 4.5 kg; a
similar trend in women was subsequently reported (Osmond et al. 1993). Over the
next few years, publications on UK studies established birth weight as also having
a negative association with central obesity (Law et al. 1992), hypertension (Barker
et al. 1990), stroke (Martyn et al. 1996), autoimmune thyroid disease (Phillips et al.
1993), chronic obstructive pulmonary disease (Barker et al. 1991), and type two
diabetes (Hales et al. 1991) in adulthood. Ensuing work in the MRC National Survey
of Health and Development of men and women born in Britain in 1946 found an
inverse relationship of birth weight with blood pressure in midlife, as has been
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demonstrated in systematic reviews of available evidence (Huxley et al. 2002), but
did not find higher birth weight to be strongly associated with a slower increase in
blood pressure from 36 to 53 years (Hardy et al. 2003).

The birth weight-CHD association has now been replicated across multiple
studies in Europe, North America, and South Asia (Stein et al. 1996). Many of
the European studies demonstrated an association independent of confounding by
gestational age and socioeconomic position. Nonetheless, the confounding structure
has been widely debated in publications focusing largely on blood pressure (Hardy
et al. 2006b; Huxley et al. 2002), as was the proposal that the negative associations
may be a statistical artefact due to over-adjustment for adulthood body size (Tu
et al. 2005). A potential reversal of the birth weight-blood pressure association
from positive to negative on adjustment for adult size may occur because any
relationship of birth weight with adulthood body mass index (BMI), a measure of
weight standardised for height that is often used as an indicator of adiposity, is
generally agreed to be positive not negative (Schellong et al. 2012). This is thought
to be because birth weight is strongly predictive of later fat-free mass, arguably the
largest component of BMI, and to a much lesser extent adiposity (Wells et al. 2007).
From the start, there was also dispute about whether the relationships with birth
weight, and particularly that for type two diabetes, were linear or U-shaped (Harder
et al. 2007; Whincup et al. 2008).

Birth phenotypes other than birth weight identified as being associated with
increased disease risk included short length, small head circumference, and low birth
weight for placental weight (Barker et al. 1990, 1992, 1993), thereby suggesting that
any form of growth restriction in utero has negative consequences. We do know from
cohort comparison and famine studies, in which samples of pregnant mothers were
exposed to chronic undernutrition, that brain tissue and adiposity are among the last
body compartments to be affected (Yajnik et al. 2003; Z. Stein and Susser 1975).
Compared to UK babies of healthy well-nourished mothers, for example, those born
in rural India into a food insecure environment are smaller in all dimensions (�2.4
Z-scores for abdominal circumference), but least so for adiposity (�0.5 Z-scores for
subscapular skinfold thickness) (Yajnik et al. 2003).

Infancy

The Hertfordshire Cohort Study also included health visitor records of weight at
1 year of age. Weight at this point in infancy actually had a stronger negative
association with CHD than did weight at birth. Standardised mortality ratios fell
from 1.1 in men who weighed less than 8.2 kg to 0.4 in men who weighed more
than 12.2 kg (Barker et al. 1989). Infant weight also had a negative association
with type two diabetes (Hales et al. 1991), but not with autoimmune thyroid disease
(Phillips et al. 1993). The first publication to consider weight gain found that
the greatest risk of CHD in men was in those born light who remained light at
age 1 year, but in women was in those born light but who were heavy at age 1
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year (Osmond et al. 1993); this sex difference was not discussed by the authors.
Following studies generally found low weight gain and poor growth in infancy to
be deleteriously associated with future cardio-metabolic outcomes (Eriksson et al.
2003b; Forsen et al. 2004). Today, rapid infant weight gain is known to be associated
with obesity and obesity-related diseases (Kerkhof and Hokken-Koelega 2012;
Druet et al. 2012). A recent meta-analysis of approximately 50,000 individuals
in high income countries found that gaining weight between birth and age 1 year
greater than one centile band on a growth chart was associated with a 23 % increased
odds of adulthood obesity, for example (Druet et al. 2012). So, how does this not
contradict the findings of the earlier studies? In those older cohorts, there would
have been more environmental constraint on growth, thereby resulting in an at risk
group who were born small and light and failed to catch-up in infancy with their
better nourished peers. In the more recent studies, however, there would have been
less constraint and more exposure to an obesogenic environment, thereby resulting
in an at risk group who were not necessarily born small and light but nonetheless
demonstrated rapid weight gain. Indeed, rapid infant weight gain is not necessarily
deleterious if it occurs proportionally to increases in length (Belfort and Gillman
2013), and may even be protective in older cohorts and in low to middle income
countries where it incurs gains in fat-free mass more so than adiposity (Wells et al.
2012; Bann et al. 2014).

The BMI is often used as a proxy for adiposity, despite never being intended for
this purpose. Nonetheless, like percentage body fat, BMI shows a complex pattern
of age-related change that can be summarised by the timing and magnitude of the
maximum or peak value in infancy (Johnson et al. 2013b). Two studies have reported
associations of both later timing and greater magnitude of this infant BMI peak with
higher BMI later in life, one study in childhood (Silverwood et al. 2009) and one
in adulthood (Sovio et al. 2014). In fully adjusted models in the latter study, a two
standard deviation (SD) increase in age at peak was associated with a 1.58 % change
in BMI at age 31 years and a two SD increase in magnitude of peak with a 4.65 %
change. This finding is seemingly paradoxical to the observation of a secular trend
toward earlier and lower peak as the environment has become more obesogenic
(Johnson et al. 2013b). Changes in childhood BMI often reflect changes in fat-free
mass more so than fat mass (Demerath et al. 2006), so it is not unreasonable to
hypothesise that the positive infant peak-adulthood obesity association is driven by
reduced fat-free mass in adults who experienced early and/or low peak. In agreement
with the initial studies, the group of infants at risk has been proposed to comprise
those with consistently low BMI in infancy (Rolland-Cachera and Peneau 2013).

Childhood

The BMI decreases in early childhood to a nadir named the adiposity rebound that
occurs in most individuals between 5 and 7 years of age (Rolland-Cachera et al.
1984). Early occurrence of the rebound is associated with obesity and obesity-
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related diseases, even in the absence of elevated BMI at the age of rebound (Taylor
et al. 2005), although this has been hotly debated in the past (Cole 2004). The most
deleterious pattern is characterised by an early rebound and the crossing over of
trajectory from low to high BMI (Rolland-Cachera and Peneau 2013). This pattern
is in agreement with most secular trend studies (Johnson et al. 2012a), systematic
reviews (Owen et al. 2009), and the initial studies (Barker et al. 2005). In the
Helsinki Birth Cohort Study, for example, early rebound (less than 5 years of age)
compared to late rebound (greater than 7 years of age) was associated with lower
BMI in infancy, but higher BMI and cumulative incidence of type two diabetes (8.6
versus 1.8) in adulthood (Eriksson et al. 2003a). This crossing over of trajectory
in children with an early rebound is driven by changes in adiposity rather than fat-
free mass (Taylor et al. 2004). In contrast, the relationship of BMI at age 6 years to
BMI at all previous and subsequent ages is driven by tracking of fat-free mass as
well as adiposity (Rolland-Cachera and Peneau 2013). The rebound may, therefore,
be a particularly important part of the establishment or otherwise of a deleterious
trajectory (see section “Critical Periods and Transitions”).

In addition to rapid weight gainers perhaps following an early rebound, there is
likely to be a separate group whose poor growth persists in childhood (Cameron
2007). Both groups were identified as being at increased risk of hypertension in
adulthood in the Helsinki Birth Cohort Study (Eriksson et al. 2007). Interestingly,
the former trajectory had previously been reported to be associated with CHD
(Barker et al. 2005), while the later had been reported to be associated with stroke
(Osmond et al. 2007). Writing in a review paper, Barker et al. (2009) explains that
the co-existence of these trajectories “casts light on the differing ecologies of CHD
and stroke, for both of which hypertension is a risk factor”. Rates of both CHD and
childhood obesity, perhaps contributed to by rapid weight gain, increase as countries
go through the epidemiological transition, but stroke remains most prevalent in low
income countries where children tend to be short and thin.

Adolescence

Trajectories of children at risk carry forward so that in adolescence both high
BMI/continued rapid weight gain and small body size/continued poor growth are
associated with poorer cardio-metabolic health. Further, adolescence may be a
particularly important stage in the life course for the establishment of a deleterious
trajectory (see section “Definition”). A meta-analysis reported a positive association
(relative risk 1.09, 95 % confidence interval 1.00–1.20) between BMI Z-score at 7–
18 years of age and CHD (Owen et al. 2009). This and other meta-analyses tend to
pool data across wide age ranges (Paajanen et al. 2010; Verbeeten et al. 2011) and
estimates for the association of height specifically in adolescence with any cardio-
metabolic health or disease outcome in adulthood cannot be found in systematic
review literature. Most of our knowledge about the future health consequences of
poor adolescent growth comes from stand-alone studies of historical birth cohorts
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and studies in low to middle income countries (Adair et al. 2013; Johnson et al.
2014; Skidmore et al. 2007). Greater height at age 15 years has been shown to be
related to lower and thus more healthy total cholesterol and carotid intima-media
thickness in the MRC National Survey of Health and Development, for example
(Johnson et al. 2014; Skidmore et al. 2007).

The description of adolescents at risk becomes less clear when we consider the
phenomenon that obese people tend to be temporarily taller than their non-obese
peers by up to 3 cm in adolescence (Johnson et al. 2012b; Metcalf et al. 2011).
This difference is similar to the temporary greater height of some girls compared
to boys during adolescence, due to their earlier maturation (Ellison and Reiches
2012). The temporary greater height of some obese adolescents most likely reflects
an advanced pace of development. Indeed, numerous studies in diverse populations
have shown that adolescent obesity is linked to the earlier development of secondary
sexual characteristics, most of which are in turn associated with shorter adulthood
height (Dunger et al. 2005; Johnson et al. 2013a). Early timing of traits such as age at
menarche has been implicated in cardio-metabolic disease processes (Prentice and
Viner 2013; Hardy et al. 2006a), but whether or not they precede adolescent obesity
or are causally related to adulthood disease independent of adolescent obesity
remains unclear (Johnson et al. 2013a; Mumby et al. 2011; Pierce et al. 2012).

Adulthood

Linear growth is complete by adulthood, so the cardio-metabolic consequences of
being short are less confounded by the constant change in ranking by height of
individuals that occurs earlier in life. In one meta-analysis of data from over one
million adults, a 6.5 cm increase in height was associated with a hazard ratio of 0.97
(95 % confidence interval 0.96–0.99) for all-cause mortality (Emerging Risk Factors
Collaboration 2012). A body of literature has reported similar negative associations
between adulthood height and other outcomes in diverse populations (Paajanen et al.
2010; Rosenberg et al. 2013; Schmidt et al. 2013). Further, we know that leg length,
as a reflection of early life adversity (Wadsworth et al. 2002), is the main component
of height associated with disease development (Langenberg et al. 2003; Wadsworth
et al. 2002).

BMI in early adulthood has been shown to be associated with higher risk of
subsequent CHD. The meta-analysis of Owen et al. reported a positive association
between BMI Z-score between 18–30 years of age and CHD (relative risk 1.19, 95 %
confidence interval 1.11–1.29) that was stronger than that in adolescence (Owen
et al. 2009). Similar systematic reviews have been published for various cardio-
metabolic biomarkers and diseases (Choi et al. 2013; Rao et al. 2011). Perhaps the
most conclusive study of nearly one million adults reported a U-shaped association
between BMI and all-cause mortality (Whitlock et al. 2009). Deaths in people with
low BMI are most likely to be smoking and cancer related, whereas deaths in people
with high BMI are most likely to be related to cardio-metabolic health (Whitlock
et al. 2009).
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Investigation is now focusing on whether those who were overweight in early life
can alter their risk by being of normal weight in adulthood and whether duration of
overweight is important. Literature has shown that obese children and adolescents
who become normal weight in adulthood may have similar cardio-metabolic profiles
as individuals who were always normal weight (Juonala et al. 2011; Li et al. 2012).
Using data from the British birth cohort studies, however, Park et al. have reported
higher odds ratios for type two diabetes in obese adults who were also overweight
or obese in childhood and adolescence (odds ratio 12.6, 95 % confidence interval
6.6–24.0) compared to those who were obese in adulthood only (odds ratio 5.5,
95 % confidence interval 3.4–8.8), thereby suggesting that duration of exposure
in addition to normalisation of weight status (i.e., change from obese/overweight
to normal weight) is important (Park et al. 2013). One caveat here is that BMI
tracks and increases across most of the life course, so the group who are obese in
childhood and/or adolescence but normal weight in adulthood is typically small.
Further, adults who are obese according to BMI may be metabolically healthy
(Roberson et al. 2014). It has been hypothesized that it is this group of people
who have consistently high BMI from infancy onward due to increased fat-free
mass not adiposity (Rolland-Cachera and Peneau 2013). However, Ortega et al. have
shown that a metabolically healthy obese group exists even when obesity is defined
according to percentage body fat (Ortega et al. 2013).

Summary

The key traits associated with poor cardio-metabolic health in our literature review
appear to naturally cluster into two groups. The first comprises microsomia in
babies who despite being small are relatively adipose, postnatal growth failure
particularly early in life, short adulthood stature and legs, and underweight or
wasting/thinness at any age. Conversely, the second comprises macrosomia, rapid
infant weight gain, early adiposity rebound followed by rapid BMI gain, tall stature
in puberty, and peri-pubertal or adulthood obesity development. The first cluster
characterises a trajectory of small size of most body dimensions and components
(Fig. 4.1, Trajectory A) that might be found in older cohorts and studies in low
income countries where there is constant persisting nutritional insecurity and high
rates of stroke. Conversely, the second cluster characterises a trajectory of large size
of most body dimensions and components (Fig. 4.1, Trajectory B), that might be
found in modern day populations and high income countries where there are high
rates of obesity and CHD. Most long-term follow-up studies have been conducted
in cohorts that have experienced large changes in the environment over their life
time or in studies in countries experiencing similar changes due to rapid nutritional
and epidemiological transitions. It is perhaps, therefore, unsurprising that lying
somewhere in between the first two trajectories is a third trajectory summarising
this literature; it is characterised by small size and thinness at birth and in infancy,
but rapid gains in weight and specifically adiposity in childhood, and the subsequent
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Fig. 4.1 Body size trajectories in the development of cardio-metabolic health

development of obesity and increased disease risk in response to the transitioning
environment (Fig. 4.1, Trajectory C).

Clearly, the three trajectories in Fig. 4.1 are conceptual. While we split this
section into life course stages for convenient handling of information, it is important
to remember that each measure (e.g., weight and abdominal circumference) has
its own trajectory that may follow a complex pattern of age-related change,
demonstrate complex associations with cardio-metabolic health, and vary greatly
between cohorts and across time, place, and population sub-groups. Further, traits
in one trajectory might interact with traits in another trajectory to influence cardio-
metabolic health. Considering birth weight and adulthood waist circumference, for
example, risk for type two diabetes is greatest for individuals born light who went
on to develop large waist lines (Tian et al. 2006).

Determinants and Mechanisms of Deleterious Trajectories

An association between body size at one age and cardio-metabolic health at a second
age does not mean that the former causes the later. This section seeks to explain how
and why body size across the life course may be associated with cardio-metabolic
health.
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Environmental Exposures

Foetal growth is ultimately restricted by uterine capacity. Babies may be born small
because they are constrained in this way or because they lacked the nutrients in utero
necessary for optimum growth (Harding 2001). Pregnant women exposed to famine
give birth to small babies who go onto develop glucose intolerance and obesity
in adulthood, for example (Ravelli et al. 1976, 1998). The proportion of protein
and carbohydrate in a women’s diet may be a key factor that affects the foetus,
with the combination of high carbohydrate and low protein intake being particularly
deleterious (Campbell et al. 1996; Godfrey et al. 1996). In addition to maternal
intake per se, clinical exposures such as maternal hypertension leading to reduced
uterine blood flow can severely affect the supply line of nutrients from the mother
to the foetus (Harding 2001).

Other well-known determinants of size at birth include sex, gestational age,
ethnic origin, parity, maternal and paternal size, gestational weight gain, general
morbidity and episodic illness, malaria, cigarette smoking, and alcohol consumption
(Kramer 1987). Maternal gestational diabetes is associated with higher birth
weight and increased risk of subsequent obesity (Lawlor et al. 2011), but Gillman
et al. (2003) have questioned the causal role of altered maternal-foetal glucose
metabolism because adjusting the gestational diabetes-childhood obesity associa-
tion for birth weight only marginally attenuated the estimate in their study. This
might, however, be expected given that even the most exposed foetuses are limited to
how much weight they can gain in utero; the greatest anatomical response to altered
glucose metabolism will inevitably occur after birth, when there is no upper limit on
weight gain. Indeed, the most deleterious profile for childhood obesity comprises
rapid infant weight gain in addition to pre-pregnancy obesity and macroscomia
(Weng et al. 2012).

Determinants of childhood obesity include maternal smoking, no or short
duration of breastfeeding, obesity in infancy, short sleep duration, television
viewing, low daily physical activity, and consumption of sugar-sweetened beverages
(Monasta et al. 2010). Many of these risk factors continue to operate in adolescence
(Morandi et al. 2012), at ages when there is increasing independence from the family
and the establishment of more individual as compared to familial risk factors. Most
research has focused on shifts in diet and physical activity as the key drivers of the
obesity epidemic, particularly during adulthood (Swinburn et al. 2011; McAllister
et al. 2009). There is, however increasing evidence for multiple other factors
including microorganisms and epigenetics early in life, sleep debt, and endocrine
disruptors (McAllister et al. 2009).

Naturally, the exposures responsible for obesity are very different to those for
malnutrition. Evidence from low to middle income countries shows that the key
determinants of stunting, wasting, and underweight include growth restriction in
utero, poor condition of the mother, poverty, chronic dietary insufficiency, marked
seasonality, poor levels of sanitation, and infection (Martorell and Young 2012;
Frongillo et al. 1997). As these countries transition, it has been argued that the
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people are likely to face both sets of exposures and a dual burden of stunting and
overweight (Varela-Silva et al. 2012). Others have, however, shown that the co-
existence of stunting and overweight, at least at the family level, is a statistical
artefact with a prevalence that matches what one would expect based on the separate
stunting and overweight rates (Dieffenbach and Stein 2012).

Biological Pathways

Biological pathways are ultimately responsible for the links between environmental
exposures, body size, and cardio-metabolic health. The first main type of pathway
involves anatomical changes. Anatomical formation of the kidneys occurs exclu-
sively in utero, and nutritional constraint of a foetus can permanently reduce the
number of nephrons that are laid down, for example (Barker et al. 2006). Although
physiological capability of the kidney develops over the entire life course, small
kidney size in prenatally undernourished individuals increases risk for hypertension
and renal failure in adulthood (Lampl et al. 2002; Luyckx and Brenner 2005).
Similarly, a larger number of adipocytes in response to nutritional excess and
a sedentary lifestyle in adulthood can increase CHD risk because these cells
secrete inflammatory proteins that speed up the atherosclerotic process (Berg and
Scherer 2005).

The second main type of pathway involves the physiological setting or alteration
of hormonal and metabolic axes. For example, the foetus responds to reduced
nutritional supply by reducing plasma concentrations of hormones, such as insulin
and insulin-like growth factor, which in turn limits the transportation of glucose to
the muscles and impairs lean tissue growth (Phillips 1996). This adaptation occurs
so that glucose is readily available in the bloodstream to maintain growth of high
priority organs, such as the brain (Gluckman 1995). The tendency to maintain high
blood glucose levels can, however, lead to a progressive decline in glycaemic control
and type two diabetes (Phillips 1996). As a different example, dysregulation of the
hypothalamic-pituitary-adrenal axis in response to chronic stress in adulthood might
lead through the effects of cortisol to central obesity and cardio-metabolic disease
(Rosmond and Bjorntorp 2000).

One increasingly well-studied set of mechanisms focuses on the way in which
genes governing body size impact on cardio-metabolic health. We know that
environmental exposures can modify the expression of genes. A recent meta-
analysis reported that the odds of obesity associated with the risk allele in the
FTO gene was attenuated in active adults compared to inactive adults by 27 %,
for example (Kilpelainen et al. 2011). Chemical modifications occur that alter
gene expression in a specific tissue or organ without changing the nucleotide
sequence of the DNA (e.g., methylation and histone modification) (Holliday 1994).
While an environmental exposure may influence body size in the short term, these
“epigenetic” changes can have long lasting effects on disease risk. Maternal protein
restriction might lead to smaller offspring and reduce methylation (and therefore
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enhance expression) of the angiotensinogen receptor gene in the offspring adrenal
gland, thereby leading to high blood pressure, for example (Bogdarina et al. 2007;
Woodall et al. 1996). Such epigenetic changes can occur from conception onward
but, like the other anatomical and physiological pathways, are most sensitive to the
environment during specific stages of the life course.

Genes are also being used increasingly in Mendelian randomisation studies,
where a genetic variant or set of variants are used as an instrumental variable for
some phenotype or exposure, to establish whether or not that phenotype has a causal
effect on some outcome (Lawlor et al. 2008). This technique has recently been
used, for example, to demonstrate that BMI does have causal effects on various
cardio-metabolic traits, including blood pressure and fasting glucose and cholesterol
(Holmes et al. 2014). These studies work, subject to certain assumptions, on the
premise that alleles are transmitted from parents to offspring randomly at gamete
formation, such that the genotype or instrumental variable relationship with the
outcome is not confounded by environmental factors or prone to reverse causation
(Lawlor et al. 2008).

Critical Periods and Transitions

A critical period refers to an age window in which intrinsic changes in body
structure and function are occurring rapidly and may be most easily programmed
in a favourable or unfavourable direction (Scott 1986). The focus in the natural
sciences was originally on the requirement of specific environmental stimuli to elicit
the normal development and functioning of some body part or system (Cameron
and Demerath 2002). In contrast, epidemiology focuses on the environmental
exposures that result in anatomical and physiological adaptations that have long-
term implications for cardio-metabolic health (Kuh et al. 2003). Perhaps the most
often used example of a critical period is the teratogenic effect of maternal exposure
to thalidomide in the first trimester of pregnancy on limb development in the foetus
when the limbs are most rapidly developing, while exposure to thalidomide after
birth is harmless (Newman 1986). In this instance, the critical period is truly critical.
In other examples, however, the exposure association (with the outcome) is not
constrained to such a narrow age window, but may be present across part or whole of
the life course. The strongest associations are observed at ages when the individual
is most sensitive to the environment, thus these are called sensitive periods of
development.

Research has now identified potentially sensitive periods spanning the entire life
course. Early childhood and adolescence in particular are emerging as important
periods for the establishment of obesity and programming of cardio-metabolic risk.
It has recently been shown in the MRC National Survey of Health and Development
that socioeconomic disadvantage in early childhood, more so than at any other age,
is associated with cardio-metabolic risk factors at age 53 years, for example (Murray
et al. 2011). In the same cohort, exposure to obesity emerges during adolescence as
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being associated with greater carotid-intima media thickness at 60–64 years of age
in men (Johnson et al. 2014). The associations reported in both of these papers
were independent of birth weight and appeared to be mediated by higher adulthood
BMI in those individuals who were disadvantaged in early childhood or obese in
adolescence.

Adolescence is often viewed as critical from physical and behavioural per-
spectives, but individuals experience this stage in the life course at different ages
and progress through secondary sexual characteristic maturation at different paces
(Ellison and Reiches 2012). A critical or sensitive period may be thought of as
a point of transition from one state to another. During puberty, for example, the
adolescent transitions from an immature state to a mature state. Various markers of
the pace of pubertal development have been reported to be associated with various
cardio-metabolic health outcomes in both sexes (see section “Adolescence”).
Interestingly, an early age at menopause, which marks the cessation of a women’s
reproductive ability, is also associated with increased risk for cardio-metabolic
disease (Ebong et al. 2014). Lifelong environmental conditions may influence the
timing of menopause (Lawlor et al. 2003), but it is unknown whether or not
the biological changes that occur during menopause and impact on subsequent
health are particularly sensitive to concurrent exposures. Similarly, behavioral
transitions throughout the life course can lead to increased disease risk, but these
do not necessarily occur at ages when biological changes are occurring rapidly
and are most sensitive to the environment. Transition into a romantic relationship
or marriage can cause behavioral changes that lead to the development of obesity
(The and Gordon-Larsen 2009; Gordon-Larsen et al. 2004), but there is nothing
biologically critical about the exact age when this occurs, for example. The same
might be true for starting university (Gropper et al. 2012), leaving the army (Littman
et al. 2013), and retiring (Morris et al. 1992). The timing of rapid change in a known
biological structure/function is critical for the experience of specific environmental
stimuli to cause permanent alterations and predict long-term outcomes (Cameron
and Demerath 2002). While a critical or sensitive period may be thought of as a
transition, a transition does not automatically meet the requirements to be a critical
of sensitive period.

Transgenerational Transmission

Recent research in human and animal models suggests that biological adaptations
to environmental exposures during critical or sensitive periods of development
may be transmitted to subsequent generations (Benyshek 2013), such that a trait
like insulin resistance in the exposed generation might be passed to successive
unexposed generations in diminishing order of magnitude (Benyshek et al. 2006).
This transgenerational transmission goes beyond something that might be explained
by genetic heritability or by family members of different generations experiencing
similar lifelong environments. Maternal exposure to famine, for example, has been
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shown to be associated with increased risk of giving birth to small offspring with
dysregulated lipid profiles (Lumey et al. 2009), who themselves go onto have
relatively small offspring with large amounts of adiposity and high risk for cardio-
metabolic disease (Painter et al. 2008). In this scenario, direct and simultaneous
exposure of three generations (i.e., the pregnant mother, her fetus, and the fetuses’
primordial germ cells) might be responsible for the increased disease risk seen
in each generation. Alternatively, and if more than three generations are affected,
research is revealing how inheritance of epigenetic modifications to the genome
may be responsible (Hackett et al. 2013).

Public Health Relevance and Conclusion

The role of life course research in public health debates, such as whether money
should be spent on the primordial prevention of cardio-metabolic diseases in high
risk strata of society or whether it should be used to provide effective treatment in
the smaller number of people who actually develop a disease, is to provide clear
empirical evidence of how and why a disease develops. Only then is it possible
to understand what physical and social exposures should be targeted and at what
ages. The conclusion of Barker et al. (1989) that “promotion of postnatal growth
may be especially important in boys who weigh below 7.5 lb (3.4 kg) at birth”
today may appear reckless. But this is only because a whole body of life course
epidemiology literature has since been published showing that, at some ages and
in some populations, rapid infant weight gain leads to the deleterious development
of excess adiposity and may not incur protective long-term gains in height and fat-
free mass (Bann et al. 2014; Druet et al. 2012; Kerkhof and Hokken-Koelega 2012;
Wells et al. 2012). We may still not be at a situation where we should attempt to
increase growth rates in infants who are born small, but we are developing a clearer
picture of how, when, and in what populations this might be best achieved without
adversely impacting on future health (Ong and Loos 2006).

Knowledge of the life course processes that lead to poor cardio-metabolic health
and disease is relevant to many public health discussions and policies, not just those
relating to infant growth and obesity. The life course perspective has become a
central part of the World Health Organisation’s programme on non-communicable
disease prevention and health promotion (World Health Organisation Dept of
Noncommunicable Disease Prevention and Health Promotion 2001). Particularly
in the UK, the importance of a life course approach is increasingly gaining recog-
nition, with recent reports on mental wellbeing and reproductive health having all
championed the approach (Foresight. 2008; Scientific Advisory Committee 2011).
The Marmot (2010) review on reducing health inequalities in the UK included
statements, such as “giving every child the best start in life” and “enabling all
children, young people, and adults to maximise their capabilities and have controls
over their lives”. The challenge life course epidemiologists now face is to fine-tune
their studies to provide policy makers with the best, actionable information.
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The literature on the relationships of body size with cardio-metabolic health is
immense. Associations of body size with cardio-metabolic health can be explained
in terms of anatomical and/or physiological changes in response to environmental
conditions during critical or sensitive periods of development. These adaptations
can persist across subsequent generations through epigenetic inheritance, thereby
adding another layer of complexity to life course epidemiology. The integration of
biological and social research is clearly important, as is the understanding of the
processes and pathways operating across the life course. Taking this more holistic
approach and understanding the life course trajectories of body size and cardio-
metabolic health will lead to a more complete understanding of cardio-metabolic
disease processes and how to stop disease processes progressing faster in some
people than others.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution
Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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