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This two-part series of papers studies the theory and practice of differentially encoded low-density parity-check (DE-LDPC) codes,
especially in the context of noncoherent detection. Part I showed that a special class of DE-LDPC codes, product accumulate
codes, perform very well with both coherent and noncoherent detections. The analysis here reveals that a conventional LDPC code,
however, is not fitful for differential coding and does not, in general, deliver a desirable performance when detected noncoherently.
Through extrinsic information transfer (EXIT) analysis and a modified “convergence-constraint” density evolution (DE) method
developed here, we provide a characterization of the type of LDPC degree profiles that work in harmony with differential detection
(or a recursive inner code in general), and demonstrate how to optimize these LDPC codes. The convergence-constraint method
provides a useful extension to the conventional “threshold-constraint” method, and can match an outer LDPC code to any given
inner code with the imperfectness of the inner decoder taken into consideration.
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1. INTRODUCTION

With an increasingly mature status of the sparse-graph
coding technology in a theoretical context, the very pervasive
scope of their well-proven practical applications, and the
wide-scale availability of software radio, low-density parity-
check (LDPC) codes have become and continue to be a
favorable coding strategy for researchers and practitioners.
Their superb performance on various channel models and
with various modulation schemes have been documented in
many papers. While the existing literature has shed great light
on the theory and practice of LDPC codes, investigation was
largely carried out from a pure coding perspective, where
the prevailing assumption is that the synchronization and
channel estimation are handled perfectly by the front-end
receiver.

In wireless communications, accurate phase estimation
may in many cases be very expensive or infeasible, which calls
for noncoherent detection. Practical noncoherent detection
is generally performed in one of the two ways: inserting
pilot symbols directly in the coded and modulated sequence
to help track the channel (it is possible to insert either
pilot tones or pilot symbols, but the latter is found to be

more effective and is what of relevance to this paper), and
employing differential coding. Considering that the former
may result in a nontrivial expansion of bandwidth especially
on fast-changing channels, many wireless systems adopt the
latter, including satellite and radio-relay communications.

The problem we wish to investigate is: LDPC codes
perform remarkably well with coherent detection, but how
about their performance with noncoherent detection and
noncoherent differential detection in particular? This series
of two-part papers aim to generate useful insight and
engineering rules. In Part I of the series [1], we considered
a special class of differentially encoded LDPC (DE-LDPC)
codes, product accumulate (PA) codes [2]. The outer code
of a (p(t + 2), pt) PA code is a simple, structured LDPC code
with left (variable) degree profile λ(x) = 1/(t+ 1) + t/(t+ 2)x
and right (check) degree profile ρ(x) = xt; and the inner code
is a differential encoder 1/(1 + D). We showed that, despite
their simplicity, PA codes perform quite well with coherent
detection as well as noncoherent differential detection [1].
This motivates us, in Part II of this series of papers, to
study the general case of differentially encoded LDPC codes.
The question of how LDPC codes perform with differential
coding is a worthy one [3–6], and directly relates to other
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interesting problems. For example, what is the best strategy
to apply LDPC codes in noncoherent detection—should
differential coding be used or not? Modulation schemes such
as the minimum phase shift keying (MPSK) have equivalent
realizations in recursive and non-recursive forms; is one
form preferred over the other in the context of LDPC coding?
What other DE-LDPC configurations, besides PA codes, are
good for differential coding, and how to find them?

Since the conventional differential detector (CDD) oper-
ating on two symbol intervals incurs a nontrivial per-
formance loss [7], and since multiple symbol differential
detectors (MSDD) [8] have a rather high complexity that
increases exponentially with the window size, we developed,
in Part I of this series of papers, a simple iterative differential
detection and decoding (IDDD) receiver, whose structure is
shown in [1, Figure 6]. The IDDD receiver comprises a CDD
with 2-symbol observation window (the current and the
previous), a phase-tracking Wiener filter, a message-passing
decoder for the accumulator 1/(1 + D) [2], and a message-
passing decoder configured for the (outer) LDPC code. The
CDD, coupled with the phase-tracking unit and the 1/(1 +
D) decoder, acts as the front-end, or, the inner decoder of
the serially concatenated system, and the succeeding LDPC
decoder acts as the outer decoder. Soft reliability information
in the form of log-likelihood ratio (LLR) is exchanged
between the inner and the outer decoders to successively
refine the decision. In the sequel, unless otherwise stated, we
take the IDDD receiver as the default noncoherent receiver in
our discussion of DE-LDPC codes.

We study the convergence property of IDDD for a general
DE-LDPC code, through extrinsic information transfer
(EXIT) charts [9, 10]. A somewhat unexpected finding is
that, while a high-rate PA code yields desirable performance
with noncoherent (differential) detection, a general DE-
LDPC code does not. We attribute the reason to the mis-
match of the convergence behavior between a conventional
LDPC code and a differential decoder. This suggests that
conventional LDPC codes, while an excellent choice for
coherent detection, are not as desirable for noncoherent
detection. It also gives rise to the question of what special
LDPC codes, possibly performing poorly in the conventional
scenario (such as the outer code of the PA code), may turn
out right for differential modulation and detection?

One remarkable property of LDPC codes is the possibil-
ity to design their degree profiles, through density evolution
[11], to match to a specific channel or a specific inner code
[12–15]. To make LDPC codes work in harmony with the
noncoherent differential decoder of interest, here we develop
a convergence-constraint density evolution method. The
conventional threshold-constraint method [11, 16] targets the
best asymptotic threshold, and the new method effectively
captures the interaction and convergence between the inner
and the outer EXIT curves through a set of “sample points.”
In that, it makes it possible to optimize LDPC codes to
match to an (arbitrary) inner code/modulation with the
imperfectness of the inner decoder/demodulator taken into
account. Our study reveals that LDPC codes may be divided
in two groups. Those having minimum left degree of ≥2 are
generally suitable for a nonrecursive inner code/modulator

but not for a differential detector or any recursive inner
code. On the other hand, the LDPC codes that perform
well with a recursive receiver always have degree-1 (and
degree-2) variable nodes. Further, when the code rate is
high, these degree-1 and -2 nodes become dominant. This
also explains why high-rate PA codes, whose outer code has
degree-1 and degree-2 nodes only, perform remarkably with
(noncoherent) differential detection [1].

The channel model of interest here is flat Rayleigh fading
channels with additive white Gaussian noise (AWGN), the
same as discussed in Part I [1]. Let rk be the noisy signal at
the receiver, let sk be the binary phase shift keying (BPSK)
modulated signal at the transmitter, let nk be the i.i.d.
complex AWGN with zero mean and variance σ2 = N0/2 in
each dimension, and let αke jθk be the fading coefficient with
Rayleigh distributed amplitude αk and uniformly distributed
phase θk. We have rk = αke jθk sk + nk. Throughout the paper,
θk is assumed known perfectly to the receiver/decoder in
the coherent detection case, and unknown (and needs to be
worked around) in the noncoherent detection case. Further,
the receiver is said to have channel state information (CSI) if
αk known (irrespective of θk), and no CSI otherwise.

We consider correlated channel fading coefficients (so
that noncoherent detection is possible). Applying Jakes’
isotropic scattering land mobile Rayleigh channel model, the
autocorrelation of αk is characterized by the 0th-order Bessel
function of the first kind

Rk = 1
2
J0(2kπ fdTs), (1)

and the power spectrum density (PSD) is given by

S( f ) = P

π
√

1− ( f / fd
)2

, for | f | < fd, (2)

where fdTs is the normalized Doppler spread, f is the
frequency band, τ is the lag parameter, and P is a constant
that is dependent on the average received power given a
specific antenna and the distribution of the angles of the
incoming power.

The rest of the paper is organized as follows. Section 2
evaluates the performance of a conventional LDPC code with
noncoherent detection, and compare it with that of PA codes.
Section 3 proposes the convergence-constraint method to
optimize LDPC codes to match to a given inner code and
particular a differential detector. Section 4 concludes the
paper.

2. CODESMATCHED TODIFFERENTIAL CODING

Part I showed that PA codes, a special class of DE-LDPC
codes, perform quite well with coherent detection as well as
noncoherent detection [1]. This section reveals whether or
not this also holds for general DE-LDPC codes, and the far
subtly why.

The analysis makes essential use of the EXIT charts
[9, 10], which are obtained through a repeated application
of density evolution at different decoding stages. Although
they were initially proposed solely as a visualization tool,
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recent studies have revealed surprisingly elegant and useful
properties of EXIT charts. Specifically, the convergence prop-
erty states that, in order for the iterative decoder to converge
successfully, the outer EXIT curve should stay strictly below
the inner EXIT curve, leaving an open tunnel between the
two curves. The area property states that the area under
the EXIT curve, A = ∫ 1

0IedIa, corresponds to the rate of
the code [10], where Ia and Ie denote the a priori (input)
mutual information to and the extrinsic (output) mutual
information from a particularly subdecoder, respectively.
When the auxiliary channel is an erasure channel and
the subdecoder is an optimal one, the relation is exact;
otherwise, it is a good approximation [10]. The immediate
implication of these properties is that, to fully harness the
capacity (achievable rate) provided by the (noncoherent)
inner differential decoder, the outer code must have an EXIT
curve closely matched in shape and in position to that of the
inner code.

With this in mind, we evaluate a few examples of
(DE-)LDPC codes. (The computation of EXIT charts specific
to DE-LDPC codes with IDDD receiver is discussed in [1].)
We consider two configurations of the inner code:

(1) a differential decoder for 1/(1 + D); and
(2) a direct detector, that is, a BPSK detector;

and three configurations of the outer code:

(1) the outer code of a PA code, which has degree profile:

λ(x) = 1
7

+
6
7
x,

ρ(x) = x7;
(3)

(2) a (3,12)-regular LDPC code; and
(3) an optimized irregular LDPC code reported in [17],

whose threshold is 0.6726—about 0.0576 dB away
from the AWGN capacity—and whose degree profile is

γ(x) = 0.1510x+0.1978x2 +0.2201x6 +0.03537 +0.3958x29,

ρ(x) = x20.
(4)

All three outer codes have rate 3/4, and the channel
is a correlated Rayleigh fading channel with AWGN and
normalized Doppler rate of fdTs = 0.01.

The EXIT curves, plotted in Figure 1, demonstrate that
the outer code of the PA code and the differential decoder
match quite well, but a conventional LDPC code, regular or
irregular, will either intersect with the differential decoder,
causing decoder failure, or leave a huge area between
the curves, causing a capacity loss. On the other hand,
LDPC codes, especially the (optimized) irregular ones,
agree very well with the direct detector. This suggests that
(conventional) LDPC codes perform better as a single code
than being concatenated with a recursive inner code. Put it
another way, an LDPC code that is optimal in the usual sense,
for example, BPSK modulation and memoryless channels,
may become quite suboptimal when operated together with
a recursive inner code or a recursive modulation, such
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Figure 1: EXIT curves of LDPC codes, the outer code of PA codes,
differential decoder and the direct detector of Rayleigh channels.
Normalized Doppler rate 0.01, Eb/N0 = 5.32 dB, code rate 3/4,
(3, 12)-regular LDPC code, and optimized irregular LDPC code
with ρ(x) = x20 and γ(x) = 0.1510x+0.1978x2+0.2201x6+0.03537+
0.3958x29.

as a differential encoder. On the other hand, not using
differential coding generally requires more pilot symbols in
order to track the channel well, especially on fast-fading
environments. Hence, it is fair to say that (conventional)
LDPC codes that boast outstanding performance under
coherent detection may not be nearly as advantageous
under noncoherent detection, since they either suffer from
performance loss (with differential encoding) or incur a
large bandwidth expansion (without differential encoding).
In comparison, PA codes can make use of the (intrinsic)
differential code for noncoherent detection, and therefore
present a better choice for bandwidth-limited wireless appli-
cations.

Before providing simulations to confirm our findings, we
note that the EXIT curves of both inner codes in Figure 1 are
computed using perfect knowledge of the fading coefficients.
We used this genie-aided case in the discussion, to rid off
the artifact of coarse channel estimation and better contrast
the differences between the recursive differential detector
and the nonrecursive direct detector. If the amplitude and
phase information is to be estimated and handled by the
inner code as in actual noncoherent detection, then the EXIT
curve of the direct detector will show a small rising slope at
the left end instead of being a flat straight line all the way
through, and the EXIT curve of the differential decoder will
also exhibit a deeper slope at the left end.
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Figure 2 plots the BER performance curves of the same
three codes specified in Figure 1 on Rayleigh channels with
noncoherent detection. All the codes have data block size
K = 1 K and code rate 3/4. Soft feedback is used in
IDDD, the normalized Doppler spread is 0.01, and 2% or
4% pilot symbols are inserted to help track the channel.
The two LDPC codes are evaluated either with or without
a differential inner code. From the most power efficient
to the least power efficient, the curves shown are (i) PA
code with 4% of pilot symbols, (ii) PA code with 2% of
pilot symbols, (iii) BPSK-coded irregular LDPC code with
4% of pilot symbols, (iv) BPSK-coded regular LDPC code
with 4% of pilot symbols, (v) BPSK-coded irregular LDPC
code with 2% of pilot symbols, (vi) differentially encoded
irregular LDPC code with 4% of pilot symbols. It is evident
that (conventional) LDPC codes suffer from a differential
inner code. For example, with 4% of bandwidth expansion,
BPSK-coded irregular and regular LDPC codes perform
about 0.5 and 1 dB worse than PA codes at BER of 10−4,
respectively, but the differentially encoded irregular LDPC
code falls short by more than 2.2 dB. Further, while the
irregular LDPC code (not differentially coded) is moderately
(0.5 dB) behind the PA code with 4% of pilot symbols, the
gap becomes much more significant when pilot symbols are
reduced in half. For PA codes, 2% of pilot symbols remain
adequate to support a desirable performance, but they
become insufficient to track the channel for nondifferentially
encoded LDPC codes, causing a considerable performance
loss and an error floor as high as BER of 10−3. Thus, the
advantages of PA codes over (conventional) LDPC codes
are rather apparent, especially in cases when noncoherent
detection is required and when only limited bandwidth
expansion is allowed.

3. CODE DESIGN FROM THE CONVERGENCE
PROPERTY

3.1. Problem formulation

EXIT analysis and computer simulations in the previous
section show that a conventional LDPC code does not fit
differential coding, but special cases such as the the outer
code of PA codes do. This raises more interesting questions:
what other (special) LDPC codes are also in harmony with
differential encoding? What degree profiles do they have? Is
it possible to characterize and optimize the degree profiles,
and how?

The fundamental tool to solve these questions lies in
convex optimization. In [11], the optimization problem
of the irregular LDPC degree profiles on AWGN channels
was formulated as a duality-based convex optimization
problem, and an iterative method termed density evolution
was proposed to solve the problem. In [16], a Gaussian
approximation was applied to the density evolution method,
which reduces the problem to be a linear optimization
problem. Density evolution has since been exploited, in
different flavors and possibly combined with differential
evolution [18], to design good LDPC ensembles for a vari-
ety of communication channels and modulation schemes,
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Figure 2: Comparison of PA codes and LDPC codes on fast-fading
Rayleigh channels with noncoherent detection and decoding. Solid
line: PA codes, dashed lines: LDPC codes. Code rate 0.75, data block
size 1 K, filter length 65, normalized Doppler spread 0.01, 10 global
iterations, and 4 (local) iterations within LDPC codes or the outer
code of PA codes inside each global iteration.

see, for example [12–15] and the references therein. The
results reported in these previous papers are excellent, but
they almost exclusively aimed at the asymptotic threshold,
namely, their cost functions were set to minimize the SNR
threshold for a target code rate, or, equivalently, to maximize
the code rate for a target SNR threshold. This is well justified,
since in these papers, the primary involvement of the channel
is to provide the initial LLR information to trigger the start
of the density evolution process.

However, the problem we consider here is somewhat
different. Our goal is to design codes that can fully achieve
the capacity provided by the given inner receiver, and the
noncoherent differential decoder in particular. Considering
that the inner receiver, due to the lack of channel knowledge
or other practical constraints, may not be an optimal receiver,
it is of paramount importance to control the interaction
between the inner and the outer code, or, the convergence
behavior as reflected in the matching of shape and position of
the corresponding EXIT curves. To emphasize the difference,
we thereafter refer to the conventional density evolution
method as the “threshold-constraint” method, and propose
a “convergence-constraint” method as a useful extension to
the conventional method.

The key idea of the proposed method is to sample
the inner EXIT curve and design an (outer) EXIT curve
that matches with these sample points, or, “control points.”
Suppose we choose a set of M control points in the EXIT
plane, denoted as (v1,w1), (v2,w2), . . . , (vM ,wM). Let To(·)
be the input-output mutual information transfer function
of the outer LDPC code (whose exact expression of To
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will be defined later in (17)), the optimization problem is
formulated as

max∑Dv
i=1λi=1,

∑Dc
j=2ρj=1

{
R = 1−

∑Dc
j=2ρj/ j∑Dv
i=1λi/i

| To
(
wk
)

≥ vk, k = 1, 2, . . . ,M

}
,

(5)

where R denotes the code rate of the outer LDPC code, and
λi and ρi denote the fraction of edges that connect to variable
nodes and check nodes of degree i, respectively.

The formulation in (5) assumes that the LLR mes-
sages at the input of the inner and the outer decoder
are Gaussian distributed, and that the output extrinsic
mutual information (MI) of an irregular LDPC code
corresponds to a linear combination of the extrinsic MI
from a set of regular codes. As reported in literature,
the Gaussian assumption for LLR messages is less not
far from reality on AWGN channels but less accurate
on Rayleigh fading channels [12]. Nevertheless, Gaussian
assumption is used for several reasons. The first reason
is simplicity and tractability. Tracking and optimizing the
exact message pdf ’s involves tedious computation, which
is exacerbated by the fact the proposed new method is
governed by a set of control points, rather than a single
control point as in the conventional method. Second, recall
that to compute EXIT curves inevitably uses the Gaussian
approximation. Thus, it seems well acceptable to adopt
the same approximation when shaping and positioning an
EXIT curve. Finally, characterizing and representing EXIT
curves using mutual information help stabilize the process
and alleviate the inaccuracy caused by Gaussian approxi-
mation and other factors. As confirmed by many previous
papers as well as this one, the optimization generates very
good results in spite of the use of the Gaussian approxima-
tion.

3.2. The optimizationmethod

Below we detail the convergence-constraint design method
formulated in (5). We conform to the notations and the
graphic framework presented in [16]. Let λ(x) = ∑Dv

i=1λix
i−1

and ρ(x) = ∑Dc
i=2ρix

i−1 be the degree profiles from the edge
perspective, where Dv and Dc are the maximum variable
node and check node degrees, and λi and ρi are the fraction
of edges incident to variable nodes and check nodes of degree
i. Similarly, let λ′(x) =∑Dv

i=1λ
′
i x

i−1 and ρ′(x) =∑Dc
i=2ρ

′
i x

i−1 be
the degree profiles from the node perspective. Let R be the
code rate. The following relation holds:

λ′i=
λi/i∑Dv
j=1λj/ j

, ρ′i =
ρi/i∑Dc
j=2ρj/ j

, R=1−
∑Dv

i=1λi/i∑Dc
j=1ρj/ j

.

(6)

Let superscript (l) denote the lth LDPC decoding iteration,
and subscript v and c denote the quantities pertaining to
variable nodes and check nodes, respectively. Further, define

two functions that will be useful in the discussion

I(x) = 1−
∫∞
−∞

1√
2πx

e−(z−x)2/4x log
(
1 + e−z

)
dz, (7)

φ(x) =

⎧⎪⎨
⎪⎩

1− 1√
4πx

∫
tanh

z

2
e−(z−x)2/4xdz, x > 0,

1, x = 0.
(8)

Function I(x) maps the message mean x to the corre-
sponding mutual information (under Gaussian assumption),
and φ(x) helps describe how the message mean evolves in
tanh(y/2) operation, where y follows a Gaussian distribution
with mean x and variance 2x.

The complete design process takes a dual constraint
optimization process that progressively optimizes variable
node degree profile λ(x) and check node degree profile ρ(x)
based on each other. Despite the duality in the formulation
and the steps, optimizing λ(x) is far more critical to the
code performance than optimizing ρ(x), largely because the
optimal check node degree profile are shown to follow the
concentration rule [16]:

ρ(x) = Δxk + (1− Δ)xk+1. (9)

It is therefore a common practice to preset ρ(x) according to
(9) and code rate R, and optimize λ(x) only. For this reason,
below we focus our discussion on optimizing λ(x) for a given
ρ(x). Interested readers can formulate the optimization of
ρ(x) in a similar way.

3.2.1. Threshold-constraint method (optimizing λ(x))

Under the assumption that the messages passed along all
the edges are i.i.d. and Gaussian distributed, the average
messages variable nodes receive from their neighboring
check nodes follow a mixed Gaussian distribution. From
(l−1)th iteration to lth local iteration (in the LDPC decoder),
the mean of the messages associated with the variable node,
mv, evolves as

m(l)
v =

Dv∑

i=2

λi N
(
m(l)

v,i, 2m(l)
v,i

)
(10)

=
Dv∑

i=2

λiφ

(
m0 + (i− 1)

Dc∑

j=2

ρjφ
−1(1− (1−m(l−1)

v

) j−1)
)

,

(11)

where m0 denotes the mean of the initial messages received
from the inner code (or the channel). Let us define

hi(m0, r)
Δ= φ

(
m0 + (i− 1)

Dc∑
j=2

ρjφ−1
(
1− (1− r) j−1)

)
,

h
(
m0, r

) Δ=
Dv∑
i=2

λihi
(
m0, r

)
.

(12)

Then (11) can be rewritten as

rl = h
(
m0, rl−1

) =
Dv∑

i=2

λihi
(
m0, rl−1

)
. (13)
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The conventional threshold-constraint density evolution
guarantees that the degree profile converges asymptotically
to the zero-error state at the given initial message mean m0.
This is achieved by enforcing [16]

r > h
(
m0, r

)
, ∀r ∈ (0,φ

(
m0
)]
. (14)

Viewed from the EXIT chart, the threshold-constraint
method has implicitly used a control point (v,w) = (1,
I(m0)), such that the resultant EXIT curve will stay below
it.

3.2.2. Convergence-constraint method (optimizing λ(x))

The proposed convergence-constraint method extends the
conventional threshold-constraint method by introducing
a set of control points, which may be placed in arbitrary
positions in the EXIT plane, to control the shape and the
position of the EXIT cure. Each control point (v,w) ∈
[0, 1]2 ensures that the EXIT curve will, at the input a priori
mutual information w, produce extrinsic mutual informa-
tion greater than v. This is reflected in the optimization
process by changing (14) to

r∗ > h
(
m0, r∗

)
, ∀ r∗ ∈ (0,φ

(
m0
)]

, (15)

where r∗(≥ 0) is the threshold value that satisfies T0(w) ≥ v.
We can reformulate the problem as follows: for a given check
node degree profile ρ(x) and a control point (v,w) in the
EXIT chart, where 0 ≤ v,w,≤ 1,

max∑Dv
i=1λi=1

Dv∑

i=1

λi
i

,

subject to: (i)
Dv∑

i=1

λi = 1,

(ii)
Dv∑

i=1

λi
(
hi
(
m0, r

)−r)<0, ∀r ∈ (r∗,φ
(
m0
)]

,

(16)

where m0 = I−1(w) and r∗ satisfies

To(w)
Δ=

Dv∑

i=1

λ′iI

(
i
Dc∑

j=2

ρjφ
−1(1− (1− r∗

) j−1)
)
≥ v. (17)

Apparently, when v = 1, we get r∗ = 0, and the case reduces
to that of the conventional threshold-constraint design.

Hence, given a set of M control points, (v1,w1),
(v2,w2), . . . , (vM ,wM), where 0 ≤ v1 < v2 < · · · < vM ≤ 1
and 0 ≤ w1 ≤ w2 ≤ · · · ≤ wM ≤ 1, one can combine
the constraints associated with each individual control point
and perform joint optimization, to control the shape and the
position of the resulting EXIT curve. Specifically, when the
set of control points are proper samples from the inner EXIT
curve, the resultant EXIT curve represents an optimized
LDPC ensemble that matches to the inner code.

3.2.3. Linear programming

The basic idea of convergence-constraint design, as discussed
before, is simple. Complication arises from the fact that
constraint (ii) in (16) is a nonlinear function of λi’s. Further-
more, observe that the determination of the optimization
range, or, the computation of r∗ from (17), requires the
knowledge of λ(x), which is yet to be optimized. One possible
approach to overcome this chicken-and-egg dilemma is
to attempt an approximated λ(x) in (17) to compute r∗.
Specifically, we propose accounting for the two lowest degree
variable nodes λi1 and λi2 , and approximating the degree
profile as

λ̃(x)=λi1x
i1−1 +λi2x

i2−1 +O
(
λi2+1x

i2
) ≈ λi1x

i1−1 +
(
1−λi1

)
xi1

(18)

in (17). First, this approximated λ(x) is only used in (17) to
tentatively determine r∗, so that the optimization process
can get started. The exact λ(x) in (16), (i) and (ii), is to
be optimized. Second, the value of i1 and λi1 (or λ′i1 ) in the
approximated λ(x) is calculated in one of the following two
ways.

Case 1. A conventional LDPC ensemble has i1 = 2, that is,
no degree-1 variable nodes. This is because the outbound
messages from degree-1 variable nodes do not improve over
the message-passing process. In that case, we consider only
degree-2 and 3 nodes (λi1=2 and λi2=3), upper bound the
percentage of degree-2 nodes with λ∗2 , and treat all the rest
as degree-3 nodes. The stability condition [11, 16] states
that there exists a value ξ > 0 such that, given an initial
symmetric message density P0 satisfying

∫ 0
−∞P0(x)dx < ξ,

then the necessary and sufficient condition for the density
evolution to converge to the zero-error state is λ′(0)ρ′(1) <

eγ, where γ
Δ= − log(

∫∞
−∞P0(x)e−x/2dx). Applying the stability

condition on Gaussian messages with initial mean value
m0, we get γ = m0/4 and λ∗2 = em0/4/

∑Dc
j=2( j − 1)ρj , or

equivalently,

λ∗2 (w) = eI
−1(w)/4

∑Dc
j=2ρj( j − 1)

. (19)

It should be noted that not all values of wk from
the M preselected control points are suitable for (19) in
computing λ∗2 . Since the stability condition ensures the
asymptotic convergence to the zero-error state for a given
input messages, λ2 ≤ λ∗2 (w∗) is valid and required only
when the output mutual information will approach 1 at the
input mutual information w∗. What this implies in sampling
the inner EXIT curve is that, at least one control point,
say, the rightmost point (vM ,wM), should roughly satisfy the
requirement: (vM ,wM) ≈ (1,wM). This value of wM is then
used in (19) to compute λ∗2 = λ∗2 (wM), which is subsequently

used in λ̃(x) ≈ λ∗2 x+ (1−λ∗2 )x2 to compute r∗ from (17). r∗

will then be applied to all the control points from 1 to M.
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Error

Error

LDPC Differential encoder

p

q

Figure 3: Defect for λ′1 > 1− R. When the four bits associated with
the solid circles flip altogether, another valid codeword results, and
the decoder is unable to tell (undetectable error).

It is also worth mentioning that when a Gaussian
approximation is used on the message pdf ’s, the stability
condition reduces to

λ∗2 (w) = eI
−1(w)/4

∏Dc
j=2( j − 1)ρj

, (20)

which is a weaker condition than (19). Since we use Gaussian
approximation primarily for the purpose of complexity
reduction, unnecessary application is therefore avoided.
Thus (19) rather than (20) is used in our design process.

Case 2. Consider the case when an LDPC code is iteratively
decoded together with a differential encoder, or, other
recursive inner code or modulation with memory. Since
the inner code imposes another level of checks on all the
variable nodes, degree-1 variable nodes in the outer LDPC
code will get extrinsic information from the inner code, and
their estimates will improve with decoding iterations. Thus,
without loss of generality, we let the first and the second
nonzero λi’s be λ1 and λ2. No analytical bounds on λ1 or
λ2 were reported in literature for this case. We propose to
bound λ′1 by λ′1 ≤ 1 − R, where R is the code rate (the exact
code rate is dependent on the optimization result, and may
be slightly different from the target code rate). The rational
is that, if λ′1 > 1 − R, then there exist at least two degree-
1 variable nodes, say the pth node and the qth node, which
connect to the same check. When the LDPC code operates
alone, these two variable nodes are apparently useless and
wasteful, and can be removed altogether. When the LDPC
code is combined with an inner recursive code, as shown
in Figure 3, these two degree-1 variable nodes will cause a
minimum distance of 4 for the entire codeword, irrespective
of the code length. Using this empirical bound on λ1, we can

employ the approximation λ̃(x) = (1−R)+Rx in (17), which
leads to the computation of (a lower bound for) r∗. Code
optimization as formulated by the convergence-constraint
method can thus be solved using linear programming.

It is rather expected that the choice of the control points
directly affects the optimization results. The set of control

points need not be large—in fact, an excessive number of
control points actually makes the optimization process con-
verge slow and at times converge poor. We suggest choosing
3 to 5 control points that can reasonably characterize the
shape of the inner EXIT curve. Our experiments show that
the proposed method generates EXIT curves with a shape
matching very well to what we desire, but the position
is slightly lower, indicating that the resultant code rate is
slightly pessimistic. This can be compensated by presetting
the control points slightly higher than we actually want them
to be.

3.3. Optimization results and useful findings

For complexity concerns, instead of performing dual opti-
mization, we apply the concentration theorem in (9) and
preselect ρ(x) that will make the the average column weight
to be approximately 3. The left degree profile λ(x) is opti-
mized through the convergence-constraint method discussed
in the previous subsection. We now discuss some observa-
tions and findings from our optimization experiments.

First, the LDPC ensemble optimal for differential coding
always contains degree-1 and degree-2 variable nodes. For
high rate codes above 0.75, these nodes are dominant, and
in some cases, are the the only types of variable nodes in the
degree profile. For medium rates around 0.5, there exist also
a good portion of high-degree variable nodes. Considering
that the outer code of a PA code has only degree-1 and
degree-2 variable nodes, λ(x) = (1 − R)/(1 + R) + (2R/(1 +
R))x, where R ≥ 1/2 is the code rate, it is fair to say
that PA are (near-)optimal at high rates, but less optimal
at medium rates (the optimized LDPC ensemble contains
slightly different degree distribution than that of the PA code,
the difference is very small in either asymptotic thresholds or
finite length simulations). This is actually well reflected in
the EXIT charts. As rate 3/4 (see Figure 1), the area between
the outer code of the PA code and the inner differential
code is very small, leaving not much room for improvement.
In comparison, at rate around 0.5 (see Figure 4), the area
becomes much bigger, indicating that an optimized outer
code could acquire more information rate for the same SNR
threshold, or, for the same information rate, achieve a better
SNR threshold.

The optimization result of a target rate 0.5 is shown in
Figure 4. We consider an inner differential code, operating
at 0.25 dB on a fdTs = 0.01 Rayleigh fading channel, and
decoded using the noncoherent IDDD receiver with the help
of using 10% pilot symbols. The optimzed LDPC ensemble
has code rate R = 0.5037 and degree profile

λ(x) = 0.0672 + 0.4599x + 0.0264x8 + 0.0495x9

+ 0.0720x10 + 0.0828x11 + 0.0855x12

+ 0.0807x13 + 0.0760x14,

ρ(x) = x5.

(21)

We see that the two EXIT curves match very well with
each other. Here the inner EXIT curve is computed through
Monte Carlo simulations, when the sequences are taken in
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Figure 4: EXIT chart of a rate 0.5 LDPC ensemble optimized
using convergence-evolution for differential coding. Normalized
Doppler rate is 0.01, 10% of pilot symbols are assumed to assist
noncoherent differential detection. Degree profile of the optimized
LDPC ensemble: λ(x) = 0.0672 + 0.4599x + 0.0264x8 + 0.0495x9 +
0.0720x10 +0.0828x11 +0.0855x12 +0.0807x13 +0.0760x14, ρ(x) = x5

blocks of N= 106 bits, and the power penalty due to the pilot
symbols is also compensated for.

The optimized LDPC ensemble requires 0.25 −
10 log10(0.5037) = 3.2283 dB asymptotically, in order for the
iterative process to converge successfully. Compared to a rate
0.50 PA code which requires 1.26−10 log10(0.5) = 4.2703 dB
(Figure 4), the optimized LDPC ensemble is about 1.04 dB
better asymptotically. However, as the tunnel between the
inner and the outer EXIT curves becomes more narrow, the
message-passing decoder takes a larger number of iterations
to arrive at the zero-error state. The increased computing
complexity and processing time are the price we pay for
reaching out to the limit.

The optimized LDPC ensemble is good in the asymptotic
sense, that is, with infinite or very long code lengths. In
practice, we are also concerned with finite-length imple-
mentation or individual code realization. According to the
concentration rule, at long lengths, all code realizations
perform close to each other, and they all tend to converge
to the asymptotic threshold as length increases with bound.
At short lengths, however, the concentration rule fails and
the performance may vary rather noticeably from one code
realization to another. Good realizations have improved
neighborhood condition than others, including a larger
girth (achieved, e.g., through the edge progressive growth
algorithm), a smaller number of short cycles, or a smaller
trapping set.

Figure 5 simulates the optimized rate-0.5037 LDPC
code with differential encoding and noncoherent differential

100

10−1

10−2

10−3

10−4

B
E

R

3 3.5 4 4.5 5 5.5 6 6.5 7

Eb/N0 (dB)

Opt. LDPC, dif. dec., ideal, 10%, 15 iter
Opt. LDPC, dif. dec., 10%, 5, 10, 15 iter
PA, 10%, 15 iter
Conv. LDPC, non-dif. dec., 10%, 15 iter

Analytical
threshold

0.75 dB 1.4 dB 1.5 dB

(64 K, 32 K), optimized LDPC, fdTs = 0.01

Figure 5: Simulations of optimized LDPC code with differential
coding and iterative differential detection and decoding. Code rate
0.5037, normalized Doppler rate 0.01, 10% pilot insertion, degree
profile λ(x) = 0.0672 + 0.4599x+ 0.0264x8 + 0.0495x9 + 0.0720x10 +
0.0828x11 + 0.0855x12 + 0.0807x13 + 0.0760x14, and ρ(x) = x5, 15
(global) iterations each with 6 (local) iterations in the outer LDPC
decoding.

decoding. The Rayleigh channel and the inner differential
decoder (the IDDD receiver) are the same as discussed in
Figure 4. We chose a long codeword length of N = 64 K
to test how well the simulation agrees with the analytical
threshold. As mentioned before, a large number of iterations
(e.g., 100 iterations) is preferred to fully harness the code
gain, but considering the complexity and delay affordable in
a practical system, we simulated only 15 iterations. In the
figure, the leftmost curve corresponds to the optimized DE-
LDPC code using ideal detection (perfect knowledge on the
fading phases and amplitudes), but with 10% pilot symbols.
These wasteful pilot symbols are included in this coherent
detection case to offset the curve, and to compare fairly with
all the other noncoherently detected curves with 10% of pilot
insertion. The three circled curves to the right of this ideal
detection curve correspond to the noncoherent performance
using iterative differential detection and decoding at the 5th,
10th, and 15th iteration. We see that the performance of
the optimized differentially encoded LDPC code performs
only about 0.3 dB worse than the coherent detection, which
is very encouraging. Further, the simulated performance
is only 0.75 dB away from the asymptotic threshold of
3.23 dB (discussed before), showing a good theory-practice
agreement.

For reference, we also plot in Figure 5 the performance of
a PA code and a conventional LDPC code without differential
coding (recall that conventional LDPC codes perform worse
with differential coding than without), both having code rate
around 0.5 and both noncoherently detected. We see that the
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PA code outperforms the conventional LDPC code by 1.5 dB,
but the optimized DE-LDPC code outperforms the PA code
by another 1.4 dB!

4. CONCLUSION

Part I of this two-part series of papers [1] studied product
accumulate codes, a special case of differentially encoded
LDPC codes, with coherent detection and especially nonco-
herent detection. It showed that PA codes perform very well
in both cases. Here in Part II, we generalize the study from
PA codes to an arbitrary differentially encoded LDPC code.

The remarkable performance of LDPC codes with coher-
ent detection has been extensively studied, but much less
work has been carried out on noncoherently detected LDPC
codes. In general, a noncoherently detected system may or
may not employ differential encoding. The former leads to a
differential encoding and noncoherent differential detection
architecture, and the latter requires the insertion of (many)
pilot symbols in order to track the (fast-changing) channel
well. A rather unexpected finding here is that a conventional
LDPC code actually suffers in either case: in the former
it was because of an EXIT mismatch between the (outer)
LDPC code and the (inner) differential code, and in the latter
it was because of the large bandwidth expansion. Here by
conventional we mean the LDPC code that delivers a superb
performance in the usual setting with coherent detection and
possibly channel state information.

Further investigation shows that it is not only possible,
but highly beneficial, to optimize an LDPC code to match to
a differential decoder. The optimization is achieved through
a new convergence-constraint density evolution method
developed here. The resultant optimized degree profiles are
rather nonconventional, as they contain (many) degree-1
and -2 variable nodes. This is in sharp contrast to the
conventional LDPC case (i.e., coherent detection) where
degree-1 variable nodes are deemed highly undesirable.

The effectiveness of the new DE method is confirmed
by the fact that the optimized DE-LDPC code brings an
additional 1.4 dB and 2.9 dB, respectively, over the existing
PA code and the conventional LDPC code (when nonco-
herent detection is used). The proposed DE optimization
procedure is very useful. It provides a practical way to tune
the shape and the position of an EXIT curve, and can
therefore match an LDPC code to virtually any front-end
processor, with the imperfectness of the processor taken into
explicit consideration.

We conclude by stating that LDPC codes can after all
perform very well with differential encoding (or any other
recursive inner code or modulation), but the degree profiles
need to be carefully (re)designed, using, for example, the
convergence-constraint density evolution developed here,
and one should expect the optimized degree profile to
contain many degree-1 (and degree-2) variable nodes.

ACKNOWLEDGMENTS

This research work supported in part by the National
Science Foundation under Grant no. CCF-0430634 and

CCF-0635199, and by the Commonwealth of Pennsylvania
through the Pennsylvania Infrastructure Technology Alliance
(PITA).

REFERENCES

[1] J. Li, “Differentially-encoded LDPC codes: part I—special case
of product accumulate codes,” to appear in EURASIP Journal
on Wireless Communications and Networking .

[2] J. Li, K. R. Narayanan, and C. N. Georghiades, “Product
accumulate codes: a class of codes with near-capacity perfor-
mance and low decoding complexity,” IEEE Transactions on
Information Theory, vol. 50, no. 1, pp. 31–46, 2004.

[3] V. T. Nam, P.-Y. Kam, and Y. Xin, “LDPC codes with BDPSK
and differential detection over flat Rayleigh fading channels,”
in Proceedings of the 50th IEEE Global Telecommunications
Conference (GLOBECOM ’07), pp. 3245–3249, Washington,
DC, USA, November 2007.

[4] H. Tatsunami, K. Ishibashi, and H. Ochiai, “On the per-
formance of LDPC codes with differential detection over
Rayleigh fading channels,” in Proceedings of the 63rd IEEE
Vehicular Technology Conference (VTC ’06), vol. 5, pp. 2388–
2392, Melbourne, Victoria, Australia, May 2006.

[5] M. Franceschini, G. Ferrari, R. Raheli, and A. Curtoni, “Serial
concatenation of LDPC codes and differential modulations,”
IEEE Journal on Selected Areas in Communications, vol. 23,
no. 9, pp. 1758–1768, 2005.

[6] J. Mitra and L. Lampe, “Simple concatenated codes using
differential PSK,” in Proceedings of the 49th IEEE Global
Telecommunications Conference (GLOBECOM ’06), pp. 1–6,
San Francisco, Calif, USA, November 2006.

[7] M. C. Valenti and B. D. Woerner, “Iterative channel estimation
and decoding of pilot symbol assisted turbo codes over flat-
fading channels,” IEEE Journal on Selected Areas in Communi-
cations, vol. 19, no. 9, pp. 1697–1705, 2001.

[8] M. Peleg and S. Shamai, “Iterative decoding of coded and
interleaved noncoherent multiple symbol detected DPSK,”
Electronics Letters, vol. 33, no. 12, pp. 1018–1020, 1997.

[9] S. ten Brink, “Convergence behavior of iteratively decoded
parallel concatenated codes,” IEEE Transactions on Communi-
cations, vol. 49, no. 10, pp. 1727–1737, 2001.

[10] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic
information transfer functions: model and erasure channel
properties,” IEEE Transactions on Information Theory, vol. 50,
no. 11, pp. 2657–2673, 2004.

[11] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,
“Design of capacity-approaching irregular low-density parity-
check codes,” IEEE Transactions on Information Theory, vol. 47,
no. 2, pp. 619–637, 2001.

[12] J. Hou, P. H. Siegel, and L. B. Milstein, “Performance analysis
and code optimization of low density parity-check codes on
Rayleigh fading channels,” IEEE Journal on Selected Areas in
Communications, vol. 19, no. 5, pp. 924–934, 2001.

[13] A. Shokrollahi and R. Storn, “Design of efficient erasure codes
with differential evolution,” in Proceedings of the IEEE Interna-
tional Symposium on Information Theory, p. 5, Sorrento, Italy,
June 2000.

[14] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-
density parity-check codes for modulation and detection,”
IEEE Transactions on Communications, vol. 52, no. 4, pp. 670–
678, 2004.

[15] R.-R. Chen, R. Koetter, U. Madhow, and D. Agrawal, “Joint
noncoherent demodulation and decoding for the block fading



10 EURASIP Journal on Wireless Communications and Networking

channel: a practical framework for approaching Shannon
capacity,” IEEE Transactions on Communications, vol. 51,
no. 10, pp. 1676–1689, 2003.

[16] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis
of sum-product decoding of low-density parity-check codes
using a Gaussian approximation,” IEEE Transactions on Infor-
mation Theory, vol. 47, no. 2, pp. 657–670, 2001.

[17] http://lthcwww.epfl.ch/research/.
[18] R. Storn and K. Price, “Differential evolution—a simple and

efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.


	1. INTRODUCTION
	2. CODES MATCHED TO DIFFERENTIAL CODING
	3. CODE DESIGN FROM THE CONVERGENCE PROPERTY
	3.1. Problem formulation
	3.2. The optimization method
	3.2.1. Threshold-constraint method (optimizing 
	3.2.2. Convergence-constraint method (optimizing λ(x))
	3.2.3. Linear programming

	3.3. Optimization results and useful findings

	4. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES



