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1. Introduction

In this paper, we are concerned with the global existence and the asymptotic stability of
weak solutions for a hyperbolic differential inclusion with nonlinear damping and source
terms:

ytt −Δyt −div
(|∇y|p−2∇y

)
+Ξ= λ|y|m−2y in Ω× (0,∞),

Ξ(x, t)∈ ϕ
(
yt(x, t)

)
a.e. (x, t)∈Ω× (0,∞),

y = 0 on ∂Ω× (0,∞),

y(x,0)= y0(x), yt(x,0)= y1(x) in x ∈Ω,

(1.1)

whereΩ is a bounded domain inRN with sufficiently smooth boundary ∂Ω, p ≥ 2, λ > 0,
and ϕ is a discontinuous and nonlinear set-valued mapping by filling in jumps of a locally
bounded function b.

Recently, a class of differential inclusion problems is studied by many authors [2, 6, 7,
11, 14–16, 19]. Most of them considered the existence of weak solutions for differential
inclusions of various forms. Miettinen [6] Miettinen and Panagiotopoulos [7] proved the
existence of weak solutions for some parabolic differential inclusions. J. Y. Park et al. [14]
showed the existence of a global weak solution to the hyperbolic differential inclusion
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(1.1) with λ = 0 by making use of the Faedo-Galerkin approximation, and then consid-
ered asymptotic stability of the solution by using Nakao lemma [8]. The background of
these variational problems are in physics, especially in solid mechanics, where noncon-
vex, nonmonotone, and multivalued constitutive laws lead to differential inclusions. We
refer to [11, 12] to see the applications of differential inclusions.

On the other hand, it is interesting tomention the existence and nonexistence of global
solutions for nonlinear wave equations with nonlinear damping and source terms [4, 5,
10, 13, 18] in the past twenty years. Thus, in this paper, we will deal with the existence and
the asymptotic behavior of a global weak solution for the hyperbolic differential inclusion
(1.1) involving p-Laplacian, a nonlinear, discontinuous, and multivalued damping term
and a nonlinear source term. The difficulties come from the interaction between the p-
Laplacian and source terms. As far as we are concerned, there is a little literature dealing
with asymptotic behavior of solutions for differential inclusions with source terms.

The plan of this paper is as follows. In Section 2, the main results besides notations and
assumptions are stated. In Section 3, the existence of global weak solutions to problem
(1.1) is proved by using the potential-well method and the Faedo-Galerkin method. In
Section 4, the asymptotic stability of the solutions is investigated by using Nakao lemma.

2. Statement of main results

We first introduce the following abbreviations: QT = Ω × (0,T), ΣT = ∂Ω × (0,T),
‖ · ‖p = ‖·‖Lp(Ω), ‖ · ‖k,p = ‖·‖Wk,p(Ω). For simplicity, we denote ‖ · ‖2 by ‖ · ‖. For every
q ∈ (1,∞), we denote the dual ofW

1,q
0 by W−1,q′ with q′ = q/(q− 1). The notation (·,·)

for the L2-inner product will also be used for the notation of duality pairing between dual
spaces.

Throughout this paper, we assume that p andm are positive real numbers satisfying

2≤ p < m <
Np

2(N − p)
+ 1 (2≤ p < m <∞ if p ≥N). (2.1)

Define the potential well

�= {y ∈W
1,p
0 (Ω) | I(y)= ‖∇y‖pp− λ‖y‖mm > 0

}∪{0}. (2.2)

Then � is a neighborhood of 0 inW
1,p
0 (Ω). Indeed, Sobolev imbedding (see [1])

W
1,p
0 (Ω) Lm(Ω) (2.3)

and Poincare’s inequality yield

λ‖y‖mm ≤ λcm∗‖∇y‖mp ≤ λcm∗‖∇y‖m−pp ‖∇y‖pp, ∀y ∈W
1,p
0 (Ω), (2.4)

where c∗ is an imbedding constant from W
1,p
0 (Ω) to Lm(Ω). From this, we deduce that

I(y) > 0 (i.e., y ∈�) as ‖∇y‖p < (λ−1c−m∗ )1/(m−p).
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For later purpose, we introduce the functional J defined by

J(y) := 1
p
‖∇y‖pp− λ

m
‖y‖mm. (2.5)

Obviously, we have

J(y)= 1
m
I(y) +

m− p

mp
‖∇y‖pp. (2.6)

Define the operator A :W
1,p
0 (Ω)→W−1,p′(Ω) by

Ay =−div
(|∇y|p−2∇y

)
, ∀y ∈W

1,p
0 (Ω), (2.7)

then A is bounded, monotone, hemicontinuous (see, e.g., [3]), and

(Ay, y)= ‖∇y‖pp,
(
Ay, yt

)= 1
p

d

dt
‖∇y‖pp for y ∈W

1,p
0 (Ω). (2.8)

Now, we formulate the following assumptions.
(H1) Let b :R→R be a locally bounded function satisfying

b(s)s≥ μ1s
2,

∣
∣b(s)

∣
∣≤ μ2|s|, for s∈R, (2.9)

where μ1 and μ2 are some positive constants.
(H2) y0 ∈�, y1 ∈ L2(Ω), and

0 < E(0)= 1
2

∥
∥y1
∥
∥2 +

1
p

∥
∥∇y0

∥
∥p
p−

λ

m

∥
∥y0
∥
∥m
m <

m− p

2mp

(
m− p

λcm∗2(m− 1)p

)p/(m−p)
. (2.10)

The multivalued function ϕ : R→ 2R is obtained by filling in jumps of a function b :
R→R by means of the functions bε, bε, b, b :R→R as follows:

bε(t)= ess inf
|s−t|≤ε

b(s), bε(t)= ess sup
|s−t|≤ε

b(s),

b(t)= lim
ε→0+

bε(t), b(t)= lim
ε→0+

bε(t),

ϕ(t)= [b(t),b(t)].

(2.11)

We will need a regularization of b defined by

bn(t)= n
∫∞

−∞
b(t− τ)ρ(nτ)dτ, (2.12)

where ρ ∈ C∞0 ((−1,1)), ρ ≥ 0 and
∫ 1
−1 ρ(τ)dτ = 1. It is easy to show that bn is continuous

for all n∈N and bε, bε, b, b, b
n satisfy the same condition (H1) with a possibly different

constant if b satisfies (H1). So, in the sequel, we denote the different constants by the same
symbol as the original constants.
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Definition 2.1. A function y(x, t) is a weak solution to problem (1.1) if for every T > 0,

y satisfies y ∈ L∞(0,T ;W1,p
0 (Ω)), yt ∈ L2(0,T ;W1,2(Ω))∩L∞(0,T ;L2(Ω)), ytt ∈ L2(0,T ;

W−1,p′(Ω)), there exists Ξ∈ L∞(0,T ;L2(Ω)) and the following relations hold:

∫ T

0

{(
ytt(t),z

)
+
(∇yt(t),∇z

)
+
(∣∣∇y(t)

∣
∣p−2∇y(t),∇z)+ (Ξ(t),z)}dt

=
∫ T

0

(
λ
∣
∣y(t)

∣
∣m−2y(t),z

)
dt, ∀z ∈W

1,p
0 (Ω),

Ξ(x, t)∈ ϕ
(
yt(x, t)

)
a.e. (x, t)∈QT ,

y(0)= y0, yt(0)= y1.

(2.13)

Theorem 2.2. Under the assumptions (H1) and (H2), problem (1.1) has a weak solution.

Theorem 2.3. Under the same conditions of Theorem 2.2, the solutions of problem (1.1)
satisfy the following decay rates.

If p = 2, then there exist positive constants C and γ such that

E(t)≤ C exp(−γt) a.e. t ≥ 0, (2.14)

and if p > 2, then there exists a constant C > 0 such that

E(t)≤ C(1+ t)−p/(p−2) a.e. t ≥ 0, (2.15)

where E(t)= (1/2)‖yt(t)‖2 + (1/p)‖∇y(t)‖pp− (λ/m)‖y(t)‖mm.
In order to prove the decay rates of Theorem 2.3, we need the following lemma by

Nakao (see [8, 9] for the proof).

Lemma 2.4. Let φ :R+→R be a bounded nonincreasing and nonnegative function for which
there exist constants α > 0 and β ≥ 0 such that

sup
t≤s≤t+1

(
φ(s)

)1+β ≤ α
(
φ(t)−φ(t+1)

)
, ∀t ≥ 0. (2.16)

Then the following hold.
(1) If β = 0, there exist positive constants C and γ such that

φ(t)≤ C exp(−γt), ∀t ≥ 0. (2.17)

(2) If β > 0, there exists a positive constant C such that

φ(t)≤ C(1+ t)−1/β, ∀t ≥ 0. (2.18)

3. Proof of Theorem 2.2

In this section, we are going to show the existence of solutions to problem (1.1) using
the Faedo-Galerkin approximation and the potential method. To this end let {wj}∞j=1
be a basis in W

1,p
0 (Ω) which are orthogonal in L2(Ω). Let Vn = Span{w1,w2, . . . ,wn}.
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We choose yn0 and yn1 in Vn such that

yn0 −→ y0 inW
1,p
0 , yn1 −→ y1 in L2(Ω). (3.1)

Let yn(t)=∑n
j=1 gjn(t)wj be the solution to the approximate equation

(
yntt(t),wj

)
+
(∇ynt (t),∇wj

)
+
(
Ayn(t),wj

)
+
(
bn
(
ynt (t)

)
,wj
)= (λ∣∣yn(t)∣∣m−2yn(t),wj

)
,

yn(0)= yn0 , ynt (0)= yn1 .
(3.2)

By standard methods of ordinary differential equations, we can prove the existence of a
solution to (3.2) on some interval [0, tm). Then this solution can be extended to the closed
interval [0,T] by using the a priori estimate below.

Step 1 (a priori estimate). Equation (3.1) and the condition y0 ∈� imply that

I
(
yn0
)= ∥∥∇yn0

∥
∥p
p− λ

∥
∥yn0

∥
∥m
m −→ I

(
y0
)
> 0. (3.3)

Hence, without loss of generality, we assume that I(yn0 ) > 0 (i.e., yn0 ∈�) for all n. Sub-
stituting wj in (3.2) by ynt (t), we obtain

d

dt
En(t) +

∥
∥∇ynt (t)

∥
∥2 +

(
bn
(
ynt (t)

)
, ynt (t)

)= 0, (3.4)

where

En(t)= 1
2

∥
∥ynt (t)

∥
∥2 +

1
p

∥
∥∇yn(t)

∥
∥p
p−

λ

m

∥
∥yn(t)

∥
∥m
m

= 1
2

∥
∥ynt (t)

∥
∥2 + J

(
yn(t)

)
.

(3.5)

Integrating (3.4) over (0, t) and using assumption (H1), we have

1
2

∥
∥ynt (t)

∥
∥2 + J

(
yn(t)

)
+
∫ t

0

∥
∥∇ynt (τ)

∥
∥2dτ ≤ En(0). (3.6)

Since En(0)→ E(0) and E(0) > 0, without loss of generality, we assume that En(0) < 2E(0)
for all n. Now, we claim that

yn(t)∈�, t > 0. (3.7)

Assume that there exists a constant T > 0 such that yn(t)∈� for t ∈ [0,T) and yn(T)∈
∂�, that is, I(yn(T))= 0. From (2.6), (3.4), and (3.5), we obtain

J
(
yn(T)

)= m− p

pm

∥
∥∇yn(T)

∥
∥p
p ≤ En(T)≤ En(0) < 2E(0), (3.8)

and therefore

∥
∥∇yn(T)

∥
∥
p <
(
2pm
m− p

E(0)
)1/p

. (3.9)
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Combining this with (2.4) and using (2.10), we see that

λ
∥
∥yn(T)

∥
∥m
m < λcm∗

(
2pm
m− p

E(0)
)(m−p)/p∥

∥∇yn(T)
∥
∥p
p

<
m− p

2(m− 1)p

∥
∥∇yn(T)

∥
∥p
p <
∥
∥∇yn(T)

∥
∥p
p,

(3.10)

where we used the fact that (m− p)/2(m− 1)p < 1. This gives I(yn(T)) > 0, which is a
contradiction. Therefore (3.7) is valid. From (2.6), (3.6), and (3.7),

1
2

∥
∥ynt (t)

∥
∥2 +

m− p

pm

∥
∥∇yn(t)

∥
∥p
p +
∫ t

0

∥
∥∇ynt (s)

∥
∥2ds < 2E(0). (3.11)

By (H1) and (3.11), it follows that

∥
∥bn

(
ynt (t)

)∥∥2 ≤ μ22
∥
∥ynt (t)

∥
∥2 ≤ cE(0), (3.12)

here and in the sequel we denote by c a generic positive constant independent of n and t.
It follows from (3.11) and (3.12) that

(
yn
)
is bounded in L∞

(
0,T ;W

1,p
0 (Ω)

)
,

(
ynt
)
is bounded in L∞

(
0,T ;L2(Ω)

)∩L2
(
0,T ;W1,2(Ω)

)
,

(
bn
(
ynt
))

is bounded in L∞
(
0,T ;L2(Ω)

)
,

(3.13)

and since A :W
1,p
0 (Ω)→W−1,p′(Ω) is a bounded operator, it follows from (3.13) that

(
Ayn

)
is bounded in L∞

(
0,T ;W−1,p′(Ω)

)
. (3.14)

Finally, we will obtain an estimate for yntt. Since the imbeddingW
1,p
0 (Ω)↩Lm(Ω) is con-

tinuous, we have

∣
∣(
∣
∣yn(t)

∣
∣m−2yn(t),z

)∣∣≤ ∥∥yn(t)∥∥m−1m ‖z‖m ≤ c
∥
∥yn(t)

∥
∥m−1
1,p ‖z‖1,p. (3.15)

From (3.2), it follows that

∣
∣
∣
∣

∫ T

0

(
yntt(t),z

)
dt
∣
∣
∣
∣≤

∫ T

0

∣
∣− (Ayn(t),z)− (∇ynt (t),∇z

)

− (bn(ynt (t)
)
,z
)
+ λ
(∣∣yn(t)

∣
∣m−2yn(t),z

)∣∣dt, ∀z ∈Vm,
(3.16)

and hence we obtain from (3.13)–(3.15) that

∫ T

0

∥
∥yntt(t)

∥
∥2−1,p′dt ≤ c. (3.17)
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Step 2 (passage to the limit). From (3.13), (3.14), and (3.17), we can extract a subse-
quence from {yn}, still denoted by {yn}, such that

yn −→ y weakly star in L∞
(
0,T ;W

1,p
0 (Ω)

)
,

ynt −→ yt weakly in L2
(
0,T ;W1,2(Ω)

)
,

ynt −→ yt weakly star in L∞
(
0,T ;L2(Ω)

)
,

yntt −→ ytt weakly in L2
(
0,T ;W−1,p′(Ω)

)
,

Ayn −→ ζ weakly star in L∞
(
0,T ;W−1,p′(Ω)

)
,

bn
(
yn
)−→ Ξ weakly star in L∞

(
0,T ;L2(Ω)

)
.

(3.18)

Considering that the imbeddings W
1,p
0 (Ω)↩ L2(Ω) and W1,2(Ω)↩ L2(Ω) are compact

and using the Aubin-Lions compactness lemma [3], it follows from (3.18) that

yn −→ y strongly in L2
(
QT
)
, (3.19)

ynt −→ yt strongly in L2
(
QT
)
. (3.20)

Using the first convergence result in (3.18) and the fact that the imbedding W
1,p
0 (Ω)↩

L2(m−1)(Ω) (p < m < Np/2(N − p) + 1 if N > p and p < m <∞ if p ≥ N) is continuous,
we obtain

∥
∥
∣
∣yn

∣
∣m−2yn

∥
∥2
L2(QT )

=
∫ T

0

∫

Ω

∣
∣yn(x, t)

∣
∣2(m−1)dxdt ≤ c. (3.21)

This implies that

∣
∣yn

∣
∣m−2yn −→ ξ weakly in L2

(
QT
)
. (3.22)

On the other hand, we have from (3.19) that yn(x, t)→ y(x, t) a.e. in QT , and thus |yn(x,
t)|m−2yn(x, t)→ |y(x, t)|m−2y(x, t) a.e. in QT . Therefore, we conclude from (3.22) that
ξ(x, t)= |y(x, t)|m−2y(x, t) a.e. in QT .

Letting n→∞ in (3.2) and using the convergence results above, we have

∫ T

0

{(
ytt(t),z

)
+
(∇yt(t),∇z

)
+
(
ζ(t),z

)
+
(
Ξ(t),z

)}
dt

=
∫ T

0

(
λ
∣
∣y(t)

∣
∣m−2y(t),z

)
dt, ∀z ∈W

1,p
0 (Ω).

(3.23)
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Step 3 ((y,Ξ) is a solution of (1.1)). Let φ ∈ C1[0,T] with φ(T)= 0. By replacing wj by
φ(t)wj in (3.2) and integrating by parts the result over (0,T), we have

(
ynt (0),φ(0)wj

)
+
∫ T

0

(
ynt (t),φt(t)wj

)
dt =

∫ T

0

(∇ynt (t),φ(t)∇wj
)
dt

+
∫ T

0

(
Ayn(t),φ(t)wj

)
dt+

∫ T

0

(
bn
(
ynt (t)

)
,φ(t)wj

)
dt

−
∫ T

0

(
λ
∣
∣yn(t)

∣
∣m−2yn(t),φ(t)wj

)
.

(3.24)

Similarly from (3.23), we get

(
yt(0),φ(0)wj

)
+
∫ T

0

(
yt(t),φt(t)wj

)
dt =

∫ T

0

(∇yt(t),φ(t)∇wj
)
dt

+
∫ T

0

(
ζ(t),φ(t)wj

)
dt+

∫ T

0

(
Ξ(t),φ(t)wj

)
ds

−
∫ T

0

(
λ
∣
∣y(t)

∣
∣m−2y(t),φ(t)wj

)
.

(3.25)

Comparing between (3.24) and (3.25), we infer that

lim
n→∞

(
ynt (0)− yt(0),wj

)= 0, j = 1,2, . . . . (3.26)

This implies that ynt (0)→ yt(0) weakly inW−1,p′(Ω). By the uniqueness of limit, yt(0)=
y1. Analogously, taking φ∈ C2[0,T] with φ(T)= φ′(T)= 0, we can obtain that y(0)= y0.

Now, we show that Ξ(x, t) ∈ ϕ(yt(x, t)) a.e. in QT . Indeed, since ynt → yt strongly in
L2(QT) (see (3.20)), ynt (x, t)→ yt(x, t) a.e. in QT . Let η > 0. Using the theorem of Lusin
and Egoroff, we can choose a subset ω ⊂QT such that |ω| < η, yt ∈ L2(QT \ω), and ynt →
yt uniformly on QT \ω. Thus, for each ε > 0, there is anM > 2/ε such that

∣
∣ynt (x, t)− yt(x, t)

∣
∣ <

ε
2

for n >M, (x, t)∈QT \ω. (3.27)

Then, if |ynt (x, t)− s| < 1/n, we have |yt(x, t)− s| < ε for all n > M and (x, t) ∈ QT \ω.
Therefore, we have

bε
(
yt(x, t)

)≤ bn
(
ynt (x, t)

)≤ bε
(
yt(x, t)

)
, ∀n >M, (x, t)∈QT \ω. (3.28)

Let φ ∈ L1(0,T ;L2(Ω)), φ≥ 0. Then

∫

QT\ω
bε
(
yt(x, t)

)
φ(x, t)dxdt ≤

∫

QT\ω
bn
(
ynt (x, t)

)
φ(x, t)dxdt

≤
∫

QT\ω
bε
(
yt(x, t)

)
φ(x, t)dxdt.

(3.29)
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Letting n→∞ in this inequality and using the last convergence result in (3.18), we obtain
∫

QT\ω
bε
(
yt(x, t)

)
φ(x, t)dxdt ≤

∫

QT\ω
Ξ(x, t)φ(x, t)dxdt

≤
∫

QT\ω
bε
(
yt(x, t)

)
φ(x, t)dxdt.

(3.30)

Letting ε→ 0+ in this inequality, we deduce that

Ξ(x, t)∈ ϕ
(
yt(x, t)

)
a.e. in QT \ω, (3.31)

and letting η→ 0+, we get

Ξ(x, t)∈ ϕ
(
yt(x, t)

)
a.e. in QT. (3.32)

It remains to show that ζ = Ay. From the approximated problem and the convergence
results (3.18)–(3.22), we see that

limsup
n→∞

∫ T

0

(
Ayn(t), yn(t)

)
dt ≤ (y1, y0

)− (yt(T), y(T)
)

+
∫ T

0

(
yt(t), yt(t)

)
dt− 1

2

∥
∥∇y(T)

∥
∥2

+
1
2

∥
∥∇y0

∥
∥2−

∫ T

0

(
Ξ(t), y(t)

)
dt

+
∫ T

0

(
λ
∣
∣y(t)

∣
∣m−2y(t), y(t)

)
dt.

(3.33)

On the other hand, it follows from (3.23) that

∫ T

0

(
ζ(t), y(t)

)
dt = (y1, y0

)− (yt(T), y(T)
)
+
∫ T

0

(
yt(t), yt(t)

)
dt

− 1
2

∥
∥∇y(T)

∥
∥2 +

1
2

∥
∥∇y0

∥
∥2−

∫ T

0

(
Ξ(t), y(t)

)
dt

+
∫ T

0

(
λ
∣
∣y(t)

∣
∣m−2y(t), y(t)

)
dt.

(3.34)

Combining (3.33) and (3.34), we get

limsup
n→∞

∫ T

0

(
Ayn(t), yn(t)

)
dt ≤

∫ T

0

(
ζ(t), y(t)

)
dt. (3.35)

Since A is a monotone operator, we have

0≤ limsup
n→∞

∫ T

0

(
Ayn(t)−Az(t), yn(t)− z(t)

)
dt

≤
∫ T

0

(
ζ(t)−Az(t), y(t)− z(t)

)
dt, ∀z ∈ L2

(
0,T ;W

1,p
0 (Ω)

)
.

(3.36)
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By Mintiy’s monotonicity argument (see, e.g., [17]),

ζ =Ay in L2
(
0,T ;W−1,p′(Ω)

)
. (3.37)

Therefore the proof of Theorem 2.2 is completed.

4. Asymptotic behavior of solutions

In this section, we will prove the decay rates (2.14) and (2.15) in Theorem 2.3 by apply-
ing Lemma 2.4. To prove the decay property, we first obtain uniform estimates for the
approximated energy

En(t)= 1
2

∥
∥ynt (t)

∥
∥2 +

1
p

∥
∥∇yn(t)

∥
∥p
p−

λ

m

∥
∥yn(t)

∥
∥m
m (4.1)

and then pass to the limit. Note that En(t) is nonnegative and uniformly bounded. Let us
fix an arbitary t > 0. From the approximated problem (3.2) and wj = ynt (t), we get

d

dt
En(t) +

∥
∥∇ynt (t)

∥
∥2 =−(bn(ynt (t)

)
, ynt (t)

)≤−μ1
∥
∥ynt (t)

∥
∥2. (4.2)

This implies that En(t) is a nonincreasing function. Setting F2
n(t)= En(t)−En(t +1) and

integrating (4.2) over (t, t+1), we have

F2
n(t)≥

∫ t+1

t

(∥∥∇ynt (s)
∥
∥2 +μ1

∥
∥ynt (s)

∥
∥2)ds≥ (λ1 +μ1

)
∫ t+1

t

∥
∥ynt (s)

∥
∥2ds, (4.3)

where λ1 > 0 is the constant λ1‖v‖2 ≤ ‖∇v‖2,∀v ∈W1,2
0 (Ω). By applying the mean value

theorem, there exist t1 ∈ [t, t+1/4] and t2 ∈ [t+3/4, t+1] such that

∥
∥ynt

(
ti
)∥∥≤ 2

√
λ1 +μ1

Fn(t), i= 1,2. (4.4)

Now, replacing wj by yn(t) in the approximated problem, we have

(
Ayn(t), yn(t)

)− λ
(∣∣yn(t)

∣
∣m−2yn(t), yn(t)

)

=−(yntt(t), yn(t)
)− (∇ynt (t),∇yn(t)

)− (bn(ynt (t)
)
, yn(t)

)
.

(4.5)
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Integrating this over (t1, t2) and using (4.2) and (H1), we get

∫ t2

t1

1
p

∥
∥∇yn(s)

∥
∥p
pds− λ

∫ t2

t1

∥
∥yn(s)

∥
∥m
mds

≤
∫ t2

t1

∥
∥∇yn(s)

∥
∥p
pds− λ

∫ t2

t1

∥
∥yn(s)

∥
∥m
mds

=−(ynt
(
t2
)
, yn
(
t2
))

+
(
ynt
(
t1
)
, yn
(
t1
))

+
∫ t2

t1

∥
∥ynt (s)

∥
∥2ds

−
∫ t2

t1

(∇ynt (s),∇yn(s)
)
ds−

∫ t2

t1

(
bn
(
ynt (s)

)
, yn(s)

)
ds

≤ ∥∥ynt
(
t2
)∥∥
∥
∥yn

(
t2
)∥∥+

∥
∥ynt

(
t1
)∥∥
∥
∥yn

(
t1
)∥∥+

∫ t2

t1

∥
∥ynt (s)

∥
∥2ds

+ c
∫ t2

t1

∥
∥∇ynt (s)

∥
∥
(

sup
t≤s≤t+1

∥
∥∇yn(s)

∥
∥
p

)
ds+μ2

∫ t2

t1

∥
∥ynt (s)

∥
∥
∥
∥yn(s)

∥
∥ds.

(4.6)

Using Holder’s inequality, Poincaré inequality, and (4.3)–(4.6), we get

∫ t2

t1
En(s)ds= 1

2

∫ t2

t1

∥
∥ynt (s)

∥
∥2ds

+
1
p

∫ t2

t1

∥
∥∇yn(s)

∥
∥p
pds−

λ

m

∫ t2

t1

∥
∥yn(s)

∥
∥m
mds≤ cF2

n(t)

+ cFn(t)
{∥
∥∇yn

(
t2
)∥∥

p +
∥
∥∇yn

(
t1
)∥∥

p + sup
t≤s≤t+1

∥
∥∇yn(s)

∥
∥
p

}

+ λ
(
1− 1

m

)∫ t2

t1

∥
∥yn(s)

∥
∥m
mds,

(4.7)

and hence we derive that

∫ t2

t1
En(s)ds≤ cF2

n(t) + cFn(t)En(t)1/p +C1E
n(t), (4.8)

where C1 = λ(1− (1/m))cm∗ (2mp/(m− p)E(0))(m−p)/p(mp/(m− p)) and we used the fact
that ‖∇yn(t)‖pp ≤ (mp/(m− p))En(t), En(t) is a nonincreasing function, and (2.4).

Young’s inequality implies that

∫ t2

t1
En(s)ds≤ cF2

n(t) +CηFn(t)p/(p−1) +
1
η
En(t) +C1E

n(t). (4.9)

Noting that En(t +1)≤ 2
∫ t2
t1 E

n(s)ds and En(t +1)= En(t)− F2
n(t), we have from (4.9)

that

(
1
2
−C1− 1

η

)
En(t)≤

(
c+

1
2

)
F2
n(t) +CηFn(t)p/(p−1). (4.10)
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By assumption (2.10), 1/2−C1 > 0, and hence taking η > 0 sufficiently small such that
1/2−C1− 1/η > 0, we obtain that

En(t)≤ cF2
n(t) + cFn(t)p/(p−1). (4.11)

If p = 2 then En(t)≤ cF2
n(t), and since En(t) is decreasing from Lemma 2.4 there exist

positive constants C and γ such that

En(t)≤ C exp(−γt), ∀t ≥ 0. (4.12)

If p > 2, then (4.11) and the boundedness of Fn(t) imply that

En(t)≤ cFn(t)p/(p−1), (4.13)

and then

En(t)2(p−1)/p ≤ c2(p−1)/p
(
En(t)−En(t+1)

)
. (4.14)

Applying Lemma 2.4 to β = (p− 2)/p, we obtain a constant C > 0 such that

En(t)≤ C(1+ t)−p/(p−2), ∀t ≥ 0. (4.15)

Passing to the limit n→∞ in (4.12) and (4.15), we get (2.14) and (2.15). This completes
the proof of Theorem 2.3.

References

[1] R. A. Adams, Sobolev Spaces, vol. 65 of Pure and Applied Mathematics, Academic Press, New
York, NY, USA, 1975.
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